
CMPS 6610/4610 Algorithms 1

CMPS 6610/4610 – Fall 2016

Master Theorem
Carola Wenk

Slides courtesy of Charles Leiserson
with changes and additions by Carola Wenk

2

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are fractions of the
original problem size.

2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions.

 Runtime recurrences

CMPS 6610/4610 Algorithms

3

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a  1, b > 1, and f is asymptotically
positive.

CMPS 6610/4610 Algorithms

4

Example: merge sort
1. Divide: Trivial.
2. Conquer: Recursively sort a=2

subarrays of size n/2=n/b
3. Combine: Linear-time merge, runtime

f(n)O(n)

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining

T(n) = a T(n/b) + f(n)
CMPS 6610/4610 Algorithms

5

Master Theorem
T(n) = a T(n/b) + f (n)

CASE 1:
f (n) = O(nlogba – )  T(n) = (nlogba)
for some >0

CASE 2:
f (n) = (nlogba logkn)  T(n) = (nlogba logk+1n)
for some k≥0

CASE 3:
(i) f (n) = (nlogba + )
for some >0  T(n) = (f (n))
and (ii) a f (n/b)  c f (n)
for some c < 1

CMPS 6610/4610 Algorithms

6

How to apply the theorem
Compare f (n) with nlogba :

1. f (n) = O(nlogba – ) for some constant  > 0.
• f (n) grows polynomially slower than nlogba

(by an n factor).
Solution: T(n) = (nlogba) .

2. f (n) = (nlogba logkn) for some constant k  0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = (nlogba logk+1n) .

CMPS 6610/4610 Algorithms

7

How to apply the theorem

3. f (n) = (nlogba + ) for some constant  > 0.
• f (n) grows polynomially faster than nlogba (by

an n factor),
and f (n) satisfies the regularity condition that
a f (n/b)  c f (n) for some constant c < 1.
Solution: T(n) = (f (n)) .

Compare f (n) with nlogba :

CMPS 6610/4610 Algorithms

8

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining
nlogba = nlog22 = n1 = n  CASE 2 (k = 0)

 T(n) = (n log n) .

CMPS 6610/4610 Algorithms

9

Example: binary search

T(n) = 1 T(n/2) + (1)

subproblems
subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1  CASE 2 (k = 0)
 T(n) = (log n) .

CMPS 6610/4610 Algorithms

10

Master theorem: Examples

Ex. T(n) = 4T(n/2) +
a = 4, b = 2  nlogba = n2; f (n) = .
CASE 1: f (n) = O(n2 – ) for  = 1.5.
 T(n) = (n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2  nlogba = n2; f (n) = n2.
CASE 2: f (n) = (n2log0n), that is, k = 0.
 T(n) = (n2log n).

CMPS 6610/4610 Algorithms

11

Master theorem: Examples
Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2  nlogba = n2; f (n) = n3.
CASE 3: f (n) = (n2 + ) for  = 1
and 4(n/2)3  cn3 (reg. cond.) for c = 1/2.
 T(n) = (n3).

Ex. T(n) = 4T(n/2) + n2/logn
a = 4, b = 2  nlogba = n2; f (n) = n2/logn.
Master method does not apply. In particular,
for every constant  > 0, we have log n  o(n).

CMPS 6610/4610 Algorithms

12

Conclusion

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method .

• Can lead to more efficient algorithms

CMPS 6610/4610 Algorithms

