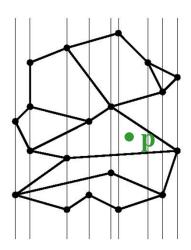
#### CMPS 3130/6130 Computational Geometry Spring 2015



# Planar Subdivisions and Point Location Carola Wenk

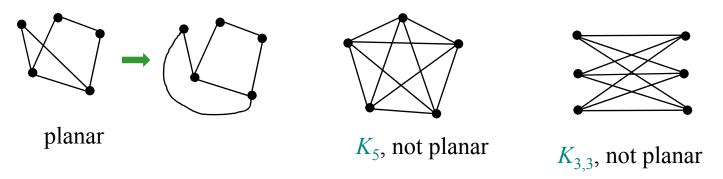




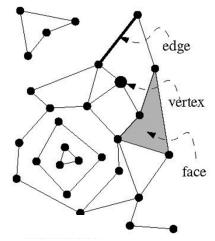
Computational Geometry: Algorithms and Applications and David Mount's lecture notes

#### **Planar Subdivision**

- Let G=(V,E) be an undirected graph.
- G is planar if it can be embedded in the plane without edge crossings.



• A planar embedding (=drawing) of a planar graph *G* induces a **planar subdivision** consisting of vertices, edges, and faces.

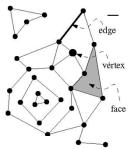


# **Doubly-Connected Edge List**

- The doubly-connected edge list (DCEL) is a popular data structure to store the geometric and topological information of a planar subdivision.
  - It contains records for each face, edge, vertex
  - (Each record might also store additional application-dependent attribute information.)
  - It should enable us to perform basic operations needed in algorithms, such as walk around a face, or walk from one face to a neighboring face

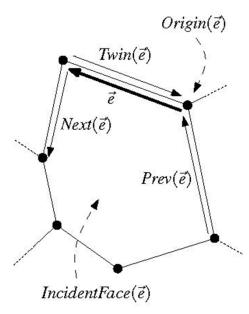
#### The DCEL consists of:

For each vertex v, its coordinates are stored in Coordinates(v) and a pointer IncidentEdge(v) to a half-edge that has v as it origin.



Two oriented **half-edges** per edge, one in each direction. These are called **twins**. Each of them has an **origin** and a **destination**. Each half-edge *e* stores a pointer **Origin**(*e*), a pointer **Twin**(*e*), a pointer **IncidentFace**(e) to the face that it bounds, and pointers **Next** (e) and **Prev**(e) to the next and previous half-edge on the boundary of **IncidentFace**(e).

For each face *f*, **OuterComponent**(*f*) is a pointer to some half-edge on its outer boundary (null for unbounded faces). It also stores a list **InnerComponents**(*f*) which contains for each hole in the face a pointer to some half-edge on the boundary of the hole.



### Complexity of a Planar Subdivision

- The complexity of a planar subdivision is: #vertices + #edges + #faces =  $n_v + n_e + n_f$
- Euler's formula for planar graphs:
  - 1)  $n_v n_e + n_f \ge 2$
  - 2)  $n_e \le 3n_v 6$

#### 2) follows from 1):

Count edges. Every face is bounded by  $\geq 3$  edges.

Every edge bounds  $\leq 2$  faces.

$$\Rightarrow 3n_f \le 2n_e \Rightarrow n_f \le 2/3n_e$$

$$\Rightarrow 2 \le n_v - n_e + n_f \le n_v - n_e + 2/3 \ n_e = n_v - 1/3 \ n_e$$

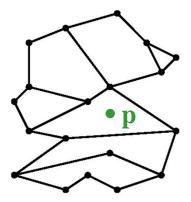
$$\Rightarrow 2 \le n_v - 1/3 \ n_e$$

• Hence, the complexity of a planar subdivision is  $O(n_v)$ , i.e., linear in the number of vertices.

