
9/10/18 CMPS 6610 Algorithms 1

CMPS 6610 – Fall 2018

Divide-and-Conquer
Carola Wenk

Slides courtesy of Charles Leiserson
with changes and additions by Carola Wenk

9/10/18 2

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are fractions of the
original problem size.

2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions.

CMPS 6610 Algorithms

9/10/18 CMPS 6610 Algorithms 3

Merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[0 . . n/2 -1])
3. MERGE-SORT (A[n/2 . . n-1])
4. “Merge” the 2 sorted lists.

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays of size n/2
3. Combine: Linear-time key subroutine MERGE

9/10/18 CMPS 6610 Algorithms 4

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time dn  (n) to merge a total
of n elements (linear time).

9/10/18 CMPS 6610 Algorithms 5

Analyzing merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[0 . . n/2+1])
3. MERGE-SORT (A[n/2 . . n-1])
4. “Merge” the 2 sorted lists.

T(n)
d0
T(n/2)
T(n/2)
dn

Sloppiness: Should be T(n/2) + T(n/2) ,
but it turns out not to matter asymptotically.

9/10/18 CMPS 6610 Algorithms 6

Recurrence for merge sort

T(n) =
d0 if n = 1;
2T(n/2) + dn if n > 1.

• But what does T(n) solve to? I.e., is it
O(n) or O(n2) or O(n3) or …?

9/10/18 CMPS 6610 Algorithms 7

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)

9/10/18 CMPS 6610 Algorithms 8

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn

9/10/18 CMPS 6610 Algorithms 9

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2

9/10/18 CMPS 6610 Algorithms 10

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

d0

h = log n

dn

dn

dn

…

#leaves = n d0n
Total dn log n + d0n

9/10/18 CMPS 6610 Algorithms 11

Mergesort Conclusions

• Merge sort runs in (n log n) time.
• (n log n) grows more slowly than (n2).
• Therefore, merge sort asymptotically beats

insertion sort in the worst case.
• In practice, merge sort beats insertion sort

for n > 30 or so. (Why not earlier?)

9/10/18 CMPS 6610 Algorithms 12

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• It is good for generating guesses of what the
runtime could be.

But: Need to verify that the guess is correct.
→ Induction (substitution method)

9/10/18 CMPS 6610 Algorithms 13

Substitution method

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of

induction)

The most general method to solve a recurrence
(prove O and  separately):

9/10/18 14

Master Theorem
T(n) = a T(n/b) + f (n)

CASE 1:
f (n) = O(nlogba – )  T(n) = (nlogba)
for some >0

CASE 2:
f (n) = (nlogba logkn)  T(n) = (nlogba logk+1n)
for some k≥0

CASE 3:
(i) f (n) = (nlogba + )
for some >0  T(n) = (f (n))
and (ii) a f (n/b)  c f (n)
for some c < 1

CMPS 6610 Algorithms

9/10/18 15

Powering a number

Problem: Compute a n, where n N.

a n =
a n/2  a n/2 if n is even;
a (n–1)/2  a (n–1)/2  a if n is odd.

Divide-and-conquer algorithm: (recursive squaring)

T(n) = T(n/2) + (1)  T(n) = (log n) .

Naive algorithm: (n).

CMPS 6610 Algorithms

9/10/18 16

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a  1, b > 1, and f is asymptotically
positive.

CMPS 6610 Algorithms

9/10/18 17

Master Theorem
T(n) = a T(n/b) + f (n)

CASE 1:
f (n) = O(nlogba – )  T(n) = (nlogba)
for some >0

CASE 2:
f (n) = (nlogba logkn)  T(n) = (nlogba logk+1n)
for some k≥0

CASE 3:
(i) f (n) = (nlogba + )
for some >0  T(n) = (f (n))
and (ii) a f (n/b)  c f (n)
for some c < 1

CMPS 6610 Algorithms

9/10/18 18

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining
nlogba = nlog22 = n1 = n  CASE 2 (k = 0)

 T(n) = (n log n) .

