CMPS 6610 — Fall 2018

Quicksort

Carola Wenk

Slides courtesy of Charles Leiserson with additions
by Carola Wenk

CMPS 6610 Algorithms 1

Quicksort

* Proposed by C.A.R. Hoare 1n 1962.
 Divide-and-conquer algorithm.

* Sorts “in place” (like insertion sort, but not
like merge sort).

* Very practical (with tuning).

* We are going to perform an expected runtime
analysis on randomized quicksort

CMPS 6610 Algorithms

Quicksort: Divide and conquer

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray < x < elements 1n upper subarray.

<X X > X

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

CMPS 6610 Algorithms 3

Partitioning subroutine

PARTITION(A, p, g) S A[p .. q]

. (. . I
x <« A[p] > pivot=A|p| | Running time
if—P . = 0(n) for n
orj<p+ltog elements.
do if A[j] < x N Y,

then /< 7+ 1
exchange A[i] <> A[/]
exchange A| p| <> A[i]
return ;

Invariant: | x <x > X 9
p l J q

CMPS 6610 Algorithms 4

Example of partitioning

13

11

CMPS 6610 Algorithms

Example of partitioning

13

11

CMPS 6610 Algorithms

Example of partitioning

6 | 10

13

11

CMPS 6610 Algorithms

Example of partitioning

10

13

11

13

10

11

CMPS 6610 Algorithms

Example of partitioning

10

13

11

13

10

11

CMPS 6610 Algorithms

Example of partitioning

10

13

11

13

10

11

CMPS 6610 Algorithms

10

Example of partitioning

10| 13| 5 3 11
S | 13|10 3 11
8 10 13 11

CMPS 6610 Algorithms

Example of partitioning

10| 13| 5 3|2 |11
S | 13|10 3|2 |11
5 | 3 |10 131 2 |11

CMPS 6610 Algorithms

12

Example of partitioning

10| 13| 5 3|2 |11
S | 13|10 3|2 |11
5 | 3 |10 131 2 |11
S | 3 13110 | 11

CMPS 6610 Algorithms

Example of partitioning

10| 13| 5 3|2 |11
S | 13|10 3|2 |11
5 | 3 |10 131 2 |11
S | 3| 2 13 | 10

CMPS 6610 Algorithms

14

Example of partitioning

10| 13| 5 3|2 |11
S | 13|10 3|2 |11
5 | 3 |10 131 2 |11
S | 3| 2 13110 11

CMPS 6610 Algorithms

15

Example of partitioning

10| 13| 5 3|2 |11
S | 13|10 3|2 |11
5 | 3 |10 131 2 |11
S | 3| 2 13110 11
S | 3 | 6 13110 11

l

CMPS 6610 Algorithms

16

Pseudocode for quicksort

QUICKSORT(A, p, 1)
it p<r
then g <— PARTITION(A, p, 7)
QUICKSORT(A, p, g—1)
QUICKSORT(A4, g+1, 7)

Initial call: QUICKSORT(A4, 1, n)

CMPS 6610 Algorithms 17

Analysis of quicksort

» Assume all input elements are distinct.

* In practice, there are better partitioning
algorithms for when duplicate input
elements may exist.

CMPS 6610 Algorithms 18

Deterministic Algorithms

Runtime for deterministic algorithms with imnput
S1Z€ 7:

* Worst-case runtime

=» Attained by one input of size #
* Best-case runtime

=» Attained by one input of size n
* Average runtime

=» Averaged over all possible inputs of size »

CMPS 6610 Algorithms 19

QUICKSORT(A, p, 1)

Worst-case of ifp <7

then g < PARTITION(A, p, 1)

qlliCkSOl‘t QUICKSORT(A, p, g—1)

QUICKSORT(A, g+ 1, r)

* Let 7(n) = worst-case running time on an array
of n elements.

* Input sorted or reverse sorted.

* Partition around min or max element.

* One side of partition always has no elements.

oT(n)=TO)+Tn—1)+ 60(n)

CMPS 6610 Algorithms 20

Worst-case recursion tree
I(n)=1(0) + T(n—1) + cn

CMPS 6610 Algorithms

21

Worst-case recursion tree
I(n)=1(0) + T(n—1) + cn
1(n)

CMPS 6610 Algorithms

22

Worst-case recursion tree
I(n)=1(0) + T(n—1) + cn

cn
TN
100) T(n—-1)

CMPS 6610 Algorithms

23

Worst-case recursion tree
I(n)=1(0) + T(n—1) + cn
Ccn
S~
100) c(n-1)
S~
7(0) T(n-2)

CMPS 6610 Algorithms

24

Worst-case recursion tree
I(n)=1(0) + T(n—1) + cn

cn
N
100) c(n-1)
VA
1(0) c(n-2)
VA
oy -
~
(1)

CMPS 6610 Algorithms

25

Worst-case recursion tree
T(n)=T(0) + T(n—1) + cn

| R T(n) = @(m@a
o} oy A&
S

O(l) c(n-2)

height = n I~
o) -

.\
o(1)

CMPS 6610 Algorithms

26

Worst-case recursion tree

height = n

T(n)=T(0) + T(n—1) + cn

X T(n) = @Ei k]

o) i)

Y : : :
o) c(m-2) (arithmetic series)

VAN
o) -

.\
o(1)

CMPS 6610 Algorithms 27

Worst-case recursion tree

height = n

T(n)=T(0) + T(n—1) + cn

1 T(n) = @(g k] =0(n*)

o) i)

Y : : :
o) c(m-2) (arithmetic series)

VAN
o) -

.\
o(1)

CMPS 6610 Algorithms 28

Deterministic Algorithms

Runtime for deterministic algorithms with imnput
S1ZE 71:

» Worst-case runtime: O (n?)