#### **Point Location**

#### Point location task:

Preprocess a planar subdivision to efficiently answer **point-location queries** of the type: Given a point  $p=(p_x,p_y)$ , find the face it lies in.



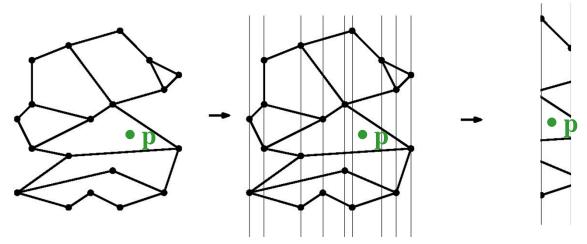
#### • Important metrics:

- Time complexity for preprocessing
   time to construct the data structure
- Space needed to store the data structure
- Time complexity for querying the data structure

#### Slab Method

#### Slab method:

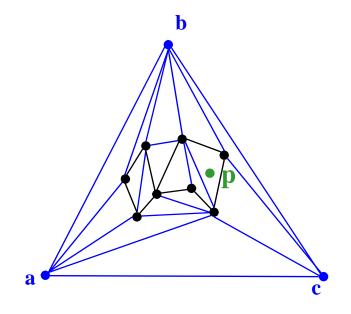
Draw a vertical line through each vertex. This decomposes the plane into slabs.



- In each slab, the vertical order of the line segments remains constant.
- If we know in which slab *p* lies, we can perform binary search, using the sorted order of the segments in the slab.
- Find slab that contains p by binary search on x among slab boundaries.
- A second binary search in slab determines the face containing p.
- Search complexity  $O(\log n)$ , but space complexity  $O(n^2)$ .

# Kirkpatrick's Algorithm

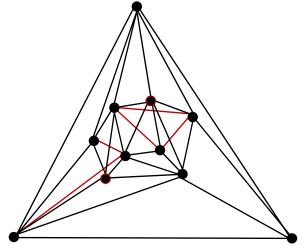
- Needs a triangulation as input.
- Can convert a planar subdivision with *n* vertices into a triangulation:
  - Triangulate each face, keep same label as original face.
  - If the outer face is not a triangle:
    - Compute the convex hull of the subdivision.
    - Triangulate pockets between the subdivision and the convex hull.
    - Add a large triangle (new vertices a, b, c) around the convex hull, and triangulate the space in-between.



- The size of the triangulated planar subdivision is still O(n), by Euler's formula.
- The conversion can be done in  $O(n \log n)$  time.
- Given p, if we find a triangle containing p we also know the (label of) the original subdivision face containing p.

# Kirkpatrick's Hierarchy

- Compute a sequence  $T_0$ ,  $T_1$ , ...,  $T_k$  of increasingly coarser triangulations such that the last one has constant complexity.
- The sequence  $T_0$ ,  $T_1$ , ...,  $T_k$  should have the following properties:
  - $-T_0$  is the input triangulation,  $T_k$  is the outer triangle
  - $-k \in O(\log n)$
  - Each triangle in  $T_{i+1}$  overlaps O(1) triangles in  $T_i$
- How to build such a sequence?
  - Need to delete vertices from  $T_i$ .
  - Vertex deletion creates holes, which need to be re-triangulated.
- How do we go from  $T_0$  of size O(n) to  $T_k$  of size O(1) in  $k=O(\log n)$  steps?
  - In each step, delete a constant fraction of vertices from  $T_i$ .
- We also need to ensure that each new triangle in  $T_{i+1}$  overlaps with only O(1) triangles in  $T_i$ .



### Vertex Deletion and Independent Sets

When creating  $T_{i+1}$  from  $T_i$ , delete vertices from  $T_i$  that have the following properties:

#### - Constant degree:

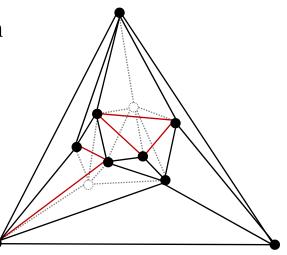
Each vertex  $\mathbf{v}$  to be deleted has O(1) degree in the graph  $T_i$ .

