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Max flow and min cut
• Fundamental problems in combinatorial 

optimization
• Duality between max flow and min cut
• Many applications:

• Bipartite matching
• Image segmentation
• Airline scheduling
• Network reliability
• Survey design
• Baseball elimination
• Gene function prediction
• …
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Flow networks
Definition. A flow network is a directed graph 
G = (V, E) with two distinguished vertices: a 
source s and a sink t.  Each edge (u, v)  E has 
a nonnegative capacity c(u, v).  If (u, v)  E, 
then c(u, v) = 0. We require that if (u, v)  E
then (v, u)  E .
Example:
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Flow networks
Definition. A (positive) flow on G is a function 
f : V  V  satisfying the following: 
• Capacity constraint: For all u, v  V,

0  f(u, v)  c(u, v).
• Flow conservation: For all u  V \ {s, t}, 

The value of a flow is the net flow out of the 
source:
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A flow on a network

s t
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flow capacity

The value of this flow is 1 + 2 = 3.

Flow conservation (like Kirchoff’s current law):
• Flow into u is 2 + 1 = 3.
• Flow out of u is 1 + 2 = 3.

u
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The maximum-flow problem

s t
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The value of the maximum flow is 4.

Maximum-flow problem: Given a flow network 
G, find a flow of maximum value on G.
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Cuts
Definition. A cut (S, T) of a flow network G =
(V, E) is a partition of V such that s  S and t  T.  

If f is a flow on G, then the net flow across the 
cut is

The capacity of the cut is 
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Cuts

s t
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2:2

2:3

1:1

2:2
3:3

0:3

2:2

 S
 T

f (S, T) = (2 + 2+1+2) – (2+1) = 4

c(S,T) = 2+3+1+3 = 9 
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Another characterization of 
flow value

Lemma. For any flow f and any cut (S, T), we 
have | f | =  f (S, T).
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Upper bound on the maximum 
flow value

Theorem. The value of any flow is bounded 
from above by the capacity of any cut:
|f|  c(S,T) .

.

Proof.
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Flow into the sink

s t
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| f | =  f ({s}, V\{s}) = f (V\{t}, t) = 4
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Residual network

Definition. Let f be a flow on G = (V, E).  The 
residual network Gf =(V, Ef ) is the graph with 
residual capacities

c(u, v) – f (u, v), if (u,v)E
cf (u, v) =    f(v, u) , if (v,u)E

0 , otherwise
Ef = {(u,v) | cf (u, v) ≠ 0}

• Edges in Ef admit more flow.
• |Ef |  2|E |.
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Residual network

s t
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G = (V, E)

Gf =(V, Ef ) 2
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Increase
flow by 1
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Augmenting paths
Definition. Let p be a path from s to t in Gf . The 
residual capacity of p is                                        .
If cf (p) > 0 then p is called an augmenting path
in G with respect to f.  The flow value can be 
increased along an augmenting path p by cf (p). 
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Augmenting paths (cont.)

Gf :

G:

.
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Max-flow, min-cut theorem
Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.
Proof. 
(1)  (2): Since | f |  c(S, T) for any cut (S, T), the 
assumption that | f |  c(S, T) implies that f is a 
maximum flow.
(2)  (3): If there was an augmenting path, the flow 
value could be increased, contradicting the 
maximality of f.

min-cut
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Proof (continued)
(3)  (1): Define S = {v  V : there exists an augmenting 
path in Gf from s to v}, and let T = V \ S. Since f admits 
no augmenting paths, there is no path from s to t in Gf . 
Hence, s  S and t  T, and thus (S, T) is a cut. Consider 
any vertices u  S and v  T.  

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v  S, 
not v  T as assumed. Thus, f (u, v) = c(u, v) if (u,v)E
since cf (u, v) = c(u, v) – f (u, v). And otherwise f (u, v)=0.  
Summing over all u  S and v  T yields f (S, T) = c(S, T), 
and since | f | = f (S, T), the theorem follows.

s u v
S Tpath in Gf
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Ford-Fulkerson max-flow 
algorithm

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)
Can be slow:

s t

109 109

109

1

109

G:
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

2:109 1:109

2:109

1:1

1:109

G:

2 billion iterations on a graph with 4 vertices!

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Runtime:
• Let | f*| be the value of a maximum flow, and
assume it is an integral value.

