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Voronol Diagram

(Dirichlet Tesselation)

« Given: A set of point sites P = {p;, ..., P} S R?
« Task: Partition R? into Voronoi cells

V(py) ={q € R?*| d(p;,q) < d(pj,q) forall j # i}

7

V(pi)
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Applications of Voronol Diagrams

e Nearest neighbor queries:
e Sites are post offices, restaurants, gas stations
e For a given query point, locate the nearest point site in O (logn) time
— point location

e Closest pair computation (collision detection):
e Naive O(n?) algorithm; sweep line algorithm in O(nlogn) time
e Each site and the closest site to it share a Voronoi edge
— Check all Voronoi edges (in O(n) time)

e Facility location: Build a new gas station (site) where it has minimal
interference with other gas stations

e Find largest empty disk and locate new gas station at center

e If center is restricted to lie within CH (P) then the center has to be on a
Voronoi edge
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Bisectors

e Voronoi edges are portions of bisectors
e For two points p, g, the bisector b(p, q) is defined as

b(p,q) ={r e R* |d(p,7) = d(q,7)}

e Voronoi vertex:

o(
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Voronoi cell

e Each Voronoi cell V(p;) is convex and
V(pl) — nijP h(pi' p]) >
JES

where h(p;, p;) is the halfspace that is defined by bisector b(p;, p;) and
that contains p;

.pj

bi

h(pi,pj)

— A Voronoi cell has at most n — 1 sides
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Voronol Diagram

e ForP ={py,..,pn} S R?, let the Voronoi diagram VD (P) be the
plan{ar subd1}v1510n induced by all Voronoi cells VD (p;) for all
1 el n

— The Voronoi diagram is a planar embedded graph with vertices,
edges (possibly infinite), and faces (possibly infinite)

e Theorem: Let P = {p4, ..., p,} S R?. Let n,, be the number of vertices
in VD (P) and let n, be the number of edges in VD (P). Then

n, < 2n—>5, and
Ne <3n—26

Proof idea: Use Euler’s formula for the dual
graph.
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Properties

1. A Voronoi cell V(p;)is unbounded iff p; is on the convex hull of the
sites.

2. Each point on an edge of the VD is equidistant from its two nearest
neighbors p; and p;.

3. wvisa Voronoi vertex iff it is the center of an empty circle that passes
through three sites. Site with

bounded
Voronoi cell

Site with
unbounded ///////7

Voronoi cell

Smaller empty
disk centered
on Voronoi
edge

Larger empty disk
centered on
Voronoi vertex
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Delaunay Triangulation

« Let G be the plane graph for the Voronoi diagram VD(P) . Then the
dual graph G* is called the Delaunay Triangulation DT(P).

Canonical straight-line embedding for DT(P):

VD(P)

r P
< B

J DT(P)

« If P is in general position (no three points on a line, no four points on a
circle) then every inner face of DT(P) 1s indeed a triangle.

* DT(P) can be stored as an abstract graph, without geometric
information. (No such obvious storing scheme for VD(P).)
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Straight-Line Embedding

« Lemma: DT(P) is a plane graph, 1.e., the straight-line edges do not
intersect.

* Proof: D
e pp’isanedge of DT(P) <> There is an a8
empty closed disk D with p and p’ on its
boundary, and its center C on the bisector. {

e Let be another Delaunay edge that
intersects pp’ . (1.e., p, P, g, q° are distinct)

= g and q’ lie outside of D, therefore D L3
0Qq° also intersects pC or p'C i
e Similarly, pp’ also intersects (C” or ¢’C’

= (pcor p’c)and (qc” or q’C’) intersect

— The edges are not in different Voronoi
cells

— Contradiction
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Characterization | of DT(P)

 Lemma: Let p,q,reP and let A be the triangle they define. Then the
following statements are equivalent:

a) A belongs to DT(P)
b) The circumcenter of A 1s a vertex in VD(P)
c) The circumcircle of A 1s empty (i.e., contains no other point of P)

« Characterization I: Let T be a triangulation of P.
Then T=DT(P) <> The circumcircle of any triangle in T 1s empty.

non-empty circumcircle

g

pi P;

Py
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lllegal Edges

Definition: Let p;, p;, Py, PieP .
Then p; p; is an |Ilegal edge < p, lies in the
interior 0% the circle through p;, p;, py -

Lemma: Let p;, p;, Py, PieP .
Then p; p;is IIIegaI < min ¢ < min o’

1<i<6 1<i<6

Py
p; doe fl; _ m p;
] e/giA 1p P; @tﬁ@ ]
%
P

~

illegal edge

Theorem (Thales): Let a, b, p, q be four points
on a circle, and let I be inside and let s be outside
of the circle, such that p,q,r,s lie on the same side
of the line through a, b.

Then ~Za,s5,b < Za,q,b = < Za,rb a
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Characterization Il of DT(P)

« Definition: A triangulation is called legal if it does not contain any
illegal edges.
« Characterization Il: Let T be a triangulation of P. D,
Then T=DT(P) < T is legal. 0
« Algorithm Legal_Triangulation(T): Pi ’
Input: A triangulation T of a point set P
Output: A legal triangulation of P P
while T contains an illegal edge p;p; do edge flip
//Flip pp;
Let pj, Pj, Py, P, be the quadrilateral containing Pip; P
Remove pipjand add p,p; 0

return T
P;

Runtime analysis: Pk

— In every iteration of the loop the angle vector of T (all angles in T
sorted by increasing value) increases

— With this one can show that a flipped edge never appears again
— There are O(n?) edges, therefore the runtime is O(n?)
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Characterization 111 of DT(P)

« Definition: Let T be a triangulation of P and let o, a.,,..., o, be the
angles of the m triangles in T sorted by increasing value. Then
A(T)=(o,0,...,05,) 1s called the angle vector of T.

« Definition: A triangulation T is called angle optimal <= A(T) > A(T")
for any other triangulation of the same point set P.

« Let T’ be a triangulation that contains an illegal edge, and let T"" be the
resulting triangulation after flipping this edge. Then A(T"") = A(T") .

» Tisangle optimal = T 1s legal = T=DT(P)

« Characterization I11: Let T be a triangulation of P.
Then T=DT(P) < T is angle optimal.

(If P is not in general position, then any triangulation obtained by
triangulating the faces maximizes the minimum angle.)
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Applications of DT

e Terrain modeling:

— Model a scanned terrain surface by interpolating the
height using a piecewise linear function over R“.

— Angle-optimal triangulations give better approximations
/ interpolations since they avoid skinny triangles

height = 985 ( height =23
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