- If **v** has degree *d*, the resulting hole can be retriangulated with *d*-2 triangles
- Each new triangle in  $T_{i+1}$  overlaps at most d original triangles in  $T_i$

#### Independent sets:

No two deleted vertices are adjacent.

• Each hole can be re-triangulated independently.

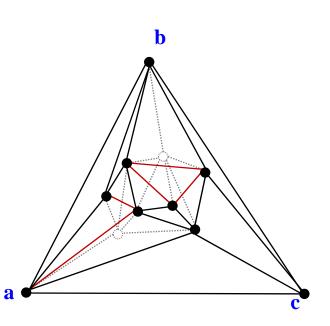


### Independent Set Lemma

**Lemma:** Every planar graph on n vertices contains an independent vertex set of size n/18 in which each vertex has degree at most 8. Such a set can be computed in O(n) time.

Use this lemma to construct Kirkpatrick's hierarchy:

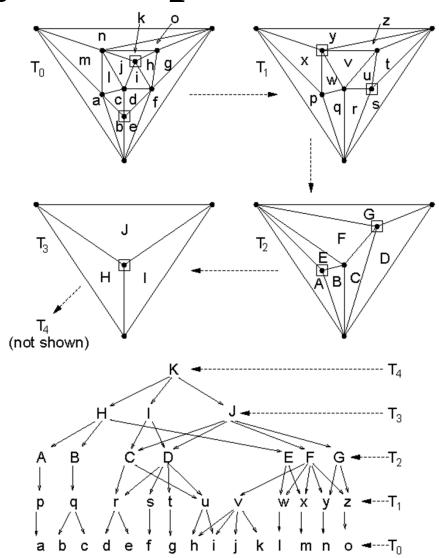
- Start with T<sub>0</sub>, and select an independent set S of size n/18 in which each vertex has maximum degree 8. [Never pick the outer triangle vertices a, b, c.]
- Remove vertices of *S*, and re-triangulate holes.
- The resulting triangulation,  $T_1$ , has at most 17/18n a vertices.
- Repeat the process to build the hierarchy, until  $T_k$  equals the outer triangle with vertices **a**, **b**, **c**.
- The depth of the hierarchy is  $k = \log_{18/17} n$



### Hierarchy Example

Use this lemma to construct Kirkpatrick's hierarchy:

- Start with  $T_0$ , and select an independent set S of size n/18 in which each vertex has maximum degree 8. [Never pick the outer triangle vertices a, b, c.]
- Remove vertices of *S*, and retriangulate holes.
- The resulting triangulation,  $T_1$ , has at most 17/18n vertices.
- Repeat the process to build the hierarchy, until  $T_k$  equals the outer triangle with vertices  $\mathbf{a}$ ,  $\mathbf{b}$ ,  $\mathbf{c}$ .
- The depth of the hierarchy is  $k = \log_{18/17} n$



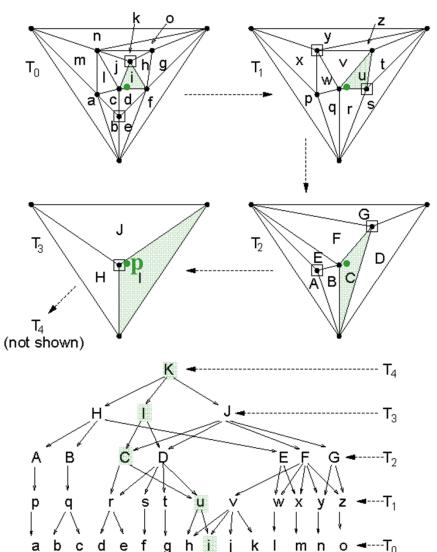
### **Hierarchy Data Structure**

Store the hierarchy as a DAG:

- The root is  $T_k$ .
- Nodes in each level correspond to triangles  $T_i$ .
- Each node for a triangle in  $T_{i+1}$  stores pointers to all triangles of  $T_i$  that it overlaps.

