
10/15/18 CMPS 6610 Algorithms 1

CMPS 6610 – Fall 2018

Graphs
Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions
by Carola Wenk

10/15/18 CMPS 6610 Algorithms 2

Graphs
Definition. A directed graph (digraph) G = (V,
E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E  V  V of edges.
In an undirected graph G = (V, E), the edge set E
consists of unordered pairs of vertices.

In either case, we have | E |  O(|V| 2).
Moreover, if G is connected, then | E |  | V | – 1.

2 1

3 4

2 1

3 4

directed graph undirected graph

10/15/18 CMPS 6610 Algorithms 3

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] = 1 if (i, j)  E,
0 if (i, j)  E.

2 1

3 4

A 1 2 3 4
1
2
3
4

0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 1

(|V| 2) storage
 dense
representation.

10/15/18 CMPS 6610 Algorithms 4

Adjacency-list representation
An adjacency list of a vertex v  V is the list Adj[v]
of vertices adjacent to v.

2 1

3 4

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3, 4}

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, | Adj[v] | = out-degree(v).

10/15/18 CMPS 6610 Algorithms 5

Adjacency-list representation

Handshaking Lemma:
Every edge is counted twice
• For undirected graphs:

vV degree(v) = 2 |E |
• For digraphs:

vV in-degree(v) = vV out-degree(v) = | E |

 adjacency lists use (|V| + |E|) storage
 a sparse representation
 We usually use this representation,

unless stated otherwise

10/15/18 CMPS 6610 Algorithms 6

Graph Traversal

Let G=(V,E) be a (directed or undirected)
graph, given in adjacency list representation.

|V| = n , |E| = m

A graph traversal visits every vertex:
• Breadth-first search (BFS)
• Depth-first search (DFS)

10/15/18 CMPS 6610 Algorithms 7

Breadth-First Search (BFS)
BFS(G=(V,E))

Mark all vertices in G as “unvisited” // time=0
Initialize empty queue Q
for each vertex v  V do

if v is unvisited
visit v // time++
Q.enqueue(v)
BFS_iter(G)

BFS_iter(G)
while Q is non-empty do

v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 8

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q:

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 9

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q: a

0

0

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 10

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q: a b d

0

1

2

1 2

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 11

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q: a b d c e

0

1

2

3 4

2 3 4

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 12

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q: a b d c e

0

1

2

3 4

3 4

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 13

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q: a b d c e

0

1

2

3 4

4

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 14

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q: a b d c e f g

0

1

2

3 4

5

6

5 6

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 15

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q: a b d c e f g i

0

1

2

3 4

5

6

7

6 7

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 16

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q: a b d c e f g i h

0

1

2

3 4

5

6

7 8

7 8

a

a

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 17

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q: a b d c e f g i h

0

1

2

3 4

5

6

7 8

8

a

a

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 18

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q: a b d c e f g i h

0

1

2

3 4

5

6

7 8

a

a

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

10/15/18 CMPS 6610 Algorithms 19

Example of breadth-first
search

a

b

c

d

e

f

g

i h

Q: a b d c e f g i h

0

1

2

3 4

5

6

7 8

a

a

while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

Distance
to a:

0

1

2
3
4

10/15/18 CMPS 6610 Algorithms 20

Breadth-First Search (BFS)
BFS(G=(V,E))

Mark all vertices in G as “unvisited” // time=0
Initialize empty queue Q
for each vertex v  V do

if v is unvisited
visit v // time++
Q.enqueue(v)
BFS_iter(G)

BFS_iter(G)
while Q is non-empty do

v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

O(n)
O(1)

O(n)
without
BFS_iter

O(deg(v))
O(m)

10/15/18 CMPS 6610 Algorithms 21

BFS runtime

• Each vertex is marked as unvisited in the beginning  O(n) time
• Each vertex is marked at most once, enqueued at most once,
and therefore dequeued at most once
• The time to process a vertex is proportional to the size of its
adjacency list (its degree), since the graph is given in adjacency list
representation
 O(m) time
• Total runtime is O(n+m) = O(|V| + |E|)

10/15/18 CMPS 6610 Algorithms 22

Depth-First Search (DFS)
DFS(G=(V,E))

Mark all vertices in G as “unvisited” // time=0
for each vertex v  V do

if v is unvisited
DFS_rec(G,v)

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 23

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

a

: a b c d e f g h i
a-

Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 24

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b-
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 25

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/-2/3

-
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 26

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3

b-
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 27

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3
4/-

b e-
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 28

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3
4/-

b

5/-

f- e
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 29

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3
4/-

b

5/-

6/-

g- fe
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 30

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3
4/-

b

5/-

6/-

7/-7/8

- gfe
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 31

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3
4/-

b

5/-

6/-

7/8

6/9

- gfe
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 32

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3
4/-

b

5/-

f

7/8

6/9

- gfe
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 33

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3
4/-

b

5/-

7/8

6/9

10/-

i- fgfe
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 34

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3
4/-

b

5/-

7/8

6/9

10/-

i

11/-11/12

- fgfe
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 35

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3
4/-

b

5/-

7/8

6/9

10/-

i

11/12
10/13

- fgfe
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 36

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3
4/-

b

5/-

7/8

6/9

i

11/12
10/13

5/14

- fgfe
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 37

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3
4/-

b

7/8

6/9

i

11/12
10/13

5/14

4/15

- fgfe
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 38

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a

1/-

b

2/3

b

7/8

6/9

i

11/12
10/13

5/14

4/15

1/16

- fgfe
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 39

Example of depth-first search

a

b

c

d

e

f

g

i h0/-
d / f

: a b c d e f g h i
a b

2/3

b

7/8

6/9

i

11/12
10/13

5/14

4/15

1/16

0/17

- fgfe
Store edges in predecessor array

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 40

Depth-First Search (DFS)
DFS(G=(V,E))

