CMPS 6610 – Fall 2018

Divide-and-ConquerCarola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

The divide-and-conquer design paradigm

- 1. Divide the problem (instance) into subproblems of sizes that are fractions of the original problem size.
- 2. Conquer the subproblems by solving them recursively.
- 3. Combine subproblem solutions.

Merge sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort 2 subarrays of size n/2
- 3. Combine: Linear-time key subroutine MERGE

MERGE-SORT (A[0 ... n-1])

- 1. If n = 1, done.
- 2. Merge-Sort $(A[0...\lceil n/2\rceil -1])$
- 3. Merge-Sort $(A \lceil \lceil n/2 \rceil ... n-1 \rceil)$
- 4. "Merge" the 2 sorted lists.

Merging two sorted arrays

Time $dn \in \Theta(n)$ to merge a total of n elements (linear time).

Analyzing merge sort

```
T(n)MERGE-SORT (A[0 ... n-1])d_01. If n = 1, done.T(n/2)2. MERGE-SORT (A[0 ... \lceil n/2 \rceil + 1])T(n/2)3. MERGE-SORT (A[\lceil n/2 \rceil ... n-1])dn4. "Merge" the 2 sorted lists.
```

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

Recurrence for merge sort

$$T(n) = \begin{cases} d_0 \text{ if } n = 1; \\ 2T(n/2) + dn \text{ if } n > 1. \end{cases}$$

• But what does T(n) solve to? I.e., is it O(n) or $O(n^2)$ or $O(n^3)$ or ...?

Solve
$$T(n) = 2T(n/2) + dn$$
, where $d > 0$ is constant.
$$T(n)$$

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

Total $dn \log n + d_0 n$

Mergesort Conclusions

- Merge sort runs in $\Theta(n \log n)$ time.
- $\Theta(n \log n)$ grows more slowly than $\Theta(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for n > 30 or so. (Why not earlier?)

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- It is good for generating **guesses** of what the runtime could be.

But: Need to verify that the guess is correct.

→ Induction (substitution method)

Substitution method

The most general method to solve a recurrence (prove O and Ω separately):

- 1. Guess the form of the solution:(e.g. using recursion trees, or expansion)
- 2. Verify by induction (inductive step).
- 3. Solve for O-constants n_0 and c (base case of induction)

Master Theorem

$$T(n) = a T(n/b) + f(n)$$

CASE 1:

$$f(n) = O(n^{\log_b a - \varepsilon})$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a})$$

for some $\varepsilon > 0$

CASE 2:

$$f(n) = \Theta(n^{\log_b a} \log^k n)$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$

for some $k \ge 0$

CASE 3:

(i)
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$

for some $\varepsilon > 0$
and (ii) $a f(n/b) \le c f(n)$
for some $c < 1$

$$\Rightarrow T(n) = \Theta(f(n))$$

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm: (recursive squaring)

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

$$T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\log n)$$
.

The master method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Master Theorem

$$T(n) = a T(n/b) + f(n)$$

CASE 1:

$$f(n) = O(n^{\log_b a - \varepsilon})$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a})$$

for some $\varepsilon > 0$

CASE 2:

$$f(n) = \Theta(n^{\log_b a} \log^k n)$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$

for some $k \ge 0$

CASE 3:

(i)
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$

for some $\varepsilon > 0$
and (ii) $a f(n/b) \le c f(n)$
for some $c < 1$

$$\Rightarrow T(n) = \Theta(f(n))$$

Example: merge sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. Combine: Linear-time merge.

subproblems subproblem size
$$T(n) = 2T(n/2) + O(n)$$

work dividing and combining

$$n^{\log_b a} = n^{\log_2 2} = n^1 = n \Rightarrow \text{CASE 2 } (k = 0)$$

 $\Rightarrow T(n) = \Theta(n \log n)$.

Example: binary search

$$T(n) = 1T(n/2) + \Theta(1)$$
subproblems | work dividing and combining subproblem size

$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1 \Rightarrow \text{CASE 2 } (k = 0)$$

 $\Rightarrow T(n) = \Theta(\log n)$.

How to apply the theorem

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

Solution: $T(n) = \Theta(n^{\log ba})$.

- 2. $f(n) = \Theta(n^{\log_b a} \log^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

Solution:
$$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$
.

How to apply the theorem

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log ba}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Master theorem: Examples

Ex.
$$T(n) = 4T(n/2) + \sqrt{n}$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = \sqrt{n}.$
Case 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1.5.$
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
Case 2: $f(n) = \Theta(n^2 \log^0 n)$, that is, $k = 0$.
 $T(n) = \Theta(n^2 \log n)$.

Master theorem: Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^3.$
Case 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$
and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

Ex. $T(n) = 4T(n/2) + n^2/\log n$ $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^2/\log n.$ Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $\log n \in o(n^{\varepsilon})$.

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method .
- Can lead to more efficient algorithms

Convex Hull Problem

- Given a set of pins on a pinboard and a rubber band around them.
 - How does the rubber band look when it snaps tight?
- The convex hull of a point set is one of the simplest shape approximations for a set of points.

Convex Hull: Divide & Conquer

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets A and B:
 - A contains the left $\lfloor n/2 \rfloor$ points,
 - B contains the right $\lceil n/2 \rceil$ points
- Recursively compute the convex hull of **A**
- Recursively compute the convex hull of B
- Merge the two convex hulls

Merging

- Find upper and lower tangent
- With those tangents the convex hull of A\OB can be computed from the convex hulls of A and the convex hull of B in O(n) linear time

Finding the lower tangent

```
a = rightmost point of A
                                                            4=b
b = leftmost point of B
while T=ab not lower tangent to both
     convex hulls of A and B do {
                                                   a=2
    while T not lower tangent to
     convex hull of A do {
       a=a-1
    while T not lower tangent to
     convex hull of B do {
       b = b + 1
                                   left turn
                                                           right turn
     check with
   orientation test
   9/10/18
                             CMPS 6610 Algorithms
                                                                     29
```

Convex Hull: Runtime

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets A and B:
 - A contains the left $\lfloor n/2 \rfloor$ points,
 - B contains the right $\lceil n/2 \rceil$ points
- Recursively compute the convex hull of **A**
- •Recursively compute the convex hull of B
- Merge the two convex hulls

 $O(n \log n)$ just once

O(1)

T(n/2)

T(n/2)

O(n)

Convex Hull: Runtime

• Runtime Recurrence:

$$T(n) = 2 T(n/2) + cn$$

• Solves to $T(n) = \Theta(n \log n)$