How to locate point *p* in the DAG:

- Start at the root. If p is outside of  $T_k$  then p is in exterior face; done.
- Else, set  $\Delta$  to be the triangle at the current level that contains p.
- Check each of the at most 6 triangles of  $T_{k-1}$  that overlap with  $\Delta$ , whether they contain p. Update  $\Delta$  and descend in the hierarchy until reaching  $T_0$ .
- Output  $\Delta$ .



• **Query time** is  $O(\log n)$ : There are  $O(\log n)$  levels and it takes constant time to move between levels.

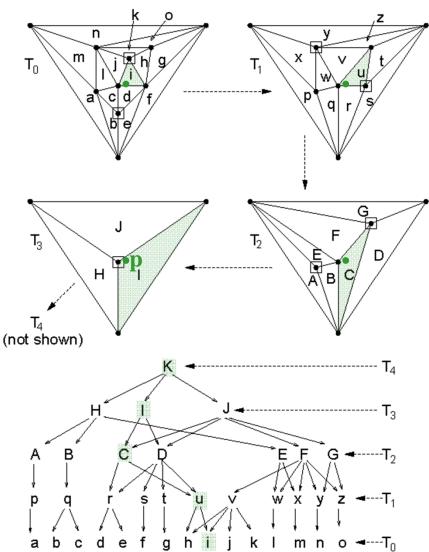
#### • Space complexity is O(n):

- Sum up sizes of all triangulations in hierarchy.
- Because of Euler's formula, it suffices to sum up the number of vertices.
- Total number of vertices:

$$n + 17/18 n + (17/18)^2 n + (17/18)^3 n + \dots \le 1/(1-17/18) n = 18 n$$

#### • Preprocessing time is $O(n \log n)$ :

- Triangulating the subdivision takes  $O(n \log n)$  time.
- The time to build the DAG is proportional to its size.



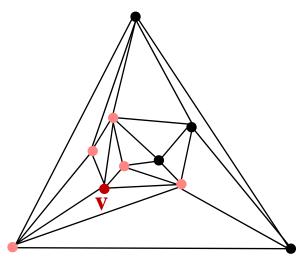
### Independent Set Lemma

**Lemma:** Every planar graph on n vertices contains an independent vertex set of size n/18 in which each vertex has degree at most 8. Such a set can be computed in O(n) time.

#### **Proof:**

Algorithm to construct independent set:

- Mark all vertices of degree  $\geq 9$
- While there is an unmarked vertex
  - Let v be an unmarked vertex
  - Add v to the independent set
  - Mark v and all its neighbors
- Can be implemented in O(n) time: Keep list of unmarked vertices, and store the triangulation in a data structure that allows finding neighbors in O(1) time.



#### Independent Set Lemma

Still need to prove existence of large independent set.

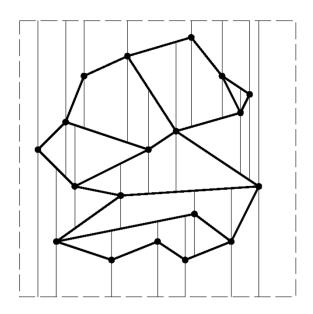
- Euler's formula for a triangulated planar graph on n vertices: #edges = 3n 6
- Sum over vertex degrees:

$$\sum_{v} \deg(v) = 2 \# \text{edges} = 6n - 12 < 6n$$

- Claim: At least n/2 vertices have degree  $\leq 8$ .
  - **Proof:** By contradiction. So, suppose otherwise.
  - $\rightarrow n/2$  vertices have degree  $\geq 9$ . The remaining have degree  $\geq 3$ .
  - $\rightarrow$  The sum of the degrees is  $\geq 9 \ n/2 + 3 \ n/2 = 6n$ . Contradiction.
- In the beginning of the algorithm, at least n/2 nodes are unmarked. Each picked vertex  $\mathbf{v}$  marks  $\leq 8$  other vertices, so including itself 9.
- Therefore, the while loop can be repeated at least n/18 times.
- This shows that there is an independent set of size at least n/18 in which each node has degree  $\leq 8$ .