=» Attained by input: [1,2,3,...,n] or [n, n-1,...,2,1]
* Best-case runtime

=» Attained by one input of size n
* Average runtime

=» Averaged over all possible inputs of size »

CMPS 6610 Algorithms 29

Best-case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:

1(n) =21(n/2) + O(n)
=@®(nlogn) (same as merge sort)

=
10°10°

T(n)=T(.n)+T(°n)+06(n)

What 1s the solution to this recurrence?

What if the split 1s always

CMPS 6610 Algorithms 30

Analysis of “almost-best” case

T'(n)

CMPS 6610 Algorithms 31

Analysis of “almost-best” case

(z)/ \aon)

CMPS 6610 Algorithms 32

Analysis of “almost-best” case

/\

CMPS 6610 Algorithms 33

Analysis of “almost-best” case

CHo oo mmmmmmmm e e e - Cn
AN AN
&mcn ﬁ%cn fgcn

@(/1.) [O(n) leaves }

CMPS 6610 Algorithms 34

Analysis of “almost-best” case

/C’”’x """"""" cr
1 l()C’/l 3071 N - - CN
0810

PN

9 N
100 n 1OCI/Z OC’I/Z —Cn Ccn
! /' N/ \

@(/1.) [O(n) leaves }

..\

O(1)

O(nlogn) cnlog,yn <1(n) < cnlog,yn + On)

CMPS 6610 Algorithms 35

Deterministic Algorithms

Runtime for deterministic algorithms with input
S1ZE 71:

* Worst-case runtime: O (n?)
=» Attained by input: [1,2,3,...,n] or [n, n-1,...,2,1]
* Best-case runtime: O (n logn)

=» Attained by input of size » that splits evenly or

L. 9 at every recursive level

10 " 10
* Average runtime

=>» Averaged over all possible inputs of size #

CMPS 6610 Algorithms 36

Average Runtime
* What kind of inputs are there?

Do [1.,2,....n] and [5.6,...,n+5] cause
different behavior of Quicksort?

- No. Therefore 1t suffices to only consider
all permutations of [1,2,...,7] .

* How many inputs are there?

- There are n! different permutations of
[1,2,...,1]

—> Average over all n! input permutations.

CMPS 6610 Algorithms 37

Average Runtime: Quicksort

» The average runtime averages runtimes over
all n! different input permutations

* One can show that the average runtime for
Quicksort 1s O(n logn)

 Disadvantage of considering average runtime:

* There are still worst-case inputs that will
have the worst-case runtime of O(7?)

 Are all inputs really equally likely? That
depends on the application

—> Better: Use a randomized algorithm

CMPS 6610 Algorithms 38

Randomized quicksort

IDEA: Partition around a random element.

* Running time 1s independent of the input order. It depends
on a probabilistic experiment (sequence s of numbers
obtained from random number generator)

— Runtime 1s a random variable (maps sequence of
random numbers to runtimes)

« Expected runtime = expected value of runtime random
variable

« No assumptions need to be made about the mput
distribution.

 No specific input elicits the worst-case behavior.

» The worst case 1s determined only by the sequence s of
random numbers.

CMPS 6610 Algorithms 39

Quicksort Runtimes

* Best case runtime T, (7)) € O(n log n)

* Worst case runtime T, . (n) € O(n?)

worst

* Average runtime T, (7)) € O(n log n)

* Better even, the expected runtime of
randomized quicksort i1s O(n log n)

CMPS 6610 Algorithms 40

|

Probability

 Let S be a sample space of possible outcomes.
« [cSis an event

* The (Laplacian) probability of £ is defined as P(£)=|E|/|S]
= P(s)=1/|S] for all seS

Note: This is a special case of a probability distribution. In general P(s) can be

quite arbitrary. For a loaded die the probabilities could be for example
P(6)=1/2 and P(1)=P(2)=P(3)=P(4)=P(5)=1/10.

Example: Rolling a (six-sided) die Q. s
« S=1{1,23,45,6} 5 S
e« P(2)=P({2})=1/S| = 1/6

e LetE=1{2,6} = P(E)=2/6=1/3=P(rollinga2orab6)

In general: For any s and any £CS
e 0<P(s)<1

) SE; P(S) B 1
+ P(E)=2P(s)

CMPS 6610 Algorithms

|

41

Random Variable

A random variable X on S 1s a function from S to R,
X:S— R

Example 1: Flip coin three times.
« §={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

 Let X(s)=#headsin s
= X(HHH) =3
X(HHT)=X(HTH)=X(THH) =2
X(TTH)=X(THT)=X(HTH) =1
X(TTT)=0

Tail Head Head

Example 2: Play game: Win $5 when getting HHH, pay $1 otherwise
* Let Y(s) be the win/loss for the outcome s

— Y(HHH) =5
Y(HHT) = YHTH) = ... = -1

What is the average win/loss?