CMPS 6610 Algorithms

9/10/18 19

Example: binary search

T(n) = 1 T(n/2) + (1)

subproblems
subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1  CASE 2 (k = 0)
 T(n) = (log n) .

CMPS 6610 Algorithms

9/10/18 20

How to apply the theorem
Compare f (n) with nlogba :

1. f (n) = O(nlogba – ) for some constant  > 0.
• f (n) grows polynomially slower than nlogba

(by an n factor).
Solution: T(n) = (nlogba) .

2. f (n) = (nlogba logkn) for some constant k  0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = (nlogba logk+1n) .

CMPS 6610 Algorithms

9/10/18 21

How to apply the theorem

3. f (n) = (nlogba + ) for some constant  > 0.
• f (n) grows polynomially faster than nlogba (by

an n factor),
and f (n) satisfies the regularity condition that
a f (n/b)  c f (n) for some constant c < 1.
Solution: T(n) = (f (n)) .

Compare f (n) with nlogba :

CMPS 6610 Algorithms

9/10/18 22

Master theorem: Examples

Ex. T(n) = 4T(n/2) +
a = 4, b = 2  nlogba = n2; f (n) = .
CASE 1: f (n) = O(n2 – ) for  = 1.5.
 T(n) = (n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2  nlogba = n2; f (n) = n2.
CASE 2: f (n) = (n2log0n), that is, k = 0.
 T(n) = (n2log n).

CMPS 6610 Algorithms

9/10/18 23

Master theorem: Examples
Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2  nlogba = n2; f (n) = n3.
CASE 3: f (n) = (n2 + ) for  = 1
and 4(n/2)3  cn3 (reg. cond.) for c = 1/2.
 T(n) = (n3).

Ex. T(n) = 4T(n/2) + n2/logn
a = 4, b = 2  nlogba = n2; f (n) = n2/logn.
Master method does not apply. In particular,
for every constant  > 0, we have log n  o(n).

CMPS 6610 Algorithms

9/10/18 24

Conclusion

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method .

• Can lead to more efficient algorithms

CMPS 6610 Algorithms

9/10/18 25CMPS 6610 Algorithms

9/10/18 CMPS 6610 Algorithms 26

Convex Hull Problem

 Given a set of pins on a pinboard

and a rubber band around them.

How does the rubber band look
when it snaps tight?

 The convex hull of a point set is
one of the simplest shape
approximations for a set of points.

9/10/18 CMPS 6610 Algorithms 27

Convex Hull: Divide & Conquer
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two
sets A and B:

 A contains the left n/2 points,

 B contains the right n/2 points

Recursively compute the convex
hull of A

Recursively compute the convex
hull of B

 Merge the two convex hulls

A B

9/10/18 CMPS 6610 Algorithms 28

Merging
 Find upper and lower tangent

 With those tangents the convex hull
of AB can be computed from the
convex hulls of A and the convex hull
of B in O(n) linear time

A B

9/10/18 CMPS 6610 Algorithms 29

check with
orientation test

right turn
left turn

Finding the lower tangent
a = rightmost point of A
b = leftmost point of B
while T=ab not lower tangent to both

convex hulls of A and B do{
while T not lower tangent to
convex hull of A do{

a=a-1
}
while T not lower tangent to
convex hull of B do{
b=b+1

}
}

A B
0

a=2

1

5

3

4

0

1

2

3

4=b

5

6
7

9/10/18 CMPS 6610 Algorithms 30

Convex Hull: Runtime
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two
sets A and B:

 A contains the left n/2 points,

 B contains the right n/2 points

Recursively compute the convex
hull of A

Recursively compute the convex
hull of B

 Merge the two convex hulls

O(n log n) just once

O(1)

T(n/2)

T(n/2)

O(n)

9/10/18 CMPS 6610 Algorithms 31

Convex Hull: Runtime
 Runtime Recurrence:

T(n) = 2 T(n/2) + cn

 Solves to T(n) = (n log n)

