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Quicksort

Carola Wenk

Slides courtesy of Charles Leiserson with additions
by Carola Wenk
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Quicksort

* Proposed by C.A.R. Hoare 1n 1962.
 Divide-and-conquer algorithm.

* Sorts “in place” (like insertion sort, but not
like merge sort).

* Very practical (with tuning).

* We are going to perform an expected runtime
analysis on randomized quicksort
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Quicksort: Divide and conquer

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray < x < elements 1n upper subarray.

<X X > X

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

CMPS 6610 Algorithms 3



Partitioning subroutine

PARTITION(A, p, g) S A[p .. q]

. ( . . I
x <« A[p] > pivot=A|p| | Running time
if—P . = 0(n) for n
orj<p+ltog elements.
do if A[j] < x N Y,

then /< 7+ 1
exchange A[i] <> A[ /]
exchange A| p| <> A[i]
return ;

Invariant: | x <x > X 9
p l J q
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Example of partitioning
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Example of partitioning
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Example of partitioning

10| 13| 5 3 11
S | 13|10 3 11
8 10 13 11
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Example of partitioning

10| 13| 5 3|2 |11
S | 13|10 3|2 |11
5 | 3 |10 131 2 |11
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Example of partitioning

10| 13| 5 3|2 |11
S | 13|10 3|2 |11
5 | 3 |10 131 2 |11
S | 3 13110 | 11
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Example of partitioning

10| 13| 5 3|2 |11
S | 13|10 3|2 |11
5 | 3 |10 131 2 |11
S | 3| 2 13 | 10
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Example of partitioning

10| 13| 5 3|2 |11
S | 13|10 3|2 |11
5 | 3 |10 131 2 |11
S | 3| 2 13110 11
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Example of partitioning

10| 13| 5 3|2 |11
S | 13|10 3|2 |11
5 | 3 |10 131 2 |11
S | 3| 2 13110 11
S | 3 | 6 13110 11

l
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Pseudocode for quicksort

QUICKSORT(A, p, 1)
it p<r
then g <— PARTITION(A, p, 7)
QUICKSORT(A, p, g—1)
QUICKSORT(A4, g+1, 7)

Initial call: QUICKSORT(A4, 1, n)
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Analysis of quicksort

» Assume all input elements are distinct.

* In practice, there are better partitioning
algorithms for when duplicate input
elements may exist.
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Deterministic Algorithms

Runtime for deterministic algorithms with imnput
S1Z€ 7:

* Worst-case runtime

=» Attained by one input of size #
* Best-case runtime

=» Attained by one input of size n
* Average runtime

=» Averaged over all possible inputs of size »
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QUICKSORT(A, p, 1)

Worst-case of ifp <7

then g < PARTITION(A, p, 1)

qlliCkSOl‘t QUICKSORT(A, p, g—1)

QUICKSORT(A, g+ 1, r)

* Let 7(n) = worst-case running time on an array
of n elements.

* Input sorted or reverse sorted.

* Partition around min or max element.

* One side of partition always has no elements.

oT(n)=TO)+Tn—1)+ 60(n)
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Worst-case recursion tree
I(n)=1(0) + T(n—1) + cn
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Worst-case recursion tree
I(n)=1(0) + T(n—1) + cn
1(n)
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Worst-case recursion tree
I(n)=1(0) + T(n—1) + cn

cn
TN
100) T(n—-1)
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Worst-case recursion tree
I(n)=1(0) + T(n—1) + cn
Ccn
S~
100) c(n-1)
S~
7(0) T(n-2)
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Worst-case recursion tree
I(n)=1(0) + T(n—1) + cn

cn
N
100) c(n-1)
VA
1(0) c(n-2)
VA
oy -
~
(1)
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Worst-case recursion tree
T(n)=T(0) + T(n—1) + cn

| R T(n) = @(m@a
o} oy A&
S

O(l) c(n-2)

height = n I~
o) -

.\
o(1)
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Worst-case recursion tree

height = n

T(n)=T(0) + T(n—1) + cn

X T(n) = @Ei k]

o) i)

Y : : :
o) c(m-2) (arithmetic series)

VAN
o) -

.\
o(1)
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Worst-case recursion tree

height = n

T(n)=T(0) + T(n—1) + cn

1 T(n) = @(g k] =0(n*)

o) i)

Y : : :
o) c(m-2) (arithmetic series)

VAN
o) -

.\
o(1)
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Deterministic Algorithms

Runtime for deterministic algorithms with imnput
S1ZE 71:

» Worst-case runtime: O (n?)

