
CMPS 6610 Algorithms 1

CMPS 6610 – Fall 2018

Quicksort

Carola Wenk
Slides courtesy of Charles Leiserson with additions

by Carola Wenk

CMPS 6610 Algorithms 2

Quicksort

• Proposed by C.A.R. Hoare in 1962.
• Divide-and-conquer algorithm.
• Sorts “in place” (like insertion sort, but not

like merge sort).
• Very practical (with tuning).
• We are going to perform an expected runtime

analysis on randomized quicksort

CMPS 6610 Algorithms 3

Quicksort: Divide and conquer
Quicksort an n-element array:
1. Divide: Partition the array into two subarrays

around a pivot x such that elements in lower
subarray  x  elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

 x x  x

Key: Linear-time partitioning subroutine.

CMPS 6610 Algorithms 4

Running time
= O(n) for n
elements.

Partitioning subroutine
PARTITION(A, p, q) A[p . . q]

x  A[p] pivot = A[p]
i  p
for j  p + 1 to q

do if A[j]  x
then i  i + 1

exchange A[i]  A[j]
exchange A[p]  A[i]
return i

x  x  x ?
p i qj

Invariant:

CMPS 6610 Algorithms 5

Example of partitioning

i j
6 10 13 5 8 3 2 11

CMPS 6610 Algorithms 6

Example of partitioning

i j
6 10 13 5 8 3 2 11

CMPS 6610 Algorithms 7

Example of partitioning

i j
6 10 13 5 8 3 2 11

CMPS 6610 Algorithms 8

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

CMPS 6610 Algorithms 9

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

CMPS 6610 Algorithms 10

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

CMPS 6610 Algorithms 11

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

CMPS 6610 Algorithms 12

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

CMPS 6610 Algorithms 13

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

CMPS 6610 Algorithms 14

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

CMPS 6610 Algorithms 15

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

CMPS 6610 Algorithms 16

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

6 5 3 2 8 13 10 11

i
2 5 3 6 8 13 10 11

CMPS 6610 Algorithms 17

Pseudocode for quicksort
QUICKSORT(A, p, r)

if p < r
then q  PARTITION(A, p, r)

QUICKSORT(A, p, q–1)
QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)

CMPS 6610 Algorithms 18

Analysis of quicksort

• Assume all input elements are distinct.
• In practice, there are better partitioning

algorithms for when duplicate input
elements may exist.

CMPS 6610 Algorithms 19

Deterministic Algorithms
Runtime for deterministic algorithms with input
size n:
• Worst-case runtime
Attained by one input of size n

• Best-case runtime
Attained by one input of size n

•Average runtime
Averaged over all possible inputs of size n

CMPS 6610 Algorithms 20

Worst-case of
quicksort

• Let T(n) = worst-case running time on an array
of n elements.

• Input sorted or reverse sorted.
• Partition around min or max element.
• One side of partition always has no elements.

CMPS 6610 Algorithms 21

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

CMPS 6610 Algorithms 22

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(n)

CMPS 6610 Algorithms 23

cn
T(0) T(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

CMPS 6610 Algorithms 24

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) T(n–2)

CMPS 6610 Algorithms 25

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

(1)

CMPS 6610 Algorithms 26

cn
c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

c(n–2)

(1)

height = n

(1)
(1)

(1)

 2

1
nk

k









 



height

T(n) =

CMPS 6610 Algorithms 27

cn
c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

c(n–2)

(1)

height = n

(1)
(1)

(1)

(arithmetic series)

 2

1
nk

k









 



T(n) =
n

CMPS 6610 Algorithms 28

cn
c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

c(n–2)

(1)

height = n

(1)
(1)

(1)

(arithmetic series)

 2

1
nk

k









 



T(n) =
n

CMPS 6610 Algorithms 29

Deterministic Algorithms
Runtime for deterministic algorithms with input
size n:
• Worst-case runtime
Attained by input: [1,2,3,…,n] or [n, n-1,…,2,1]

• Best-case runtime
Attained by one input of size n

•Average runtime
Averaged over all possible inputs of size n

: ଶ

CMPS 6610 Algorithms 30

Best-case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:
T(n) = 2T(n/2) + (n)

= (n log n) (same as merge sort)

What if the split is always 10
9

10
1 : ?

   )()(10
9

10
1 nnTnTnT 

What is the solution to this recurrence?

