CMPS 6610 — Fall 2018

Graphs
Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions
by Carola Wenk

10/15/18 CMPS 6610 Algorithms

Graphs

Definition. A directed graph (digraph) G = (V,
E) 1s an ordered pair consisting of

* a set VV of vertices (singular: vertex),
casetE cV xVofedges.

In an undirected graph G = (V, E), the edge set E
consists of unordered pairs of vertices.

directed graph undirected graph
D V2
C—w= C—®

In either case, we have | E | € O(|V]?).
Moreover, if G 1s connected, then |E|>|V |- 1.

10/15/18 CMPS 6610 Algorithms

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V={1,2,...,n},1sthematrix A[l ..n, 1..n]

given by
.) Laf(,)) € E,
AL I {0 if (i,) ¢ E.
All 2 3 4
9 Q 110 1 1 0 ©O(V]?) storage
' 210 01 0 = dense
9 9 310 0 0 0 representation.
410 0 1 1

10/15/18 CMPS 6610 Algorithms 3

Adjacency-list representation

An adjacency list of a vertex v € V is the list Adj[V]
of vertices adjacent to V.

Adj[1] = {2, 3}

"
e’c Adi[2] = (3]

Adj[3] = {}
B4~ adjj#1= 13,4

For undirected graphs, |Adj[v]| = degree(V).
For digraphs, | Adj[v] | = out-degree(V).

10/15/18 CMPS 6610 Algorithms 4

Adjacency-list representation

Handshaking Lemma:

Every edge Is counted twice

* For undirected graphs:
>y degree(v) =2 |E|

 For digraphs:

>.oy in-degree(v) = 2., ., out-degree(v) = | E |

= adjacency lists use O(|V| + |E|) storage

—> a Sparse representation

— We usually use this representation,
unless stated otherwise

10/15/18 CMPS 6610 Algorithms 5

10/15/18

Graph Traversal

Let G=(V,E) be a (directed or undirected)
graph, given in adjacency list representation.

Vi=n,|El=m
A graph traversal visits every vertex:

* Breadth-first search (BFS)
* Depth-first search (DFS)

CMPS 6610 Algorithms

Breadth-First Search (BFS)

BFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
Initialize empty queue Q
for each vertex v € V do
if v 1s unvisited

visit vV // time++
Q.enqueue(V)
BES iter(G)

BES iter(G)
while Q 1s non-empty do
v = Q.dequeue()
for each w adjacent to v do
if W 1s unvisited

visit W // time++
Add edge (v,w)to T
Q.enqueue(W)

10/15/18 CMPS 6610 Algorithms 7

10/15/18

Example of breadth-first

while Q is non-empty do
search v = Q.dequeuc()
for each w adjacent to v do
if w is unvisited
visitw // time++

Add edge (v,w)to T
> h Q.enqueue(W)

CMPS 6610 Algorithms 8

Example of breadth-first

while Q is non-empty do
search v = Q.dequeuc()
for each w adjacent to v do
if w is unvisited
visitw // time++

) Add edge (v,w)to T
O > h Q.enqueue(W)

10/15/18 CMPS 6610 Algorithms 9

Example of breadth-first

while Q is non-empty do
search v = Q.dequeuc()
for each w adjacent to v do
if w is unvisited
visitw // time++

) Add edge (v,w)to T
O > h Q.enqueue(W)

1 2
Q: 2= b d

10/15/18 CMPS 6610 Algorithms 10

10/15/18

Example of breadth-first

while Q is non-empty do
search v = Q.dequeuc()
for each w adjacent to v do
if w is unvisited
visitw // time++

Add edge (v,w)to T
> h Q.enqueue(W)

{9)
3 4
C e

CMPS 6610 Algorithms 11

Example of breadth-first

while Q is non-empty do
search v = Q.dequeuc()
for each w adjacent to v do
if w is unvisited
visitw // time++

) Add edge (v,w)to T
O > h Q.enqueue(W)

3 4
Q: C e

10/15/18 CMPS 6610 Algorithms 12

Example of breadth-first

while Q is non-empty do
search v = Q.dequeuc()
for each w adjacent to v do
if w is unvisited
visitw // time++

) Add edge (v,w)to T
O > h Q.enqueue(W)