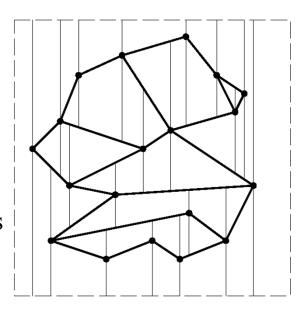
# **Summing Up**

- Kirkpatrick's point location data structure needs  $O(n \log n)$  preprocessing time, O(n) space, and has  $O(\log n)$  query time.
- It involves high constant factors though.
- Next we will discuss a randomized point location scheme (based on **trapezoidal maps**) which is more efficient in practice.



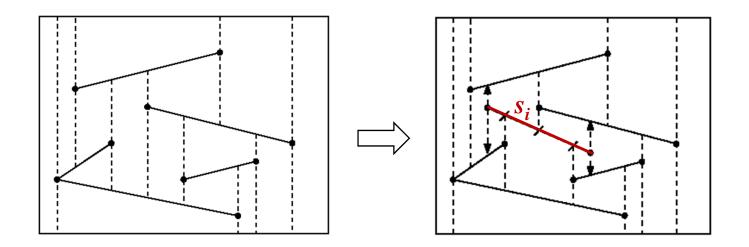
### Trapezoidal map

- Input: Set  $S = \{s_1, ..., s_n\}$  of non-intersecting line segments.
- Query: Given point p, report the segment directly above p.
- Create trapezoidal map by shooting two rays vertically (up and down) from each vertex until a segment is hit. [Assume no segment is vertical.]
- **Trapezoidal map** = rays + segments
- Enclose *S* into bounding box to avoid infinite rays.
- All faces in subdivision are trapezoids, with vertical sides.
- The trapezoidal map has at most 6*n*+4 vertices and 3*n*+1 trapezoids:
  - Each vertex shoots two rays, so, 2n(1+2) vertices, plus 4 for the bounding box.
  - Count trapezoids by vertex that creates its left boundary segment: Corner of box for one trapezoid, right segment endpoint for one trapezoid, left segment endpoint for at most two trapezoids.  $\rightarrow 3n+1$



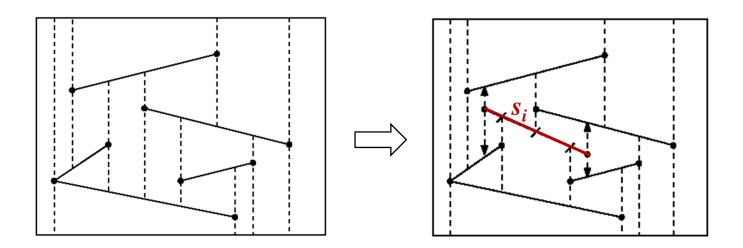
#### Construction

- Randomized incremental construction
- Start with outer box which is a single trapezoid. Then add one segment  $s_i$  at a time, in random order.



#### Construction

- Let  $S_i = \{s_1, ..., s_i\}$ , and let  $T_i$  be the trapezoidal map for  $S_i$ .
- Add  $s_i$  to  $T_{i-1}$ .
- Find trapezoid containing left endpoint of  $s_i$ . [Point location; details later]
- Thread  $s_i$  through  $T_{i-1}$ , by walking through it and identifying trapezoids that are cut.
- "Fix trapezoids up" by shooting rays from left and right endpoint of  $s_i$  and trim earlier rays that are cut by  $s_i$ .

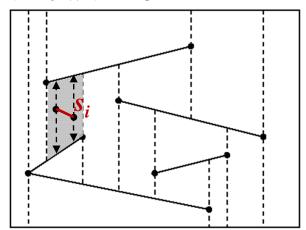


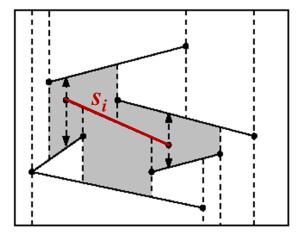
**Observation:** The final trapezoidal map  $T_i$  does not depend on the order in which the segments were inserted.

