CMPS 6610 — Fall 2018

Union-Find Data Structures
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CMPS 6610 Algorithms

Disjoint-set data structure
(Union-Find)

Problem:
» Maintain a dynamic collection of pairwise-disjoint
sets S = {5, S,, ..., S,}.
 Each set S; has one element distinguished as the
representative element, rep[S.].
* Must support 3 operations:
* MAKE-SET(X): adds new set {X} to S

with rep[{x}]| =X (forany x ¢ S, forall i)
* UNION(X, Y): replaces sets S,, S, with S, U S in S
(for any X, y in distinct sets S,, S,)

* FIND-SET(X): returns representative rep|[S, |

of set S, containing element X
CMPS 6610 Algorithms 2

Union-Find Example

s =1} TL/ ’)
MAKE-SET(2) S={{2}}

MAKE-SET(3) S= {12}, {3}}
MAKE-SET(4) S= {12}, {3}, {4}}
FIND-SET(4) = 4

UNION(2, 4) S=1{12,4}, {3}}
FIND-SET(4) = 2

MAKE-SET(5) S={{2,4}, {3}, 3}}

UNION(4, 5) S=1{{2,4,5}, {3}}

CMPS 6610 Algorithms

Plan of attack

* We will build a simple disjoint-set data structure
that, in an amortized sense, performs significantly
better than ®(log n) per op., even better than
O(log log n), O(log log log n), ..., but not quite O(1).

* To reach this goal, we will introduce two key tricks.
Each trick converts a trivial ®(n) solution 1nto a
simple ®O(log n) amortized solution. Together, the
two tricks yield a much better solution.

* First trick arises 1n an augmented linked list.
Second trick arises 1n a tree structure.

CMPS 6610 Algorithms 4

Augmented linked-list solution

Store S; = {X;, X,, ..., X, } as unordered doubly linked list.
Augmentation: Each element X; also stores pointer
rep[x;] to rep[S;] (which 1s the front of the list, X,).

4) rep
Assume
pointer to X \
1S given. Si : Xl —L % L | Xy
rep[s;]
* FIND-SET(X) returns rep|x]. — O(1)

* UNION(X, Y) concatenates lists containing
X and y and updates the rep pointers for
all elements in the list containing V. — O(n)

CMPS 6610 Algorithms

Example of
augmented linked-list solution

Each element X; stores pointer rep[x;] to rep[s;].
UNION(X, V)
* concatenates the lists containing x and vy, and
* updates the rep pointers for all elements 1n the
list containing .

rep

X | T—L |%
rep[S,]

rep

Sy [Vl T—F [Yof T—F |¥s

rep[S,]

CMPS 6610 Algorithms 6

Example of
augmented linked-list solution

Each element X; stores pointer rep[x;] to rep[s;].
UNION(X, V)
* concatenates the lists containing x and vy, and
* updates the rep pointers for all elements 1n the
list containing .

S,US,: _rep

K] — 5]\ rep

ep[S,] \

\

Vil — (Yo | — [V

rep[S,]

CMPS 6610 Algorithms 7

Example of
augmented linked-list solution

Each element X; stores pointer rep[x;] to rep[s;].
UNION(X, V)
* concatenates the lists containing x and vy, and
* updates the rep pointers for all elements 1n the
list containing .

Sy LSy

rep

Xl — 1%\

rep[S,u S,] \

\

Vil — (Yo | — [V

CMPS 6610 Algorithms 8

Alternative concatenation

UNION(X, V) could

e concatenate t

instead
ne lists containing Yy and X, and

* update the rep pointers for all elements in the
list containing X.

rep

rep

rep[S,]

Sy: Vil T— Vo] T—L (V3

rep[S,]

CMPS 6610 Algorithms

Alternative concatenation

UNION(X, V) could

e concatenate t

instead
ne lists containing Yy and X, and

* update the rep pointers for all elements in the
list containing X.

rep

. re AL =S
23y] /‘ rep[S.]

Vil — (Yo [— (Y3

rep[S,]

CMPS 6610 Algorithms 10

Alternative concatenation

UNION(X, V) could instead
* concatenate the lists containing y and x, and
* update the rep pointers for all elements in the
list containing X.

rep

/7% T=L [%
SXuSy: rep /‘

vi| T=L [vo| T=L lvs|”’
rep[S,u S,]

CMPS 6610 Algorithms

Trick 1: Smaller into larger

(weighted-union heuristic)

To save work, concatenate the smaller list onto the
end of the larger list. Cost = ®(length of smaller list).
Augment list to store its welght (# elements).