CMPS 6610 Algorithms 31

Analysis of “almost-best” case
)(nT

CMPS 6610 Algorithms 32

Analysis of “almost-best” case
cn

 nT 10
1  nT 10

9

CMPS 6610 Algorithms 33

Analysis of “almost-best” case
cn

cn10
1 cn10

9

 nT 100
1  nT 100

9  nT 100
9  nT 100

81

CMPS 6610 Algorithms 34

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

(1)

(1)

log10/9n

cn

cn

cn

…O(n) leaves

CMPS 6610 Algorithms 35

log10
n

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

(1)

(1)

log10/9n

cn

cn

cn

T(n)  cn log10/9n + (n)

…

cn log10n 

O(n) leaves

(n log n)

CMPS 6610 Algorithms 36

Deterministic Algorithms
Runtime for deterministic algorithms with input
size n:
• Worst-case runtime
Attained by input: [1,2,3,…,n] or [n, n-1,…,2,1]

• Best-case runtime
Attained by input of size n that splits evenly or

at every recursive level

•Average runtime
Averaged over all possible inputs of size n

:

: ଶ

10
9

10
1 :

CMPS 6610 Algorithms 37

Average Runtime
• What kind of inputs are there?

• Do [1,2,…,n] and [5,6,…,n+5] cause
different behavior of Quicksort?
• No. Therefore it suffices to only consider
all permutations of [1,2,…,n] .

• How many inputs are there?
• There are n! different permutations of
[1,2,…,n]

Average over all n! input permutations.

CMPS 6610 Algorithms 38

Average Runtime: Quicksort
• The average runtime averages runtimes over
all n! different input permutations
• One can show that the average runtime for
Quicksort is
• Disadvantage of considering average runtime:

• There are still worst-case inputs that will
have the worst-case runtime of O(n2)
• Are all inputs really equally likely? That
depends on the application

 Better: Use a randomized algorithm

CMPS 6610 Algorithms 39

Randomized quicksort
IDEA: Partition around a random element.
• Running time is independent of the input order. It depends

on a probabilistic experiment (sequence s of numbers
obtained from random number generator)
 Runtime is a random variable (maps sequence of

random numbers to runtimes)
• Expected runtime = expected value of runtime random

variable
• No assumptions need to be made about the input

distribution.
• No specific input elicits the worst-case behavior.
• The worst case is determined only by the sequence s of

random numbers.

CMPS 6610 Algorithms 40

Quicksort Runtimes
• Best case runtime Tbest(n)  O(n log n)
• Worst case runtime Tworst(n)  O(n2)

• Average runtime Tavg(n)  O(n log n)
• Better even, the expected runtime of

randomized quicksort is O(n log n)

CMPS 6610 Algorithms 41

Probability
• Let S be a sample space of possible outcomes.
• ES is an event
• The (Laplacian) probability of E is defined as P(E)=|E|/|S|

 P(s)=1/|S| for all sS

Example: Rolling a (six-sided) die
• S = {1,2,3,4,5,6}
• P(2) = P({2}) = 1/|S| = 1/6
• Let E = {2,6}  P(E) = 2/6 = 1/3 = P(rolling a 2 or a 6)

Note: This is a special case of a probability distribution. In general P(s) can be
quite arbitrary. For a loaded die the probabilities could be for example
P(6)=1/2 and P(1)=P(2)=P(3)=P(4)=P(5)=1/10.

In general: For any sS and any ES
• 0 P(s)  1
•  P(s) = 1
• P(E) =  P(s)

sS

sE

CMPS 6610 Algorithms 42

Random Variable
• A random variable X on S is a function from S to ℝ,

X: S → ℝ
Example 1: Flip coin three times.
• S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
• Let X(s) = # heads in s

 X(HHH) = 3
X(HHT)=X(HTH)=X(THH) = 2
X(TTH)=X(THT)=X(HTH) = 1
X(TTT) = 0

Example 2: Play game: Win $5 when getting HHH, pay $1 otherwise
• Let Y(s) be the win/loss for the outcome s

 Y(HHH) = 5
Y(HHT) = Y(HTH) = … = -1

What is the average win/loss?

