CMPS 6610/4610 – Fall 2016

Quicksort

Carola Wenk

Slides courtesy of Charles Leiserson with additions by Carola Wenk

Quicksort

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).
- We are going to perform an expected runtime analysis on randomized quicksort

Quicksort: Divide and conquer

Quicksort an *n*-element array:

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\le x \le$ elements in upper subarray.

- 2. Conquer: Recursively sort the two subarrays.
- 3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Partitioning subroutine

```
Partition(A, p, q) \triangleright A[p ... q]
x \leftarrow A[p] \triangleright \text{pivot} = A[p]
i \leftarrow p
\text{for } j \leftarrow p+1 \text{ to } q
\text{do if } A[j] \leq x
\text{then } i \leftarrow i+1
\text{exchange } A[i] \leftrightarrow A[j]
\text{exchange } A[p] \leftrightarrow A[i]
\text{return } i
```


6 10 13 5 8 3 2 11 *i j*

6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
	$\longrightarrow i$			j			

6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
			i			•	$\rightarrow j$

6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
2		3					11
			;	O			

Pseudocode for quicksort

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, p, q-1, r)
```

Initial call: QUICKSORT(A, 1, n)

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.

Deterministic Algorithms

Runtime for deterministic algorithms with input size *n*:

- Worst-case runtime
 - \rightarrow Attained by one input of size n
- Best-case runtime
 - \rightarrow Attained by one input of size n
- Average runtime
 - \rightarrow Averaged over all possible inputs of size n

Worst-case of quicksort

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, p, q+1, r)
```

- Let T(n) = worst-case running time on an array of n elements.
- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.
- $\bullet T(n) = T(0) + T(n-1) + \Theta(n)$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(0)$$
 $T(n-1)$

$$T(n) = T(0) + T(n-1) + cn$$

Deterministic Algorithms

Runtime for deterministic algorithms with input size *n*:

- Worst-case runtime: $O(n^2)$
 - \rightarrow Attained by input: [1,2,3,...,n] or [n, n-1,...,2,1]
- Best-case runtime
 - \rightarrow Attained by one input of size n
- Average runtime
 - \rightarrow Averaged over all possible inputs of size n

Best-case analysis

(For intuition only!)

If we're lucky, Partition splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \log n)$ (same as merge sort)

What if the split is always $\frac{1}{10}$: $\frac{9}{10}$?

$$T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$$

What is the solution to this recurrence?

T(n)

$$T\left(\frac{1}{10}n\right) \qquad T\left(\frac{9}{10}n\right)$$

Deterministic Algorithms

Runtime for deterministic algorithms with input size *n*:

- Worst-case runtime: $O(n^2)$
 - \rightarrow Attained by input: [1,2,3,...,n] or [n, n-1,...,2,1]
- Best-case runtime: $O(n \log n)$
 - Attained by input of size *n* that splits evenly or $\frac{1}{10}:\frac{9}{10}$ at every recursive level
- Average runtime
 - \rightarrow Averaged over all possible inputs of size n

Average Runtime

- What kind of inputs are there?
 - Do [1,2,...,n] and [5,6,...,n+5] cause different behavior of Quicksort?
 - No. Therefore it suffices to only consider all permutations of [1,2,...,n].
- How many inputs are there?
 - There are n! different permutations of [1,2,...,n]
- \Rightarrow Average over all n! input permutations.

Average Runtime: Quicksort

- The average runtime averages runtimes over all n! different input permutations
- One can show that the average runtime for Quicksort is $O(n \log n)$
- Disadvantage of considering average runtime:
 - There are still worst-case inputs that will have the worst-case runtime of $O(n^2)$
 - Are all inputs really equally likely? That depends on the application
- ⇒ **Better:** Use a randomized algorithm

Randomized quicksort

IDEA: Partition around a *random* element.

- Running time is independent of the input order. It depends on a probabilistic experiment (sequence *s* of numbers obtained from random number generator)
 - ⇒ Runtime is a random variable (maps sequence of random numbers to runtimes)
- **Expected runtime** = expected value of runtime random variable
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the sequence *s* of random numbers.

Quicksort Runtimes

- Best case runtime $T_{\text{best}}(n) \in O(n \log n)$
- Worst case runtime $T_{worst}(n) \in O(n^2)$
- Average runtime $T_{avg}(n) \in O(n \log n)$
- Better even, the expected runtime of randomized quicksort is $O(n \log n)$

Average Runtime vs. Expected Runtime

- Average runtime is averaged over all inputs of a deterministic algorithm.
- Expected runtime is the expected value of the runtime random variable of a randomized algorithm. It effectively "averages" over all sequences of random numbers.
- De facto both analyses are very similar. However in practice the randomized algorithm ensures that not one single input elicits worst case behavior.

Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from *code tuning*.
- Quicksort behaves well even with caching and virtual memory.