* Let n denote the overall number of elements
(equivalently, the number of MAKE-SET operations).

* Let m denote the total number of operations.

* Let T denote the number of FIND-SET operations.

Theorem: Cost of all UNION’s 1s O(n log n).
Corollary: Total cost 1s O(m + n log n).

CMPS 6610 Algorithms 12

Analysis of Trick 1

(weighted-union heuristic)

Theorem: Total cost of UNION’s 1s O(Nn log n).

Proof. « Monitor an element X and set S, containing it.
o After initial MAKE-SET(x), weight[S, | = 1.
* Each time S, 1s united with S,
« if weight[S,] > welght[S,]
—pay | to update rep[x], and
—welght[S,] at least doubles (increases by weight[S,).
o if Weight[Sy] < welight[S,]:
— pay nothing, and
—weight[S, | only increases.
Thus pay < log n for x.

CMPS 6610 Algorithms 13

Disjoint set forest:
Representing sets as trees
Store each set S; = {X,, X,, ..., X, } as an unordered,

potentially unbalanced, not necessarily binary tree,
storing only parent pointers. rep|S;] is the tree root.

* MAKE-SET(X) 1nitializes x S = X, X0 Xo X.. X. . X
as a lone node. — O(1) 1= 0020 X X, X5 X
» FIND-SET(X) walks up the rep[Si] [x,

tree containing X until 1t
reaches the root. — ®(depth[x])

* UNION(X, V) calls FIND-SET twice
and concatenates the trees
containing X and y...— ©(depth[x])

CMPS 6610 Algorithms 14

Trick 1 adapted to trees

* UNION(X, Y) can use a simple concatenation strategy:
Make root FIND-SET(Y) a child of root FIND-SET(X).

* Adapt Trick 1 to this context: i\
Union-by-weight: s

Merge tree with smaller S 1Y
weight into tree with

larger weight. X2 X6 Y4

e Variant of Trick 1 (see book): Vo | ys

Union-by-rank:
rank of a tree = 1ts height Example: UNION(x,, v,)

CMPS 6610 Algorithms 15

Trick 1 adapted to trees
(union-by-weight)
* Height of tree is logarithmic in weight, because:
* Induction on n
* Height of a tree T 1s determined by the two subtrees
T,, T, that T has been united from.
* Inductively the heights of T,, T, at most the logs of their
welghts.
 If T, and T, have different heights:
height(T) = max(height(T,), height(T,))
< max(log weight(T,), log weight(T,))
<log weight(T)
If T, and T, have the same heights:
(Assume weight(T,) < weight(T,))
height(T) = height(T,) + | <log (2*weight(T,))
< log weight(T)

* Thus the total cost of any m operations 1s O(m log n).
CMPS 6610 Algorithms 16

Trick 2: Path compression

When we execute a FIND-SET operation and walk

up a path p to the root, we know the representative

for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(X)
is still ®(depth[x]).

FIND-SET(Y,)

CMPS 6610 Algorithms

Ys

17

Trick 2: Path compression

When we execute a FIND-SET operation and walk

up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(X)

Yq Y3i
is still ®(depth[x]). FIND-SET(Y,) ?2—‘ v
- 2

CMPS 6610 Algorithms 18

Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative

for all the nodes on path p. X
|
Path compression makes 44

all of those nodes direct YillY2] | Y3
children of the root.] T
Cost of FIND-SET(X) Ya Js

is still ®(depth[x]). FIND-SET(Y,)
- 2

CMPS 6610 Algorithms 19

Trick 2: Path compression

* Note that UNION(X,Y) first calls FIND-SET(X) and
FIND-SET(Y). Therefore path compression also
affects UNION operations.

CMPS 6610 Algorithms 20

Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET’s 1s O(m log n).
Proof: By amortization. Omitted.

CMPS 6610 Algorithms

21

Analysis of Tricks 1 + 2

for disjoint-set forests

Theorem: In general, total cost 1s O(m o(n)).

Proof: Long, tricky proof by amortization. Omitted.

CMPS 6610 Algorithms 22

Ackermann’s function A, and
it’s “inverse” o

. J+1 if k=0,
Define A (J) = iAlgiJ{l)(j) if k>1. —iterate J+1 times
Ai) =]+ 1 Ag(l) =2
Al(j)"“zj_ _ A(1)=3
AG)~212>2 Af)=7
2h As(1) =204

22.- >j ..22047 .
A()>2 . 2 (2048 times
A,()) is a lot bigger. A,(1)>2)

Define ou(n) = min {k : A (1) > n} <4 for practical n.

CMPS 6610 Algorithms 23