=» Attained by input: [1,2,3,...,n] or [n, n-1,...,2,1]
* Best-case runtime

=» Attained by one input of size n
* Average runtime

=» Averaged over all possible inputs of size »
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Best-case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:

1(n) =21(n/2) + O(n)
=@®(nlogn) (same as merge sort)

=
10°10°

T(n)=T(.n)+T(°n)+06(n)

What 1s the solution to this recurrence?

What if the split 1s always
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Analysis of “almost-best” case

T'(n)
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Analysis of “almost-best” case

(z)/ \aon)
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Analysis of “almost-best” case

/\
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Analysis of “almost-best” case

CHo oo mmmmmmmm e e e - Cn
AN AN
&mcn ﬁ%cn fgcn

@(/1.) [ O(n) leaves }
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Analysis of “almost-best” case

/C’”’x """"""" cr
1 l()C’/l 3071 N - - CN
0810

PN

9 N
100 n 1OCI/Z OC’I/Z —Cn Ccn
! /' N/ \

@(/1.) [ O(n) leaves }

..\

O(1)

O(nlogn) cnlog,yn <1(n) < cnlog,yn + On)
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Deterministic Algorithms

Runtime for deterministic algorithms with input
S1ZE 71:

* Worst-case runtime: O (n?)
=» Attained by input: [1,2,3,...,n] or [n, n-1,...,2,1]
* Best-case runtime: O (n logn)

=» Attained by input of size » that splits evenly or

L. 9 at every recursive level

10 " 10
* Average runtime

=>» Averaged over all possible inputs of size #
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Average Runtime
* What kind of inputs are there?

Do [1.,2,....n] and [5.6,...,n+5] cause
different behavior of Quicksort?

- No. Therefore 1t suffices to only consider
all permutations of [1,2,...,7] .

* How many inputs are there?

- There are n! different permutations of
[1,2,...,1]

—> Average over all n! input permutations.
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Average Runtime: Quicksort

» The average runtime averages runtimes over
all n! different input permutations

* One can show that the average runtime for
Quicksort 1s O(n logn)

 Disadvantage of considering average runtime:

* There are still worst-case inputs that will
have the worst-case runtime of O(7?)

 Are all inputs really equally likely? That
depends on the application

—> Better: Use a randomized algorithm
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Randomized quicksort

IDEA: Partition around a random element.

* Running time 1s independent of the input order. It depends
on a probabilistic experiment (sequence s of numbers
obtained from random number generator)

— Runtime 1s a random variable (maps sequence of
random numbers to runtimes)

« Expected runtime = expected value of runtime random
variable

« No assumptions need to be made about the mput
distribution.

 No specific input elicits the worst-case behavior.

» The worst case 1s determined only by the sequence s of
random numbers.

CMPS 6610 Algorithms 39



Quicksort Runtimes

* Best case runtime T, (7)) € O(n log n)

* Worst case runtime T, . (n) € O(n?)

worst

* Average runtime T, (7)) € O(n log n )

* Better even, the expected runtime of
randomized quicksort i1s O(n log n)
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Probability

 Let S be a sample space of possible outcomes.
« [cSis an event

* The (Laplacian) probability of £ is defined as P(£)=|E|/|S]
= P(s)=1/|S] for all seS

Note: This is a special case of a probability distribution. In general P(s) can be

quite arbitrary. For a loaded die the probabilities could be for example
P(6)=1/2 and P(1)=P(2)=P(3)=P(4)=P(5)=1/10.

Example: Rolling a (six-sided) die Q. s
« S=1{1,23,45,6} 5 S
e« P(2)=P({2})=1/S| = 1/6

e LetE=1{2,6} = P(E)=2/6=1/3=P(rollinga2orab6)

In general: For any s and any £CS
e 0<P(s)<1

) SE; P(S) B 1
+ P(E)=2P(s)
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Random Variable

A random variable X on S 1s a function from S to R,
X:S— R

Example 1: Flip coin three times.
« §={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

 Let X(s)=#headsin s
= X(HHH) =3
X(HHT)=X(HTH)=X(THH) =2
X(TTH)=X(THT)=X(HTH) =1
X(TTT)=0

Tail Head Head

Example 2: Play game: Win $5 when getting HHH, pay $1 otherwise
* Let Y(s) be the win/loss for the outcome s

— Y(HHH) =5
Y(HHT) = YHTH) = ... = -1

What is the average win/loss?