**Lemma:** Ignoring the time spent for point location, the insertion of  $s_i$  takes  $O(k_i)$  time, where  $k_i$  is the number of newly created trapezoids.

#### **Proof:**

- Let k be the number of ray shots interrupted by  $s_i$ .
- Each endpoint of  $s_i$  shoots two rays  $\rightarrow k_i = k+4$  rays need to be processed
- If k=0, we get 4 new trapezoids.
- Create a new trapezoid for each interrupted ray shot; takes O(1) time with DCEL

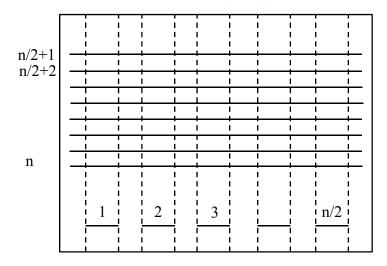




2/5/15

Total runtime (without point location):  $\sum_{i=1}^{n} k_i$ 

- Best case:  $k_i = O(1)$ , so  $\sum_{i=1}^{n} k_i = O(n)$ .
- Worst case:  $k_i = O(i)$ , so  $\sum_{i=1}^{n} k_i = O(n^2)$ .



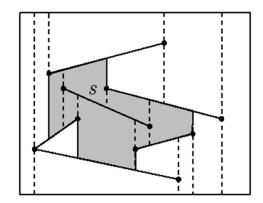
- Insert segments in *random* order:
  - $\Pi$  = {all possible permutations/orders of segments};  $|\Pi| = n!$  for n segments
  - $-k_i = k_i(\pi)$  for some random order  $\pi \in \Pi$
  - We will show that  $E(k_i) = O(1)$
  - $\Rightarrow$  Expected runtime  $E(T) = E(\sum_{i=1}^{n} k_i) = \sum_{i=1}^{n} E(k_i) = O(\sum_{i=1}^{n} 1) = O(n)$

linearity of expectation

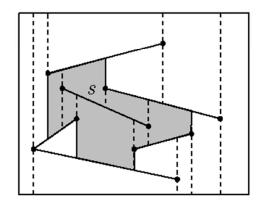
**Theorem:**  $E(k_i) = O(1)$ , where  $k_i$  is the number of newly created trapezoids created upon insertion of  $s_i$ , and the expectation is taken over all segment permutations of  $S_i = \{s_1, ..., s_i\}$ .

#### **Proof:**

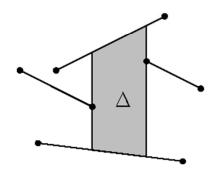
- $T_i$  does not depend on the order in which segments  $s_1, ..., s_i$  were added.
- Of  $s_1, ..., s_i$ , what is the probability that a particular segment s was added last?
- 1/*i*
- We want to compute the number of trapezoids that would have been created if *s* was added last.



- A trapezoid  $\triangle$  depends on s if  $\triangle$  would be created by s if s was added last.
- We want to count trapezoids that depend on s, and then compute the expectation over all choices of s.
- Let  $\delta(\Delta, s)=1$ , if  $\Delta$  depends on s. And  $\delta(\Delta, s)=0$ , otherwise.

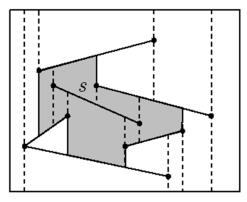


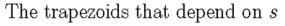
The trapezoids that depend on s

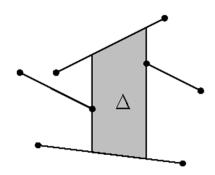


Segments that  $\Delta$  depends on.

