CMPS 6610/4610 — Fall 2016

Quicksort

Carola Wenk

Slides courtesy of Charles Leiserson with additions
by Carola Wenk

CMPS 6610/4610 Algorithms 1

Quicksort

* Proposed by C.A.R. Hoare in 1962.
 Divide-and-conquer algorithm.

o Sorts “In place” (like insertion sort, but not
like merge sort).

 Very practical (with tuning).

* We are going to perform an expected runtime
analysis on randomized quicksort

CMPS 6610/4610 Algorithms

Quicksort: Divide and conquer

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray < x < elements in upper subarray.

< X X > X

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

CMPS 6610/4610 Algorithms 3

Partitioning subroutine
PArTITION(A, P, Q) = A[p..(q]

X < Alp] = pivot = Al p] /Running time A
:c<—_p - = 0O(n) forn
orj«<p+1toq

do if Al] < x kelements.)

then 1« i1+1
exchange Ali] <> A[]
exchange Al p] <> Ali]
return |

Invariant: | x <X > X ?
p | J g

CMPS 6610/4610 Algorithms 4

Example of partitioning

13| 5|8 |3

11

CMPS 6610/4610 Algorithms

Example of partitioning

0

10

13| 5|8 |3

11

—)

CMPS 6610/4610 Algorithms

Example of partitioning

6 | 10

ks

5

11

—)

CMPS 6610/4610 Algorithms

Example of partitioning

10

ks

11

13

10

11

CMPS 6610/4610 Algorithms

Example of partitioning

10

ks

11

13

10

11

CMPS 6610/4610 Algorithms

Example of partitioning

10

ks

11

13

10

11

CMPS 6610/4610 Algorithms

10

Example of partitioning

10113 | 5 3 11
5 (13| 10 3 11
5 10 13 11

CMPS 6610/4610 Algorithms

11

Example of partitioning

10113 | 5 3|2 |11
5 (13| 10 3|2 |11
5 |3 |10 13| 2 |11

]

CMPS 6610/4610 Algorithms

12

Example of partitioning

10113 | 5 3|2 |11
5 (13| 10 3|2 |11
5 |3 |10 13| 2 |11
5 |3 13110 | 11

CMPS 6610/4610 Algorithms

Example of partitioning

10113 | 5 3|2 |11
5 (13| 10 3|2 |11
5 |3 |10 13| 2 |11
5| 3| 2 13110 | 11

CMPS 6610/4610 Algorithms

—)

14

Example of partitioning

10113 | 5 3|2 |11
5 (13| 10 3|2 |11
5 |3 |10 13| 2 |11
5| 3| 2 13110 | 11

CMPS 6610/4610 Algorithms

15

Example of partitioning

10113 | 5 3|2 |11
5 (13| 10 3|2 |11
5 |3 |10 13| 2 |11
5|3]| 2 13110 | 11
S |3 | O 13110 | 11

CMPS 6610/4610 Algorithms

16

Pseudocode for quicksort

QUICKSORT(A, p, I)
ifp<r
then g < PARTITION(A, p, I')
QUICKSORT(A, p, g-1)
QUICKSORT(A, g+1, 1)

Initial call: QuicksorT(A, 1, n)

CMPS 6610/4610 Algorithms 17

Analysis of quicksort

» Assume all input elements are distinct.

* In practice, there are better partitioning
algorithms for when duplicate input
elements may exist.

CMPS 6610/4610 Algorithms 18

Deterministic Algorithms

Runtime for deterministic algorithms with input
Size n:

 \Worst-case runtime
=>» Attained by one input of size n
 Best-case runtime
=>» Attained by one input of size n
 Average runtime
=>» Averaged over all possible inputs of size n

CMPS 6610/4610 Algorithms 19

QUICKSORT(A., p, 7)

Worst-case of ifp < r

then g <— PARTITION(A. p, 7)

quicksort o osomt . a1)

QUICKSORT(A, g+1, 7)

 Let T(n) = worst-case running time on an array
of n elements.

* Input sorted or reverse sorted.

e Partition around min or max element.

* One side of partition always has no elements.

oT(n)=TO)+Tn—1)+ 60(n)

CMPS 6610/4610 Algorithms 20

Worst-case recursion tree
T(n) =T(0) + T(n-1) + cn

CMPS 6610/4610 Algorithms

21

Worst-case recursion tree
T(n) =T(0) + T(n-1) + cn
T(n)

CMPS 6610/4610 Algorithms

22

Worst-case recursion tree
T(n) =T(0) + T(n-1) + cn

Cch
TN
T(0) T(n-1)

CMPS 6610/4610 Algorithms

23

Worst-case recursion tree
T(n) =T(0) + T(n-1) + cn

Cch
N
T(0) c(n-1)
N
T(0) T(n-2)

CMPS 6610/4610 Algorithms

24

Worst-case recursion tree
T(n) =T(0) + T(n-1) + cn
Cch
TN
T(0) c(n-1)
N
T(0) c(n-2)
N
T(0) .
~
0O(1)

