CMPS 6610 — Fall 2018

Order Statistics

Carola Wenk

Slides courtesy of Charles Leiserson with additions
by Carola Wenk

CMPS 6610 Algorithms 1

Order statistics

Select the ith smallest of 7 elements (the
clement with rank 7).

o =1: minimum;
° | =n: maximum,
o i =|(nt+1)/2]or r(n+1)/2_\: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = O(n log n + 1)
= O(n log n),
using merge sort (not quicksort).

CMPS 6610 Algorithms

Randomized divide-and-

conquer algorithm
RAND-SELECT(A, p, g, i) © i-th smallest of A[p . . ¢]

if p =¢ then return A|[p]
7 < RAND-PARTITION(4, p, q)

k<«<—r—p+1 > k= rank(A4[r])
if /=/4 then return 4| 7]
if 1<k

then return RAND-SELECT(A, p, r— 1, 1)
else return RAND-SELECT(A, r + 1, g, i — k)

& ,
< A[7] > A[r]
p r q

CMPS 6610 Algorithms 3

Example

Select the 1 = 7th smallest:

6 |10 13| 5 |8 | 3 |2 (11| i=7
pivot

Partition:

2 | 5|3 6|8 131011 &k

- _J
Y

Select the 7 — 4 = 3rd smallest recursively.

4

CMPS 6610 Algorithms 4

Intuition for analysis

(All our analyses today assume that all elements
are distinct.)

for RAND-PARTITION

Lucky: P
T(n) = T(3n/4) + dn nost =p’ =1
= Q(n) CASE 3
Unlucky:
I(ny=T(n—1)+dn arithmetic series
= Q(n?)

Worse than sorting!

CMPS 6610 Algorithms 5

Analysis of expected time

* Call a p1vot good 1f its rank lies 1n [n/4,3n/4].
* How many good pivots are there? n/2

— A random pivot has 50% chance of being good.
* Let 7(n,s) be the runtime random variable

time to reduce array size to < 3/4n

— 0z
I(n,s) < 1T(3n/4,s) + X(s)-dn
-

#times 1t takes to Runtime of partition

find a good pivot

CMPS 6610 Algorithms 6

Analysis of expected time

Lemma: A fair coin needs to be tossed an expected
number of 2 times until the first “heads” 1s seen.

Proof: Let £(X) be the expected number of tosses
until the first “heads”is seen.
* Need at least one toss, if it’s “heads” we are done.
* [f 1t’s “tai1ls” we need to repeat (probability '2).
= E(X)=1+ % EX)
= EX)=2

CMPS 6610 Algorithms 7

Analysis of expected time

time to reduce array size to < 3/4n

— 7z
I(n,s) < T(3n/d,s) + X(s)-dn

#times 1t takes to Runtime of partition
find a good pivot

— E(T(n.5)) < E(T3n/4.5)) + E(X(s)-dn) corecnay

= E(T(n,s)) < E(T(3n/4.5)) + E(X(s))-dn

= E(1(n,s)) < E(T(3n/4,s)) + 2-dn Lemma
= T,,,(n) < T,,,(3n/4) + 2d'n ector T
— Texp(n) € ®(n) (ngeeg) "

CMPS 6610 Algorithms 8

Summary of randomized
order-statistic selection

* Works fast: linear expected time.
» Excellent algorithm 1n practice.
 But, the worst case is very bad: ©(n?).

0. Is there an algorithm that runs in linear
time 1n the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest, and
Tarjan [1973].

IDEA: Generate a good pivot recursively.

This algorithm has large constants though and
therefore 1s not efficient 1n practice.

CMPS 6610 Algorithms

Worst-case linear-time order

statistics
SELECT(Z, 1)
1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the L n/5.
group medians to be the pivot.

3. Partition around the pivot x. Let & = rank(x).
4.1f i =k then return x

elseif 1 </ Same as
then recursively SELECT the ith > RAND-
smallest element in the lower part SELECT

else recursively SELECT the (i—k)th
smallest element in the upper part

CMPS 6610 Algorithms 10

Choosing the pivot

11

CMPS 6610 Algorithms

1.

g ®© @ @ @ @

Choosing the pivot

ivide the » elements into groups of 5.