Mark all vertices in G as “unvisited” // time=0
for each vertex v  V do

if v is unvisited
DFS_rec(G,v)

O(n)

O(n)
without
DFS_rec

O(deg(v))
without
recursive call

O(1)

 With Handshaking Lemma, all recursive calls are O(m), for
a total of O(n + m) runtime

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

mark v as “finished” // f[v]=++time

10/15/18 CMPS 6610 Algorithms 41

DFS edge classification
a

b

c

d

e

f

g

i h
d / f

2/3

7/8

6/9

11/12
10/13

5/14

4/15

1/16

0/17

Edge u v is a:
• tree edge, if it is part of the depth-first forest.
• back edge, if u connects to an ancestor v in a depth-
first tree. It holds d(u)>d(v) and f(u)<f(v).
• forward edge, if it connects u to a descendant v in
a depth-first tree. It holds d(u)<d(v).
• cross edge, if it is any other edge. It holds
d(u)>d(v) and f(u)>f(v).

c

c

f

f
bb

b

10/15/18 CMPS 6610 Algorithms 42

Paths, Cycles, Connectivity
Let G=(V,E) be a directed (or undirected) graph
• A path from v1 to vk in G is a sequence of vertices v1, v2,…,vk such that

(vi,v{i+1})E (or {vi,v{i+1}} E if G is undirected) for all i{1,…,k-1}.
• A path is simple if all vertices in the path are distinct.
• A path v1, v2,…,vk forms a cycle if v1=vk .
• A graph with no cycles is acyclic.

• An undirected acyclic graph is called a tree. (Trees do not have to
have a root vertex specified.)
• A directed acyclic graph is a DAG. (A DAG can have undirected
cycles if the direction of the edges is not considered.)

• An undirected graph is connected if every pair of vertices is connected
by a path. A directed graph is strongly connected if for every pair
u,vV there is a path from u to v and there is a path from v to u.

• The (strongly) connected components of a graph are the equivalence
classes of vertices under this reachability relation.

10/15/18 CMPS 6610 Algorithms 43

DAG Theorem

Theorem: A directed graph G is acyclic
 a depth-first search of G yields no back edges.

Proof:
“”: Suppose there is a back edge (u,v). Then by

definition of a back edge there would be a cycle.
“”: Suppose G contains a cycle c. Let v be the first

vertex to be discovered in c, and let u be the
preceding vertex in c. v is an ancestor of u in the
depth-first forest, hence (u,v) is a back edge.

u

v

10/15/18 CMPS 6610 Algorithms 44

Topological Sort
Topologically sort the vertices of a directed acyclic
graph (DAG):
• Determine f : V  {1, 2, …, |V|} such that (u, v)  E
 f (u) < f (v).

3 5 6

4

2

7

9

81

3 5 642 7 981

10/15/18 CMPS 6610 Algorithms 45

Topological Sort Algorithm

3 5 7

4

2

6

8

91
0 22

1

1

3
1 10

1

2

0

0

0

1

0

0

0

1

• Store vertices with in-degree 0 in a queue Q.
• While Q is not empty

• Dequeue vertex v, and give it the next number
• Decrease in-degree of all adjacent vertices by 1
• Enqueue all vertices with in-degree 0

Q:

a

b

e

dc
i

h

g

f

a , b , c , d , e , f , g , i

0

, h

10/15/18 CMPS 6610 Algorithms 46

Topological Sort Runtime

Runtime:
• O(|V|+|E|) because every edge is touched once, and

every vertex is enqueued and dequeued exactly
once

10/15/18 CMPS 6610 Algorithms 47

DFS-Based Topological Sort
Algorithm

• Call DFS on the directed acyclic graph G=(V,E)
 Finish time for every vertex

• Reverse the finish times (highest finish time
becomes the lowest finish time,…)
 Valid function f ’: V  {1, 2, …, | V |} such that

(u, v) E  f ’(u) < f ’ (v)

Runtime: O(|V|+|E|)

10/15/18 CMPS 6610 Algorithms 48

DFS-Based Topological Sort
• Run DFS:

1 2 3 4 /5/6

7 8 /9/10

/11

13
14 15/16/17

/18

/12

• Reverse finish times:

98

6 7

5

32
1

4

10/15/18 CMPS 6610 Algorithms 49

DFS-Based Top. Sort Correctness

• Need to show that for any (u, v)  E holds f (v) < f (u).
(since we consider reversed finish times)

• Consider exploring edge (u, v) in DFS:
• v cannot be visited and unfinished (and hence an ancestor in
the depth first tree), since then (u,v) would be a back edge
(which by the DAG lemma cannot happen).
• If v has not been visited yet, it becomes a descendant of u, and
hence f(v)<f(u) . (tree edge)
• If v has been finished, f(v) has been set, and u is still being
explored, hence f(u)>f(v) (forward edge, cross edge) .

10/15/18 CMPS 6610 Algorithms 50

Topological Sort Runtime

Runtime:
• O(|V|+|E|) because every edge is touched once, and

every vertex is enqueued and dequeued exactly
once

• DFS-based algorithm: O(|V| + |E|)

