CMPS 6610/4610 — Fall 2016

Knapsack Problem
Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by
Carola Wenk

CMPS 6610/4610 Algorithms 1

Knapsack Problem

e Given a knapsack with weight capacity W > 0, and
given n items of positive integer weights wy, ..., Wy,
and positive integer values vy, ..., v,.

(So, item i has value v; and weight w;.)

* 0-1 Knapsack Problem: Compute a subset of items
that maximize the total value (sum), and they all fit
Into the knapsack (total weight at most W).

 Fractional Knapsack Problem: Same as before but
we are allowed to take fractions of items (— gold
dust).

CMPS 6610/4610 Algorithms 2

Greedy Knapsack
e Greedy Strategy:

— Compute - for each i

Wi

— Greedily take as much as possible of the item
with the highest value/weight. Then
repeat/recurse.

= Sort items by value/weight

= O(nlogn) runtime

CMPS 6610/4610 Algorithms

Knapsack Example

Item 1 2 3
value 12 15 4 W=4
welight 2 3 1

value/weight 6 5 4

» Greedy fractional: Take item 1 and 2/3 of item 2
= weight=4, value=12+2/3-15 = 12+10 = 22

* Greedy 0-1: Take item 1 and then item 3
= welight = 1+2=3, value=12+4=16

e Optimal 0-1: Take items 2 and 3, value =19

CMPS 6610/4610 Algorithms

Optimal Substructure

e Letsy, ..., s, be an optimal solution, where s; =
amount of item i that istaken; 0 <s; <1

e Suppose we remove one item. —> n — 1 items left

e |s the remaining “solution” still an optimal solution
forn — 1 items?

* Yes; cut-and-paste.

CMPS 6610/4610 Algorithms

Correctness Proof for Greedy

e Suppose items 1, ..., n are numbered in decreasing order by
value/weight.

 Greedy solution G: Takes all elements 1, ..., J, ...,i*-1 and a
fraction of i".

» Assume optimal solution S is different from G. Assume S takes
only a fraction % of item j, forj < i*-1.

* Create new solution S’ from S by taking w; — 1/a welight
away from items > j, and add w; — 1/a of item j back in.
Hence, all of item j is taken.

= New solution S’ has the same weight but increased value.
This contradicts the assumption that S was optimal.
= S=G. L]

CMPS 6610/4610 Algorithms 6

General Solution: DP

* D[i, w]= max value possible for taking a subset of items
1, ..., i with knapsack constraint w.

eD[O,w] =DJ|i,0] =0forall0<i<nand0<w<W
D[i,w]=0forw <0
Dl|i,w] =max(D|[i — 1,w],v; + D[i — 1,w — w;])

J \ J

| |

don’t take item i take item i

e Compute D[n, W] by filling an n X W DP-table.
= Two nested for-loops, runtime and space O(nW)

* Trace back from D[n, W] by redoing computation or following
arrows. = 0(n + W) runtime

CMPS 6610/4610 Algorithms 7

Solution: -
DP Example W Take items 3 and 2
. T

W=4 W=4 |0[12 |15 19
item 1 2 3 3[0[12]157 16
value 1215 4 2 [0]12]12] 12
weight 2 3 1 110 0/ 0| 4
value/weight 6 5 4 olo<ol ol o
Take item i: A 7 0 1 2 3 -i

K / 1

2

Don’t take item I [<—

Dli,w] = max(D[i — L, w],v; + D[i — 1,w —w;])

7
Y

don’t take item I take 1tem i

CMPS 6610/4610 Algorithms 8