CMPS 6610/4610 Algorithms

25

\Worst-case recursion tree

height = n

cn T - (helgT(t]
odf iy &

T(n) =T(0) + T(n-1) + cn

k=1

<
O(1) c(n-2)
7
O(1) .
~
O(1)

CMPS 6610/4610 Algorithms

26

\Worst-case recursion tree

height = n

T(n) =T(0) + T(n-1) + cn

A cn T _ @(n k]
of a7
@(1)/ c\(n—2) (arithmetic series)
7
ol1) -
~

O(1)

CMPS 6610/4610 Algorithms 27

\Worst-case recursion tree

height = n

T(n) =T(0) + T(n-1) + cn

cnhn _
o Sy T =6 Skl

k=1
< : : :
O1) c(n-2) (arithmetic series)

RN
ol) -

| ~
o(1)

CMPS 6610/4610 Algorithms 28

Deterministic Algorithms

Runtime for deterministic algorithms with input
Size n:

» Worst-case runtime: 0 (n?)

=>» Attained by input: [1,2,3,...,n] or [n, n-1,...,2,1]
 Best-case runtime

=>» Attained by one input of size n
 Average runtime

=>» Averaged over all possible inputs of size n

CMPS 6610/4610 Algorithms 29

Best-case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:
T(n) =2T(n/2) + B(n)
=®(nlogn) (same as merge sort)

9

What if the split is always .. 0107

T(N)=T(Ln)+T(2n)+6O(n)
What is the solution to this recurrence?

CMPS 6610/4610 Algorithms 30

Analysis of “almost-best” case

T(n)

CMPS 6610/4610 Algorithms 31

Analysis of “almost-best” case

Cn\
T(5Hn) T(Sn)

CMPS 6610/4610 Algorithms 32

Analysis of “almost-best” case

CMPS 6610/4610 Algorithms 33

Analysis of “almost-best” case

CN oS —-———mmmmmm - - ch
1 / \
/j}cq\\ ;épn- ----------- cn
5 CN ﬁ%cn ;%cn

’ /' N/ \

/

O(1) { O(n) leaves }

CMPS 6610/4610 Algorithms 34

Analysis of “almost-best” case

| %C” Noommmoo oo cn
09110 9 9 / 8>|Og10/9n

/ s 4R BN

/.. :

O(1) { O(n) leaves } \ :
O(1)

O Cnlog,gn <T(n) < cnlogyen + O

CMPS 6610/4610 Algorithms 35

Deterministic Algorithms

Runtime for deterministic algorithms with input
size n:

» Worst-case runtime: 0 (n?)
=>» Attained by input: [1,2,3,...,n] or [n, n-1,...,2,1]
e Best-case runtime: O (nlogn)

=» Attained by input of size n that splits evenly or

L- 9 atevery recursive level

10 " 10
 Average runtime
=» Averaged over all possible inputs of size n

CMPS 6610/4610 Algorithms 36

Average Runtime
* What kind of inputs are there?

- Do [1,2,...,n] and [5,6,...,n+5] cause
different behavior of Quicksort?

« No. Therefore It suffices to only consider
all permutations of [1,2,...,n] .

 How many Inputs are there?

- There are n! different permutations of
[1,2,...,n]

—> Average over all n! input permutations.

CMPS 6610/4610 Algorithms 37

Average Runtime: Quicksort

* The average runtime averages runtimes over
all n! different input permutations

* One can show that the average runtime for
Quicksortis O(nlogn)

 Disadvantage of considering average runtime:

* There are still worst-case Inputs that will
have the worst-case runtime of O(n?)

 Are all inputs really equally likely? That
depends on the application

—> Better: Use a randomized algorithm

CMPS 6610/4610 Algorithms 38

Randomized quicksort

IDEA: Partition around a random element.

« Running time is independent of the input order. It depends
on a probabilistic experiment (sequence s of numbers
obtained from random number generator)

= Runtime is a random variable (maps sequence of
random numbers to runtimes)

* EXxpected runtime = expected value of runtime random
variable

* No assumptions need to be made about the input
distribution.

* No specific input elicits the worst-case behavior.

* The worst case Is determined only by the sequence s of

random numbers.
CMPS 6610/4610 Algorithms 39

Quicksort Runtimes

* Best case runtime T,...(n) € O(n log n)
 Worst case runtime T,,..(n) € O(n?)

e Average runtime T,,,(n) € O(n log n)

* Better even, the expected runtime of
randomized quicksort is O(n log n)

CMPS 6610/4610 Algorithms 40

Average Runtime vs. Expected

Runtime

* Average runtime Is averaged over all inputs of a
deterministic algorithm.

* Expected runtime Is the expected value of the
runtime random variable of a randomized
algorithm. It effectively “averages” over all
sequences of random numbers.

 De facto both analyses are very similar.
However In practice the randomized algorithm
ensures that not one single input elicits worst case
behavior.

CMPS 6610/4610 Algorithms 41

Quicksort In practice

 Quicksort Is a great general-purpose
sorting algorithm.

 Quicksort is typically over twice as fast
as merge sort.

 Quicksort can benefit substantially from
code tuning.

 Quicksort behaves well even with
caching and virtual memory.

CMPS 6610/4610 Algorithms 42