10/15/18 CMPS 6610 Algorithms 13

10/15/18

Example of breadth-first

while Q is non-empty do

SearCh v = Q.dequeue()

for each w adjacent to v do
if w is unvisited

0

visit w // time++
Add edge (v,w)to T
Q.enqueue(W)

CMPS 6610 Algorithms 14

10/15/18

Example of breadth-first

while Q is non-empty do
search v = Q.dequeuc()
for each w adjacent to v do
7 if w is unvisited
visitw // time++
Add edge (v,w)to T
> h Q.enqueue(W)

6 7
Q: g |

CMPS 6610 Algorithms 15

Example of breadth-first

while Q is non-empty do
search v = Q.dequeuc()
for each w adjacent to v do
7 8 if w is unvisited
visitw // time++
Add edge (v,w)to T
Q.enqueue(W)

10/15/18 CMPS 6610 Algorithms 16

Example of breadth-first

while Q is non-empty do
search v = Q.dequeuc()
for each w adjacent to v do
7 8 if w is unvisited
visitw // time++
Add edge (v,w)to T
Q.enqueue(W)

10/15/18 CMPS 6610 Algorithms 17

Example of breadth-first

while Q is non-empty do
search v = Q.dequeuc()
for each w adjacent to v do
7 if w is unvisited
visitw // time++
Add edge (v,w)to T
Q.enqueue(W)

10/15/18 CMPS 6610 Algorithms 18

Example of breadth-first

while Q is non-empty do

S e arCh . v = Q.dequeue()

ia
.
L}
]
o

visitw // time++
“. Add edge (vw)to T
“Q.enqueue(W)

Distance
to a:

uy

10/15/18 CMPS 6610 Algorithms 19

Breadth-First Search (BFS)

O(n)
O(1)

(

o) ¢

without

BFS iter
I

BFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0

Initialize empty queue Q
for each vertex Vv € V do

if v 1s unvisited

visit vV // time++
Q.enqueue(V)
BES iter(G)

10/15/18

O™ T geg(v))

BES iter(G)
—— while Q 1s non-empty do

v = Q.dequeue()

for each w adjacent to v do

if W 1s unvisited
visit W // time++

Add edge (v,w)to T

\ Q.enqueue(W)

N—_

CMPS 6610 Algorithms

20

BFS runtime

» Each vertex 1s marked as unvisited in the beginning = O(n) time
 Each vertex 1s marked at most once, enqueued at most once,

and therefore dequeued at most once

» The time to process a vertex 1s proportional to the size of its
adjacency list (its degree), since the graph 1s given in adjacency list
representation

= O(m) time

 Total runtime 1s O(n+m) = O(|V| + [E|)

10/15/18 CMPS 6610 Algorithms 21

Depth-First Search (DFS)

DFS(G=(V|E))
Mark all vertices in G as “unvisited” // time=0
for each vertex Vv € V do

if v 1s unvisited
DFS rec(G,v)

DFS rec(G, v)
mark Vv as “visited” // d[v]=++time
for each w adjacent to v do
if W 1s unvisited
Add edge (v,w) to tree T
DFS rec(G,w)
mark Vv as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 22

Example of depth-first search

d/f

DFS rec(G, v)
mark v as “visited” // d[v]|=++time

. . for each w adjacent to v do
miabcdef g h 1 if w is unvisited
Add edge (v,w) to tree T
- d . DFS rec(G,w)
Store edges 1n predecessor array mark v as “finished” // f[v}=++ime

10/15/18 CMPS 6610 Algorithms 23

Example of depth-first search

d/f

DFS rec(G, v)
mark v as “visited” // d[v]|=++time

. . for each w adjacent to v do
TC. A4 b C d C f g h 1 if w is unvisited
Add edge (v,w) to tree T
-ab . DFS_rec(G,w)
Store edges 1n predecessor array mark v as “finished” // f[v}=++ime

10/15/18 CMPS 6610 Algorithms 24

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacent to v do
TC. A4 b C d C f g h 1 if w is unvisited
Add edge (v,w) to tree T
-ab . DFS_rec(G,w)
Store edges 1n predecessor array mark v as “finished” // f[v}=++ime

10/15/18 CMPS 6610 Algorithms 25

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacent to v do
TC. A4 b C d C f g h 1 if w is unvisited
Add edge (v,w) to tree T
- d b . b DFS rec(G,w)
Store edges in predecessor array mark v as “finished” / f[v]+time

