
CMPS 6610 – Fall 2018

Flow Networks
Carola Wenk

Slides adapted from slides by Charles Leiserson



Max flow and min cut
• Fundamental problems in combinatorial 

optimization
• Duality between max flow and min cut
• Many applications:

• Bipartite matching
• Image segmentation
• Airline scheduling
• Network reliability
• Survey design
• Baseball elimination
• Gene function prediction
• …

2



3

Flow networks
Definition. A flow network is a directed graph 
G = (V, E) with two distinguished vertices: a 
source s and a sink t.  Each edge (u, v)  E has 
a nonnegative capacity c(u, v).  If (u, v)  E, 
then c(u, v) = 0. We require that if (u, v)  E
then (v, u)  E .
Example:

s t

3
2

3

1

2
3

3

2

1



4

Flow networks
Definition. A (positive) flow on G is a function 
f : V  V  satisfying the following: 
• Capacity constraint: For all u, v  V,

0  f(u, v)  c(u, v).
• Flow conservation: For all u  V \ {s, t}, 

The value of a flow is the net flow out of the 
source:

0),(),( 
 VvVv

uvfvuf





VvVv

svfvsff ),(),(||



5

A flow on a network

s t

1:3
2:2

2:3

1:1

1:2
2:3

1:3

2:2

flow capacity

The value of this flow is 1 + 2 = 3.

Flow conservation (like Kirchoff’s current law):
• Flow into u is 2 + 1 = 3.
• Flow out of u is 1 + 2 = 3.

u



6

The maximum-flow problem

s t

2:3
2:2

2:3

1:1

2:2
3:3

0:3

2:2

The value of the maximum flow is 4.

Maximum-flow problem: Given a flow network 
G, find a flow of maximum value on G.



7

Cuts
Definition. A cut (S, T) of a flow network G =
(V, E) is a partition of V such that s  S and t  T.  

If f is a flow on G, then the net flow across the 
cut is

The capacity of the cut is 


  


Su TvSu Tv

uvfvufTSf ),(),(),(


 


Su Tv

vucTSc ),(),(



8

Cuts

s t

2:3
2:2

2:3

1:1

2:2
3:3

0:3

2:2

 S
 T

f (S, T) = (2 + 2+1+2) – (2+1) = 4

c(S,T) = 2+3+1+3 = 9 



9

Another characterization of 
flow value

Lemma. For any flow f and any cut (S, T), we 
have | f | =  f (S, T).

𝑓 ൌ ෍𝑓ሺ𝑠, 𝑣ሻ
௩∈௏

െ෍𝑓ሺ𝑣, 𝑠ሻ
௩∈௏

ൌ ෍𝑓ሺ𝑠, 𝑣ሻ
௩∈௏

െ෍𝑓ሺ𝑣, 𝑠ሻ
௩∈௏

൅ ෍ ෍𝑓ሺ𝑢, 𝑣ሻ െ
௩∈௏

෍𝑓ሺ𝑣, 𝑢ሻ
௩∈௏௨∈ௌ\ሼ௦ሽ

ൌ ෍෍𝑓ሺ𝑢, 𝑣ሻ
௨∈ௌ௩∈௏

െ෍෍𝑓ሺ𝑣, 𝑢ሻ
௨∈ௌ௩∈௏

ൌ෍෍𝑓ሺ𝑢, 𝑣ሻ
௨∈ௌ௩∈ௌ

൅෍෍𝑓ሺ𝑢, 𝑣ሻ
௨∈ௌ௩∈்

െ෍෍𝑓ሺ𝑣, 𝑢ሻ
௨∈ௌ௩∈ௌ

െ෍෍𝑓ሺ𝑣, 𝑢ሻ
௨∈ௌ௩∈்

ൌ ෍෍𝑓ሺ𝑢, 𝑣ሻ
௨∈ௌ௩∈்

െ෍෍𝑓ሺ𝑣, 𝑢ሻ
௨∈ௌ௩∈்

ൌ 𝑓ሺ𝑆, 𝑇ሻ

Proof:
0



10

Upper bound on the maximum 
flow value

Theorem. The value of any flow is bounded 
from above by the capacity of any cut:
|f|  c(S,T) .

.

Proof.