- Random variable  $k_i(s)$ = #trapezoids added when s was inserted last in  $S_i$ .
- $k_i(s) = \sum_{\Delta \in T_i} \delta(\Delta, s)$
- $E(k_i) = \sum_{s \in S_i} k_i(s) P(s) = \frac{1}{i} \sum_{s \in S_i} k_i(s) = \frac{1}{i} \sum_{s \in S_i} \sum_{\Delta \in T_i} \delta(\Delta, s)$





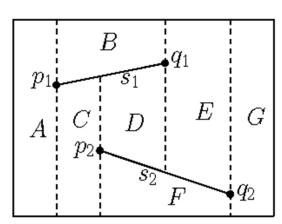


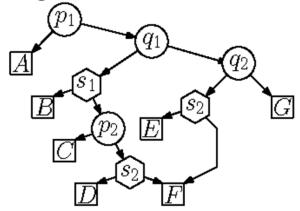
Segments that  $\Delta$  depends on.

- Random variable  $k_i(s)$ = #trapezoids added when s was inserted last in  $S_i$ .
- $k_i(s) = \sum_{\Delta \in T_i} \delta(\Delta, s)$
- $E(k_i) = \sum_{s \in S_i} k_i(s) P(s) = \frac{1}{i} \sum_{s \in S_i} k_i(s) = \frac{1}{i} \sum_{s \in S_i} \sum_{\Delta \in T_i} \delta(\Delta, s)$
- $= \frac{1}{i} \sum_{\Delta \in T_i} \sum_{S \in S_i} \delta(\Delta, S)$
- How many segments does  $\triangle$  depend on? At most 4.
- Also,  $T_i$  has O(i) trapezoids (by Euler's formula).
- $E(k_i) = \frac{1}{i} \sum_{\Delta \in T_i} \sum_{S \in S_i} \delta(\Delta, S) = \frac{1}{i} \sum_{\Delta \in T_i} 4 = \frac{1}{i} 4 |T_i| = \frac{1}{i} O(i) = O(1)$

#### **Point Location**

- Build a point location data structure; a DAG, similar to Kirkpatrick's
- DAG has two types of internal nodes:
  - x-node (circle): contains the x-coordinate of a segment endpoint.
  - y-node (hexagon): pointer to a segment
- The DAG has one leaf for each trapezoid.

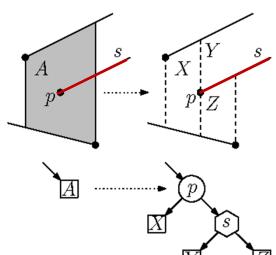


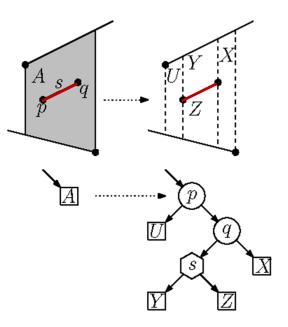


- Children of *x*-node: Space to the left and right of *x*-coordinate
- Children of *y*-node: Space above and below the segment
- y-node is only searched when the query's x-coordinate is within the segment's span.
- ⇒ Encodes trapezoidal decomposition and enables point location during construction.