10/15/18 CMPS 6610 Algorithms 26

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacent to v do
TC. A4 b C d C f g h 1 if w is unvisited
Add edge (v,w) to tree T
- d b . b C DFS rec(G,w)
Store edges in predecessor array mark v as “finished” / f[v]+time

10/15/18 CMPS 6610 Algorithms 27

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacent to v do
TC. A4 b C d C f g h 1 if w is unvisited
Add edge (v,w) to tree T
- d b . b C f DFS rec(G,w)
Store edges in predecessor array mark v as “finished” / f[v]+time

10/15/18 CMPS 6610 Algorithms 28

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacent to v do
TC. A4 b C d C f g h 1 if w is unvisited
Add edge (v,w) to tree T
- d b . b C f g DFS rec(G,w)
Store edges in predecessor array mark v as “finished” / f[v]+time

10/15/18 CMPS 6610 Algorithms 29

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacent to v do
TC. A4 b C d C f g h 1 if w is unvisited
Add edge (v,w) to tree T
- d b . b C f g DFS rec(G,w)
Store edges in predecessor array mark v as “finished” / f[v]+time

10/15/18 CMPS 6610 Algorithms 30

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacent to v do
TC. A4 b C d C f g h 1 if w is unvisited
Add edge (v,w) to tree T
- d b . b C f g DFS rec(G,w)
Store edges in predecessor array mark v as “finished” / f[v]+time

10/15/18 CMPS 6610 Algorithms 31

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacent to v do
7. A4 b C d C f g h 1 if w is unvisited
Add edge (v,w) to tree T
- da b . b C f g f DFS_rec(G,w)
Store edges 1n predecessor array mark v as “finished” // f[v}=++ime

10/15/18 CMPS 6610 Algorithms 32

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacent to v do
TC. A4 b C d C f g h 1 if w is unvisited
. Add edge (v,w) to tree T
- d b 1 b C f g f DFS rec(G,w)
Store edges in predecessor array mark v as “finished” / f[v]+time

10/15/18 CMPS 6610 Algorithms 33

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacen
mabcedefghi R
. Add edge (v,w) to tree T
- d b 1 b C f g f DFS rec(G,w)
Store edges in predecessor array mark v as “finished" / [y} time

10/15/18 CMPS 6610 Algorithms 34

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacen
mabcedefghi R
. Add edge (v,w) to tree T
- d b 1 b C f g f DFS rec(G,w)
Store edges in predecessor array mark v as “finished" / [y} time

10/15/18 CMPS 6610 Algorithms 35

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacen
mabcedefghi R
. Add edge (v,w) to tree T
- d b 1 b C f g f DFS rec(G,w)
Store edges in predecessor array mark v as “finished" / [y} time

10/15/18 CMPS 6610 Algorithms 36

Example of depth-first search

d/f

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacen
mabcedefghi R
. Add edge (v,w) to tree T
- d b 1 b C f g f DFS rec(G,w)
Store edges in predecessor array mark v as “finished" / [y} time

10/15/18 CMPS 6610 Algorithms 37

Example of depth-first search

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacen
mabcedefghi R
. Add edge (v,w) to tree T
- d b 1 b C f g f DFS rec(G,w)
Store edges in predecessor array mark v as “finished" / [y} time

10/15/18 CMPS 6610 Algorithms 38

Example of depth-first search

2/3 e
DFS rec(G, v)

mark v as “visited” // d[v]|=++time

. . for each w adjacen
mabcedefghi R
. Add edge (v,w) to tree T
- d b 1 b C f g f DFS rec(G,w)
Store edges in predecessor array mark v as “finished" / [y} time

10/15/18 CMPS 6610 Algorithms 39

Depth-First Search (DFS)

DFS(G=(V,E))
O(n) Mark all vertices in G as “unvisited” // time=0

(for each vertex v € V do
O.(n) if v 1s unvisited
without
DFS_rec | DFS_I'CC(G,V)
DFS rec(G, V)
o(1) mark Vv as “visited” // d[v]=++time
’ for each w adjacent to v do
if w 1s unvisited
O(deg(v)) | Add edge (v,w) to tree T
:Zictlllll?slil;[fe call DF S_I’CC(G,W)
* mark Vv as “finished” // f[v]=++time

— With Handshaking Lemma, all recursive calls are O(m), for

a total of O(n + m) runtime
10/15/18 CMPS 6610 Algorithms 40

DFS edge classification

2/3 Edge U—V 18 a:

* tree edge, if 1t is part of the depth-first forest.
, 1f U connects to an ancestor V in a depth-
ﬁrst tree. It holds d(u)>d(v) and f(u)<f(v).
 forward edge, 1f it connects U to a descendant Vv 1n
a depth-first tree. It holds d(u)<d(v).
e cross edge, 1f 1t 1s any other edge. It holds
d(u)>d(v) and f(u)>f(v).