),(

),(

),(

),(),(

),(

TSc

vuc

vuf

uvfvuf

TSff

Su Tv

Su Tv

Su TvSu Tv

















 

 

  



11

Flow into the sink

s t

2:3
2:2

2:3

1:1

2:2
3:3

0:3

2:2

| f | =  f ({s}, V\{s}) = f (V\{t}, t) = 4



12

Residual network

Definition. Let f be a flow on G = (V, E).  The 
residual network Gf =(V, Ef ) is the graph with 
residual capacities

c(u, v) – f (u, v), if (u,v)E
cf (u, v) =    f(v, u) , if (v,u)E

0 , otherwise
Ef = {(u,v) | cf (u, v) ≠ 0}

• Edges in Ef admit more flow.
• |Ef |  2|E |.



13

Residual network

s t

2:3
2:2

2:3

1:1

1:2
2:4

0:3

1:2

s t

1 1

1

1
2

3
1

G = (V, E)

Gf =(V, Ef ) 2

2 2

1 2
2

Increase
flow by 1



14

Augmenting paths
Definition. Let p be a path from s to t in Gf . The 
residual capacity of p is                                        .
If cf (p) > 0 then p is called an augmenting path
in G with respect to f.  The flow value can be 
increased along an augmenting path p by cf (p). 

)},({min)(
),(

vucpc fpvuf 


s

2

3

Gf :
4

2

4 2

1

t

3

2

cf (p) = 2

4:5 2:3s

3:5

G:
2:6

t

2:5Ex.:

p

1



15

Augmenting paths (cont.)

Gf :

G:

.

s
5

Gf :
2

4

2

3
t

1

4

2:5 0:3s
5:5

G:
4:6

t
4:5

cf (p) = 2

3

s

2

3

4

2

4 2

1

t

3

2

4:5 2:3s

3:5 2:6

t

2:5

p

1



16

Max-flow, min-cut theorem
Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.
Proof. 
(1)  (2): Since | f |  c(S, T) for any cut (S, T), the 
assumption that | f |  c(S, T) implies that f is a 
maximum flow.
(2)  (3): If there was an augmenting path, the flow 
value could be increased, contradicting the 
maximality of f.

min-cut



17

Proof (continued)
(3)  (1): Define S = {v  V : there exists an augmenting 
path in Gf from s to v}, and let T = V \ S. Since f admits 
no augmenting paths, there is no path from s to t in Gf . 
Hence, s  S and t  T, and thus (S, T) is a cut. Consider 
any vertices u  S and v  T.  

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v  S, 
not v  T as assumed. Thus, f (u, v) = c(u, v) if (u,v)E
since cf (u, v) = c(u, v) – f (u, v). And otherwise f (u, v)=0.  
Summing over all u  S and v  T yields f (S, T) = c(S, T), 
and since | f | = f (S, T), the theorem follows.

s u v
S Tpath in Gf



18

Ford-Fulkerson max-flow 
algorithm

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)
Can be slow:

s t

109 109

109

1

109

G:



19

Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)



20

Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)



21

Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)



22

Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)



23

Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)



24

Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)



25

Ford-Fulkerson max-flow 
algorithm

Can be slow:

s t

2:109 1:109

2:109

1:1

1:109

G:

2 billion iterations on a graph with 4 vertices!

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)



26

Ford-Fulkerson max-flow 
algorithm

Runtime:
• Let | f*| be the value of a maximum flow, and
assume it is an integral value.

• The initialization takes O(|E|) time
• There are at most | f*| iterations of the loop
• Find an augmenting path with DFS in O(|V|+|E|) time
• Each augmentation takes O(|V|) time
 O(|E| ꞏ|f*|) time in total

Algorithm:
f [u, v]  0 for all (u,v) E
while an augmenting path p in G wrt f exists:

augment f by cf (p)



27

Edmonds-Karp algorithm

Edmonds and Karp noticed that many people’s 
implementations of Ford-Fulkerson augment along a 
breadth-first augmenting path: a shortest path in Gf from s
to t where each edge with positive capacity has weight 1.  
These implementations would always run relatively fast.
Since a breadth-first augmenting path can be found in 
O(|V|+|E|) time, their analysis, which provided the first 
polynomial-time bound on maximum flow, focuses on 
bounding the number of flow augmentations.
(In independent work, Dinic also gave polynomial-time 
bounds.)