CMPS 6610 Algorithms 42



Expected Value

e The expected value of a random variable X: S—R 1s defined as
E(X) = 2 P(s) - X(s) = 2, P({X=x}) - x | Notice the similarity to the
arithmetic mean (or average).

Example 2 (continued):
E(Y)= 2 P(s) - Y(s) = P(HHH) -5 + P(HHT) (-1) + P(HTH) -(-1) + P(HTT)-(-1)
’e + P(THH) -(-1) + P(THT) -(-1) + P(TTH) -(-1) + P(TTT) -(-1)
= P(HHH) -5 + 2P(s) «(-1) = 1/23-5+7 - 1/23-(-1)
seS\{HHH}
= (5-7)/2°=-2/8 =-1/4
= %‘, P({Y=y})-y =PHHH) -5 + P({Y=-1}) (-1)=1/23-5+7/2°(-1)=-1/4
ye
—> The average win/loss 1s E(Y) =-1/4
Theorem (Linearity of Expectation):
Let X, Y be two random variables on S. Then the following holds:
E(X+Y)=EX) + E(Y)
Proof: E(X+Y) :se; P(s) - (X(s)+Y(s)) = SZ P(s)-X(s) + SZ P(s)-Y(s)= E(X)+E(Y) O
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Randomized algorithms

* Allow random choices during the algorithm

* Sample space S = {all sequences of random
choices}

e The runtime 7 S—R 1s a random variable.
The runtime 7(s) depends on the particular
sequence s of random choices.

—> Consider the expected runtime E(7)
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Expected Runtime Analysis

for Quicksort

* Assume all elements in the 1nput array are
distinct

* Runtime 1s proportional to ©(n + X), where
X=#comparisons made in PARTITION routine

» Comparisons are made between a pivot (in
some recursive call) and another array element
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Expected Runtime Analysis

for Quicksort

* Let 74, ..., z,, be the elements of the iput array
in sorted (non-decreasing) order

e Let Zl] — {Zi, Zit1y =y Z]}
* Each pair of elements z; and z; 1s compared at
most once:

* One of them has to be the p1vot

» After the PARTITION routine, this pivot has
its final position in sorted order and won’t
be compared 1n subsequent recursive calls
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Expected Runtime Analysis

for Quicksort

1,if z; is compared to z;
. et Xij _ { f l p J

0, otherwise

e X;; 1s an indicator random variable

» Total # comparisons X = Y=} j=i+1 Xij

cE(X) = EQXisy ] }1 i+1 11)1 Yim1 ' 7 i+1 E(Xij)
linearity of expectation

* It remains to compute E'(X;;)

CMPS 6610 Algorithms 47



Expected Runtime Analysis

for Quicksort
'E(Xij) =1. P(zi is compared to Zj)
+ 0 - P(z; is not compared to z;)
* [t remains to compute: P(Zi is compared to Zj)

* If pivot x 1s chosen such that z; < x < z; then
z; and z; are on different sides of the pivot and
won’t be compared subsequently

* If z; 1s chosen as a pivot before any other
element in Z;; then z; will be compared to

every elementin Z;; \ {z;}
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Expected Runtime Analysis

for Quicksort

* The argument 1s symmetric for z;

* Therefore, z; and z; are compared if and only 1f

the first element of Z;; to be chosen as a pivot
IS Z; OF Z;

o P(zl- is compared to Zj) =
P(z; is first pivot from Z;;)
+szj is first pivot from Zij)

1 2 2

- | - . .
Zi;| - 1Zijl 1Zg] J-i+1
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Expected Runtime Analysis

for Quicksort

+ E(X) = 2

Zn ' ?l+1E(Xl'j) Zn : :’],ll+1f

j—i+1
Zn 1vn—i 2

k=114
nlnl k+1

<ZZZkEO(2210g(n—l))

=1 k=

Harmomc number

* Therefore, £(X) € O(nlogn)
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Average Runtime vs. Expected

Runtime

 Average runtime 1s averaged over all inputs of a
deterministic algorithm.

» Expected runtime 1s the expected value of the
runtime random variable of a randomized
algorithm. It effectively “averages™ over all
sequences of random numbers.

* De facto both analyses are very similar.
However 1n practice the randomized algorithm
ensures that not one single input elicits worst case
behavior.
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Quicksort in practice

* Quicksort 1s a great general-purpose
sorting algorithm.

* Quicksort 1s typically over twice as fast
as merge sort.

* Quicksort can benefit substantially from
code tuning.

* Quicksort behaves well even with
caching and virtual memory.
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