Tail Head Head

CMPS 6610 Algorithms 43

Expected Value
• The expected value of a random variable X: S→ℝ is defined as

E(X) =  P(s)  X(s) =  P({X=x})  x

Example 2 (continued):
E(Y) =  P(s)  Y(s) = P(HHH) 5 + P(HHT) (-1) + P(HTH) (-1) + P(HTT)(-1)

+ P(THH) (-1) + P(THT) (-1) + P(TTH) (-1) + P(TTT) (-1)
= P(HHH) 5 + P(s) (-1) = 1/23 5 + 7  1/23 (-1)
= (5-7)/23 = -2/8 = -1/4

=  P({Y=y})  y = P(HHH) 5 + P({Y= -1}) (-1) = 1/23 5 + 7/23 (-1) = -1/4
 The average win/loss is E(Y) = -1/4

sS xℝ

sS

sS\{HHH}

yℝ

Theorem (Linearity of Expectation):
Let X,Y be two random variables on S. Then the following holds:

E(X+Y) = E(X) + E(Y)

Proof: E(X+Y) =  P(s)  (X(s)+Y(s)) =  P(s)X(s) +  P(s)Y(s) = E(X) + E(Y)

Notice the similarity to the
arithmetic mean (or average).

sS sS sS

CMPS 6610 Algorithms 44

Randomized algorithms
• Allow random choices during the algorithm
• Sample space S = {all sequences of random

choices}
• The runtime T: S→R is a random variable.

The runtime T(s) depends on the particular
sequence s of random choices.

 Consider the expected runtime E(T)

CMPS 6610 Algorithms 45

Expected Runtime Analysis
for Quicksort

• Assume all elements in the input array are
distinct

• Runtime is proportional to , where
= #comparisons made in PARTITION routine

• Comparisons are made between a pivot (in
some recursive call) and another array element

CMPS 6610 Algorithms 46

Expected Runtime Analysis
for Quicksort

• Let ଵ ௡ be the elements of the input array
in sorted (non-decreasing) order

• Let ௜௝ ௜ ௜ାଵ ௝

• Each pair of elements ௜ and ௝ is compared at
most once:

• One of them has to be the pivot
• After the PARTITION routine, this pivot has

its final position in sorted order and won’t
be compared in subsequent recursive calls

CMPS 6610 Algorithms 47

Expected Runtime Analysis
for Quicksort

• Let ௜௝
௜ ௝

௜௝ is an indicator random variable

• Total # comparisons ௜௝
௡
௝ୀ௜ାଵ

௡ିଵ
௜ୀଵ

௜௝
௡
௝ୀ௜ାଵ

௡ିଵ
௜ୀଵ)= ௜௝

௡
௝ୀ௜ାଵ

௡ିଵ
௜ୀଵ

• It remains to compute ௜௝)
linearity of expectation

48

Expected Runtime Analysis
for Quicksort
௜௝ ௜ ௝

௜ ௝

• It remains to compute: ௜ ௝

• If pivot is chosen such that ௜ ௝ then
௜ and ௝ are on different sides of the pivot and

won’t be compared subsequently
• If ௜ is chosen as a pivot before any other

element in ௜௝ then ௜ will be compared to
every element in ௜௝ ௜

49

Expected Runtime Analysis
for Quicksort

• The argument is symmetric for ௝
• Therefore, ௜ and ௝ are compared if and only if

the first element of ௜௝ to be chosen as a pivot
is ௜ or ௝

௜ ௝

௜ ௜௝

௝ ௜௝
ଵ

|௓೔ೕ|
ଵ

|௓೔ೕ|
= ଶ
|௓೔ೕ|

ଶ
௝ି௜ାଵ

50

Expected Runtime Analysis
for Quicksort

•
௜௝

௡
௝ୀ௜ାଵ

௡ିଵ
௜ୀଵ = ଶ

௝ି௜ାଵ
௡
௝ୀ௜ାଵ

௡ିଵ
௜ୀଵ

ଶ
௞ାଵ

௡ି௜
௞ୀଵ

௡ିଵ
௜ୀଵ

௡ି௜

௞ୀଵ

௡ିଵ

௜ୀଵ

௡ିଵ

௜ୀଵ

• Therefore,
Harmonic number

CMPS 6610 Algorithms 51

Average Runtime vs. Expected
Runtime

• Average runtime is averaged over all inputs of a
deterministic algorithm.
• Expected runtime is the expected value of the
runtime random variable of a randomized
algorithm. It effectively “averages” over all
sequences of random numbers.

• De facto both analyses are very similar.
However in practice the randomized algorithm
ensures that not one single input elicits worst case
behavior.

CMPS 6610 Algorithms 52

Quicksort in practice

• Quicksort is a great general-purpose
sorting algorithm.

• Quicksort is typically over twice as fast
as merge sort.

• Quicksort can benefit substantially from
code tuning.

• Quicksort behaves well even with
caching and virtual memory.