CMPS 6610 Algorithms

12

Choosing the pivot

1. Divide the n elements into groups of 5. Find /esser
the median of each 5-element group by rote. I

greater

CMPS 6610 Algorithms 13

Choosing the pivot

T

1. Divide the n elements into groups of 5. Find /esser
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the | /5]
group medians to be the pivot. greater

CMPS 6610 Algorithms 14

Developing the recurrence

T(n) SELECT(i, n)
" 1. Divide the n elements into groups of 5. Find
O(n) | the median of each 5-element group by rote.
2. Recursively SELECT the median x of the L n/5.
I(n/5) i group medians to be the pivot.
®(n) 3. Partition around the pivot x. Let &£ = rank(x).
(4. if i =k then return x
elseif i </
(2) < then recursively SELECT the ith

smallest element in the lower part
else recursively SELECT the (i—k)th

N smallest element in the upper part

CMPS 6610 Algorithms 15

Analysis (Assume all elements are distinct.)

(o (s o (s
T

At least half the group medians are < x, which ~ /esser
is at least | Ln/SJg/ﬂ = n/10. group medians. I

greater

CMPS 6610 Algorithms 16

Analysis (Assume all elements are distinct.)

(o (o o (s
L

At least half the group medians are < x, which ~ /esser
is at least | Ln/SJg/ﬂ = n/10. group medians. I

e Therefore, at least 3 | n/10] elements are < x.

greater

CMPS 6610 Algorithms 17

Analysis (Assume all elements are distinct.)

(o (3 (3 (-Gjé
(J ® “ M ¢ X)\@
@ @

At least half the group medians are < x, which ~ /esser
is at least | Ln/SJg/ﬂ = n/10. group medians. I

e Therefore, at least 3 | n/10] elements are < x.
» Similarly, at least 3| /10| elements are > x. greater

CMPS 6610 Algorithms 18

Analysis (Assume all elements are distinct.)

Need “at most” for worst-case runtime

o At least 3| 72/10] elements are < x
—/at most 7-3| 7/10 | elements are > x

» At least 3| 72/10] elements are > x
— at most 7-3| 7/10 | elements are < x

* The recursive call to SELECT 1n Step 4 1s
executed recursively on 7-3 | 1/10] elements.

CMPS 6610 Algorithms 19

Analysis (Assume all elements are distinct.)

- Use fact that | a/b] > (a-(b-1))/b (page 51)

e n-31n/10] < n-3-(n-9)/10=(10n -3n +27)/10
<7n/10 + 3
* The recursive call to SELECT 1n Step 4 1s

executed recursively on at most 7n/10+3
clements.

CMPS 6610 Algorithms 20

Developing the recurrence

T(n) SELECT(i, n)
" 1. Divide the n elements into groups of 5. Find
O(n) i the median of each 5-element group by rote.
2. Recursively SELECT the median x of the L n/5.
I(n/5) i group medians to be the pivot.
®(n) 3. Partition around the pivot x. Let &£ = rank(x).
(4. if i =k then return x
elseif i </
then recursively SELECT the ith
I(7n/10 < smallest e%,ement in the lower part
+3) else recursively SELECT the (i—k)th

N smallest element in the upper part

CMPS 6610 Algorithms 21

Solving the recurrence
T'(n)= T(

j+T(ln+3)+drz7

10

for O(n)

Big-Oh Induction: 7(n)< c(% n—3)+ c(% n+3-3)+dn

I(n)<c(n-3)

N\

Technical trick. This
shows that 7(n)e O(n)

<—cn—-3c+dn
10

1
=c(n—-3)——cn+dn
(n—3) 0

<c(n-3) ,

if ¢ 1s chosen large enough, e.g., c=10d

CMPS 6610 Algorithms

22

Conclusions

* Since the work at each level of recursion 1s
basically a constant fraction (9/10) smaller,
the work per level 1s a geometric series
dominated by the linear work at the root.

* In practice, this algorithm runs slowly,
because the constant in front of # 1s large.

* The randomized algorithm is far more
practical.

Exercise: Try to divide into groups of 3 or 7.

CMPS 6610 Algorithms 23