• The initialization takes O(|E|) time
• There are at most | f*| iterations of the loop
• Find an augmenting path with DFS in O(|V|+|E|) time
• Each augmentation takes O(|V|) time
 O(|E| ꞏ|f*|) time in total

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)
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Edmonds-Karp algorithm

Edmonds and Karp noticed that many people’s 
implementations of Ford-Fulkerson augment along a 
breadth-first augmenting path: a shortest path in Gf from s
to t where each edge with positive capacity has weight 1.  
These implementations would always run relatively fast.
Since a breadth-first augmenting path can be found in 
O(|V|+|E|) time, their analysis, which provided the first 
polynomial-time bound on maximum flow, focuses on 
bounding the number of flow augmentations.
(In independent work, Dinic also gave polynomial-time 
bounds.)
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Running time of Edmonds-
Karp

• One can show that the number of flow augmentations 
(i.e., the number of iterations of the while loop) is 
O(|V| |E|).

• Breadth-first search runs in O(|V|+|E|) time

• All other bookkeeping is O(|V|) per augmentation.

 The Edmonds-Karp maximum-flow 
algorithm runs in O(|V| |E|2) time.
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Monotonicity lemma
Lemma. Let (v) = f (s, v) be the breadth-first 
distance from s to v in Gf . During the Edmonds-
Karp algorithm, (v) increases monotonically.
Proof.  Suppose that f is a flow on G, and augmentation 
produces a new flow f .  Let (v) = f (s, v).  We’ll show 
that (v)  (v) by induction on (v).  For the base case, 
(s)  (s) = 0.
For the inductive case, consider a breadth-first path s 
L  u  v in Gf .  We must have (v) (u) + 1, since 
subpaths of shortest paths are shortest paths.  Certainly, 
(u, v)  Ef  , and now consider two cases depending on 
whether (u, v)  Ef .
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Case 1
Case: (u, v)  Ef .

(v)  (u) + 1 (triangle inequality)
 (u) + 1 (induction)
= (v) (breadth-first path),

and thus monotonicity of (v) is established.

We have
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Case 2
Case: (u, v)  Ef .
Since  (u, v)  Ef  , the augmenting path p that produced 
f  from f must have included (v, u).  Moreover, p is a 
breadth-first path in Gf :

p = s  L  v  u  L  t .
Thus, we have

(v)  (u) – 1 (breadth-first path)
 (u) – 1 (induction)
 (v) – 2 (breadth-first path)
< (v) ,

thereby establishing monotonicity for this case, too.
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Counting flow augmentations
Theorem. The number of flow augmentations in 
the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(|V||E|).
Proof. Let p be an augmenting path, and suppose that 
we have cf (u, v) = cf (p) for edge (u, v)  p.  Then, we 
say that (u, v) is critical, and it disappears from the 
residual graph after flow augmentation.

s
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Counting flow augmentations

s
5

Gf :
2

4

5

3

t

1
Example:

2 4

Theorem. The number of flow augmentations in 
the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(|V||E|).
Proof. Let p be an augmenting path, and suppose that 
we have cf (u, v) = cf (p) for edge (u, v)  p.  Then, we 
say that (u, v) is critical, and it disappears from the 
residual graph after flow augmentation.
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

s
u

v
t

Example:

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).

s
u

v
t

(u) = 5

(v) = 6

Example:
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

s
u

v
t

(u) = 5

(v) = 6

Example:

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

s
u

v
t

(u)  7

(v)  6

Example:

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

s
u

v
t

(u)  7

(v)  6

Example:

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

s
u

v
t

(u)  7

(v)  8

Example:

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).



40

Running time of Edmonds-
Karp

Distances start out nonnegative, never decrease, and are 
at most |V| – 1 until the vertex becomes unreachable.  
Thus, (u, v) occurs as a critical edge O(|V|) times, 
because (v) increases by at least 2 between 
occurrences.  Since the residual graph contains O(|E|) 
edges, the number of flow augmentations is O(|V| |E|).

Corollary. The Edmonds-Karp maximum-flow 
algorithm runs in O(|V| |E|2) time.
Proof.  Breadth-first search runs in O(|E|) time, and 
all other bookkeeping is O(|V|) per augmentation.
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Best to date
• The asymptotically fastest algorithm to date for 

maximum flow, due to King, Rao, and Tarjan, runs 
in O(|V||E| log|E|/(|V| log |V|)|V|) time.

• If we allow running times as a function of edge 
weights, the fastest algorithm for maximum flow, 
due to Goldberg and Rao, runs in time

O(min{|V| 2/3, |E|1/2}  E| log (|V| 2/|E| + 2)  log C),
where C is the maximum capacity of any edge in 
the graph.