CMPS 6610 Algorithms 42

Expected Value

e The expected value of a random variable X: S—R 1s defined as
E(X) = 2 P(s) - X(s) = 2, P({X=x}) - x | Notice the similarity to the
arithmetic mean (or average).

Example 2 (continued):
E(Y)= 2 P(s) - Y(s) = P(HHH) -5 + P(HHT) (-1) + P(HTH) -(-1) + P(HTT)-(-1)
’e + P(THH) -(-1) + P(THT) -(-1) + P(TTH) -(-1) + P(TTT) -(-1)
= P(HHH) -5 + 2P(s) «(-1) = 1/23-5+7 - 1/23-(-1)
seS\{HHH}
= (5-7)/2°=-2/8 =-1/4
= %‘, P({Y=y})-y =PHHH) -5 + P({Y=-1}) (-1)=1/23-5+7/2°(-1)=-1/4
ye
—> The average win/loss 1s E(Y) =-1/4
Theorem (Linearity of Expectation):
Let X, Y be two random variables on S. Then the following holds:
E(X+Y)=EX) + E(Y)
Proof: E(X+Y) :se; P(s) - (X(s)+Y(s)) = SZ P(s)-X(s) + SZ P(s)-Y(s)= E(X)+E(Y) O

CMPS 6610 Algorithms 43

Randomized algorithms

* Allow random choices during the algorithm

* Sample space S = {all sequences of random
choices}

e The runtime 7 S—R 1s a random variable.
The runtime 7(s) depends on the particular
sequence s of random choices.

—> Consider the expected runtime E(7)

CMPS 6610 Algorithms

44

Expected Runtime Analysis

for Quicksort

* Assume all elements in the 1nput array are
distinct

* Runtime 1s proportional to ©(n + X), where
X=#comparisons made in PARTITION routine

» Comparisons are made between a pivot (in
some recursive call) and another array element

CMPS 6610 Algorithms 45

Expected Runtime Analysis

for Quicksort

* Let 74, ..., z,, be the elements of the iput array
in sorted (non-decreasing) order

e Let Zl] — {Zi, Zit1y =y Z]}
* Each pair of elements z; and z; 1s compared at
most once:

* One of them has to be the p1vot

» After the PARTITION routine, this pivot has
its final position in sorted order and won’t
be compared 1n subsequent recursive calls

CMPS 6610 Algorithms 46

Expected Runtime Analysis

for Quicksort

1,if z; is compared to z;
. et Xij _ { f l p J

0, otherwise

e X;; 1s an indicator random variable

» Total # comparisons X = Y=} j=i+1 Xij

cE(X) = EQXisy] }1 i+1 11)1 Yim1 ' 7 i+1 E(Xij)
linearity of expectation

* It remains to compute E'(X;;)

CMPS 6610 Algorithms 47

Expected Runtime Analysis

for Quicksort
'E(Xij) =1. P(zi is compared to Zj)
+ 0 - P(z; is not compared to z;)
* [t remains to compute: P(Zi is compared to Zj)

* If pivot x 1s chosen such that z; < x < z; then
z; and z; are on different sides of the pivot and
won’t be compared subsequently

* If z; 1s chosen as a pivot before any other
element in Z;; then z; will be compared to

every elementin Z;; \ {z;}

48

Expected Runtime Analysis

for Quicksort

* The argument 1s symmetric for z;

* Therefore, z; and z; are compared if and only 1f

the first element of Z;; to be chosen as a pivot
IS Z; OF Z;

o P(zl- is compared to Zj) =
P(z; is first pivot from Z;;)
+szj is first pivot from Zij)

1 2 2

- | - . .
Zi;| - 1Zijl 1Zg] J-i+1

49

Expected Runtime Analysis

for Quicksort

+ E(X) = 2

Zn ' ?l+1E(Xl'j) Zn : :’],ll+1f

j—i+1
Zn 1vn—i 2

k=114
nlnl k+1

<ZZZkEO(2210g(n—l))

=1 k=

Harmomc number

* Therefore, £(X) € O(nlogn)

50

Average Runtime vs. Expected

Runtime

 Average runtime 1s averaged over all inputs of a
deterministic algorithm.

» Expected runtime 1s the expected value of the
runtime random variable of a randomized
algorithm. It effectively “averages™ over all
sequences of random numbers.

* De facto both analyses are very similar.
However 1n practice the randomized algorithm
ensures that not one single input elicits worst case
behavior.

CMPS 6610 Algorithms 51

Quicksort in practice

* Quicksort 1s a great general-purpose
sorting algorithm.

* Quicksort 1s typically over twice as fast
as merge sort.

* Quicksort can benefit substantially from
code tuning.

* Quicksort behaves well even with
caching and virtual memory.

CMPS 6610 Algorithms 52