10/15/18 CMPS 6610 Algorithms 41

Paths, Cycles, Connectivity

Let G=(V.E) be a directed (or undirected) graph

* A path from v, to v, in G is a sequence of vertices V,, V,,....,V, such that
(Vi.Vie)€E (or {v,v., | €Eif G is undirected) for all ie{1,... k-1}.

A path 1s simple if all vertices in the path are distinct.

 Apathv,, v,,....,v, forms a cycle if v, =V, .

A graph with no cycles is acyclic.

» An undirected acyclic graph 1s called a tree. (Trees do not have to
have a root vertex specified.)

* A directed acyclic graph is a DAG. (A DAG can have undirected
cycles if the direction of the edges is not considered.)

* An undirected graph is connected if every pair of vertices 1s connected
by a path. A directed graph 1s strongly connected if for every pair
u,veV there is a path from u to v and there is a path from v to U.

* The (strongly) connected components of a graph are the equivalence

classes of vertices under this reachability relation.
10/15/18 CMPS 6610 Algorithms 42

DAG Theorem

Theorem: A directed graph G is acyclic

<> a depth-first search of G yields no back edges.
Proof: %\o
“=": Suppose there 1s a back edge (u,v). Then by o

definition of a back edge there would be a cycle. ©

<=": Suppose G contains a cycle c. Let v be the first { %\O

vertex to be discovered in ¢, and let u be the
preceding vertex in c¢. v is an ancestor of u in the
depth-first forest, hence (u,v) 1s a back edge.

10/15/18 CMPS 6610 Algorithms

Topological Sort

Topologically sort the vertices of a directed acyclic

graph (DAG):

* Determine f: V — {1, 2, ...,
= f(u) <f(v).

V|} such that (U, V) € E

10/15/18 CMPS 6610 Algorithms 44

Topological Sort Algorithm

* Store vertices with in-degree 0 1n a queue Q.

* While Q is not empty
* Dequeue vertex v, and give 1t the next number
* Decrease in-degree of all adjacent vertices by 1
* Enqueue all vertices with in-degree 0

Q:a,b,c,e,d,f g 1,h

10/15/18 CMPS 6610 Algorithms 45

Topological Sort Runtime

Runtime:

* O(|VI+|E]) because every edge 1s touched once, and
every vertex 1s enqueued and dequeued exactly
once

10/15/18 CMPS 6610 Algorithms

46

DEFS-Based Topological Sort
Algorithm

« (Call DFS on the directed acyclic graph G=(V.E)
—> Finish time for every vertex
* Reverse the finish times (highest finish time

becomes the lowest finish time,...)
— Valid functionf ’: V — {1, 2, ..., | V |} such that
(u,v) e E=1’(U) <f’ (v)

Runtime: O(|V|+|E|)

10/15/18 CMPS 6610 Algorithms 47

DEFS-Based Topological Sort

* Run DFS:

1/12 :2/11

CMPS 6610 Algorithms

DEFS-Based Top. Sort Correctness

* Need to show that for any (U, V) € E holds f (v) <f (u).
(since we consider reversed finish times)

» Consider exploring edge (U, V) in DFS:
e V cannot be visited and unfinished (and hence an ancestor in
the depth first tree), since then (U,v) would be a back edge
(which by the DAG lemma cannot happen).
e [f v has not been visited yet, 1t becomes a descendant of U, and
hence f(V)<f(u) . (tree edge)
« [f v has been finished, f(v) has been set, and U is still being
explored, hence f(U)>f(v) (forward edge, cross edge) .

10/15/18 CMPS 6610 Algorithms 49

Topological Sort Runtime

Runtime:

* O(|V|+|E|) because every edge 1s touched once, and
every vertex 1s enqueued and dequeued exactly
once

* DFS-based algorithm: O(|V| + |E|)

10/15/18 CMPS 6610 Algorithms

50