28

Running time of Edmonds-
Karp

• One can show that the number of flow augmentations 
(i.e., the number of iterations of the while loop) is 
O(|V| |E|).

• Breadth-first search runs in O(|V|+|E|) time

• All other bookkeeping is O(|V|) per augmentation.

 The Edmonds-Karp maximum-flow 
algorithm runs in O(|V| |E|2) time.



29

Monotonicity lemma
Lemma. Let (v) = f (s, v) be the breadth-first 
distance from s to v in Gf . During the Edmonds-
Karp algorithm, (v) increases monotonically.
Proof.  Suppose that f is a flow on G, and augmentation 
produces a new flow f .  Let (v) = f (s, v).  We’ll show 
that (v)  (v) by induction on (v).  For the base case, 
(s)  (s) = 0.
For the inductive case, consider a breadth-first path s 
L  u  v in Gf .  We must have (v) (u) + 1, since 
subpaths of shortest paths are shortest paths.  Certainly, 
(u, v)  Ef  , and now consider two cases depending on 
whether (u, v)  Ef .



30

Case 1
Case: (u, v)  Ef .

(v)  (u) + 1 (triangle inequality)
 (u) + 1 (induction)
= (v) (breadth-first path),

and thus monotonicity of (v) is established.

We have



31

Case 2
Case: (u, v)  Ef .
Since  (u, v)  Ef  , the augmenting path p that produced 
f  from f must have included (v, u).  Moreover, p is a 
breadth-first path in Gf :

p = s  L  v  u  L  t .
Thus, we have

(v)  (u) – 1 (breadth-first path)
 (u) – 1 (induction)
 (v) – 2 (breadth-first path)
< (v) ,

thereby establishing monotonicity for this case, too.



32

Counting flow augmentations
Theorem. The number of flow augmentations in 
the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(|V||E|).
Proof. Let p be an augmenting path, and suppose that 
we have cf (u, v) = cf (p) for edge (u, v)  p.  Then, we 
say that (u, v) is critical, and it disappears from the 
residual graph after flow augmentation.

s

2

3

Gf :
4

2

7 2

1

t

3
cf (p) = 2Example:

2



33

Counting flow augmentations

s
5

Gf :
2

4

5

3

t

1
Example:

2 4

Theorem. The number of flow augmentations in 
the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(|V||E|).
Proof. Let p be an augmenting path, and suppose that 
we have cf (u, v) = cf (p) for edge (u, v)  p.  Then, we 
say that (u, v) is critical, and it disappears from the 
residual graph after flow augmentation.



34

Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

s
u

v
t

Example:

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).



35

Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).

s
u

v
t

(u) = 5

(v) = 6

Example:



36

Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

s
u

v
t

(u) = 5

(v) = 6

Example:

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).



37

Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

s
u

v
t

(u)  7

(v)  6

Example:

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).



38

Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

s
u

v
t

(u)  7

(v)  6

Example:

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).



39

Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have (v) = 
(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let  be the distance function when 
(v, u) is on an augmenting path.  Then, we have

s
u

v
t

(u)  7

(v)  8

Example:

(u)  (v) + 1 (breadth-first path)
 (v) + 1 (monotonicity)
 (u) + 2 (breadth-first path).



40

Running time of Edmonds-
Karp

Distances start out nonnegative, never decrease, and are 
at most |V| – 1 until the vertex becomes unreachable.  
Thus, (u, v) occurs as a critical edge O(|V|) times, 
because (v) increases by at least 2 between 
occurrences.  Since the residual graph contains O(|E|) 
edges, the number of flow augmentations is O(|V| |E|).

Corollary. The Edmonds-Karp maximum-flow 
algorithm runs in O(|V| |E|2) time.
Proof.  Breadth-first search runs in O(|E|) time, and 
all other bookkeeping is O(|V|) per augmentation.



41

Best to date
• The asymptotically fastest algorithm to date for 

maximum flow, due to King, Rao, and Tarjan, runs 
in O(|V||E| log|E|/(|V| log |V|)|V|) time.

• If we allow running times as a function of edge 
weights, the fastest algorithm for maximum flow, 
due to Goldberg and Rao, runs in time

O(min{|V| 2/3, |E|1/2}  E| log (|V| 2/|E| + 2)  log C),
where C is the maximum capacity of any edge in 
the graph.