#### Construction

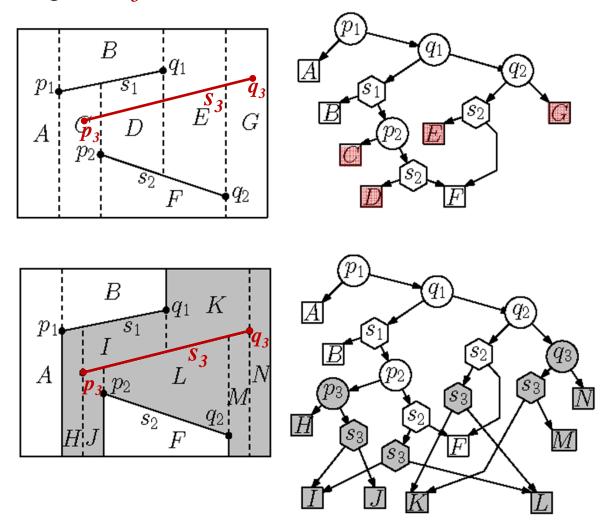
- Incremental construction during trapezoidal map construction.
- When a segment s is added, modify the DAG.
  - Some leaves will be replaced by new subtrees.
- Each old trapezoid will overlap O(1) new trapezoids.
- Each trapezoid appears exactly once as a leaf.
- Changes are highly local.
- If s passes entirely through trapezoid t, then t is replaced with two new trapezoids t' and t''.
  - Add new *y*-node as parent of *t* ' and *t* '', in order to facilitate search later.
- If an endpoint of *s* lies in trapezoid *t*, then add an *x*-node to decide left/right and a *y*-node for the segment.



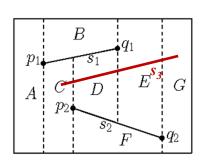


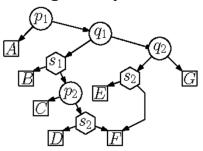
# Inserting a Segment

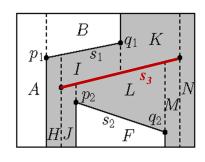
• Insert segment  $s_3$ .

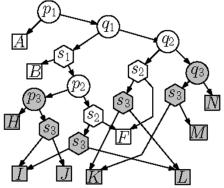


- **Space:** Expected O(n)
  - Size of data structure = number of trapezoids = O(n) in expectation, since an expected O(1) trapezoids are created during segment insertion
- Query time: Expected  $O(\log n)$
- Construction time: Expected  $O(n \log n)$  follows from query time
- **Proof** that the query time is expected  $O(\log n)$ :
  - Fix a query point Q.
  - Consider how *Q* moves through the trapezoidal map as it is being constructed as new segments are inserted.
  - Search complexity = number of trapezoids encountered by *Q*



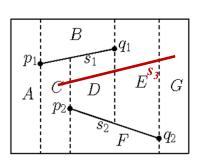


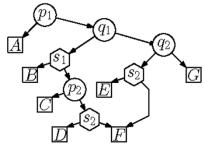


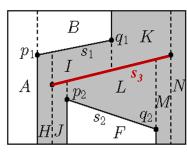


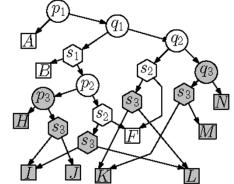
### **Query Time**

- Let  $\Delta_i$  be the trapezoid containing Q after the insertion of *i*th segment.
- If  $\Delta_i = \Delta_{i-1}$  then the insertion does not affect Q's trapezoid (E.g.,  $Q \in B$ ).
- If  $\Delta_i \neq \Delta_{i-1}$  then the insertion deleted Q's trapezoid, and Q needs to be located among the at most 4 new trapezoids.

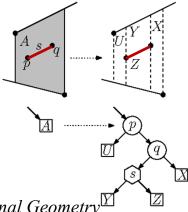








• *Q* could fall 3 levels in the DAG.



# **Query Time**

- Let  $X_i$  be the # nodes on path created in iteration i, and let  $P_i$  be the probability that there exists a node in iteration i, i.e.,  $\Delta_i \neq \Delta_{i-1}$
- The expected search path length is  $E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) \le \sum_{i=1}^{n} 3 P_i$  by lin. of expectation and since Q can drop at most 3 levels.
- Claim:  $P_i \leq 4/i$ .
  - Backwards analysis: Consider deleting segments, instead of inserting.
  - Trapezoid  $\Delta_i$  depends on  $\leq 4$  segments. The probability that the *i*th segment is one of these 4 is  $\leq 4/i$ .
- The expected search path length is at most

$$\sum_{i=1}^{n} 3 P_i = \sum_{i=1}^{n} 3 \frac{4}{i} = 12 \sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n)$$

Harmonic number

