CMPS 3130/6130 Computational Geometry Spring 2015

Linear Programming and Halfplane Intersection Carola Wenk

CMPS 3130/6130 Computational Geometry

Word Problem

A company produces tables and chairs. The profit for a chair is \$2, and for a table \$4. Machine group *A* needs 4 hours to produce a chair, and 6 hours to produce a table. Machine group *B* needs 2 hours to produce a chair, and 6 hours to produce a table. Per day there are at most 120 working hours for group *A* and at most 72 hours for group *B*.

How can the company maximize profit?

Variables:

 $c_A = \#$ chairs produced on machine group *A* $c_B = \#$ chairs produced on machine group *B* $t_A = \#$ tables produced on machine group *A* $t_B = \#$ tables produced on machine group *B*

Objective function (profit):

Maximize $2(c_A + c_B) + \overline{4}(t_A + t_B)$

Constraints:

 $4c_A + 6t_A \le 120$ $2c_B + 6t_B \le 72$

Linear Programming

Variables: x_1, \ldots, x_d

Objective function: Maximize $f_{\vec{c}}(\vec{x}) = c_1 x_1 + \ldots + c_d x_d$

Constraints:

 $h_1: \quad a_{11}x_1 + \ldots + a_{1d}x_d \le b_1$

$$h_2: \quad a_{21}x_1 + \ldots + a_{2d}x_d \le b_2$$

$$h_{\mathrm{n}}: \qquad a_{\mathrm{n}1} x_1 + \ldots + a_{\mathrm{n}d} x_d \le b_{\mathrm{n}}$$

Linear program in *d* variables with *n* constraints

- Each constraint h_i is a half-space in \mathbb{R}^d
- $\bigcap_{i=1}^{n} h_i$ is the feasible region of the linear program
- Maximizing $f_{\vec{c}}(\vec{x})$ corresponds to finding a point \vec{x} that is extreme feasible regree in direction \vec{c} .

h1

Sub-Problem: Halfspace Intersection (in R²: Halfplane Intersection)

Given: A set $H = \{h_1, h_2, ..., h_n\}$ of halfplanes $h_i: a_i x + b_i y \le c_i$ with constants a_i, b_i, c_i ; for i=1,...,n. **Find:** $\bigcap_{i=1}^n h_i$, i.e., the feasible region of all points $(x,y) \in \mathbb{R}^2$ satisfying all *n* constraints at the same time. This is a convex polygonal region bounded by at most *n* edges.

D&C Halfplane Intersection

```
Algorithm Intersect_Halfplanes(H):

Input: A set H of n halfplanes in \mathbb{R}^2

Output: The convex polygonal region \mathbb{C} = \bigcap_{h \in H} h

if |H|=1 then

\mathbb{C} = \mathbb{h}, where H = \{h\}

else

split H into two sets H_1 and H_2 of size n/2 each

C_1 = \text{Intersect}\_\text{Halfplanes}(H_1)

C_2 = \text{Intersect}\_\text{Halfplanes}(H_2)

C = \text{Intersect}\_\text{Convex}\_\text{Regions}(C_1, C_2)

return C
```

- Use a plane-sweep to develop an O(*n*)-time algorithm for Intersect_Convex_Regions
- $T(n) = 2T(n/2) + n \implies T(n) \in O(n \log n)$

Incremental Linear Programming

さ

- 2D linear program (LP)
- Assume the LP is bounded (otherwise add constraints)
- Assume there is one unique solution (if any); • take the lexicographically smallest solution
- **Incremental approach:** Add one halfplane after the other. $H_i = \{h_1, \dots, h_i\}$ $C_i = h_1 \cap \dots \cap h_i$ $C = C_n = \bigcap_{h \in H} h$ Let v_i = unique optimal vertex for feasible region C_i , for $i \ge 2$.

Then $C_1 \supseteq C_2 \supseteq \dots \supseteq C_n = C$, and hence if $C_i = \emptyset$ for some *i* then $C_j = \emptyset$ for all $j \ge i$.

Incremental Linear Programming

Lemma: Let $2 \le i \le n$. (i) If $v_{i-1} \in h_i$ then $v_i = v_{i-1}$ (ii) If $v_{i-1} \notin h_i$ then $C_i = \emptyset$ or $v_i \in l_i$ = the line bounding h_i

Handling case (ii) involves solving a 1-dimensional LP on l_i :

• The feasible region is just an interval, that can be computed in linear time [rightmost left-bounded halfplane, leftmost right-bounded halfplane]

• \Rightarrow We can compute a new v_i , or decide that the LP is infeasible, in O(*i*) time

2D_Bounded_LP

Randomized Incremental LP

Depending on the insertion order of the halfplanes the runtime varies between O(n) and $O(n^2)$. \Rightarrow Randomize the input order of the halfplanes.

Theorem: 2D_Randomized_Bounded_LP runs in O(n) expected time and O(n) deterministic space.

Proof: Define a random variable $X_i = \begin{cases} 1, v_{i-1} \notin h_i \\ 0, else \end{cases}$ The total time spent to resolve case (ii), over all h_1, \dots, h_n is $\sum_{i=1}^n O(i)X_i$

Randomized Incremental LP

We now need to bound the expected value $E(\sum_{i=1}^{n} O(i)X_i) = \sum_{i=1}^{n} O(i)E(X_i)$ and we know that $E(X_i) = P(X_i) = P(v_{i-1} \notin h_i)$. Apply backwards analysis to bound $E(X_i)$:

- Fix $H_i = \{h_1, \dots, h_i\}$ which determines C_i .
- Analyze what happened in last step when h_i was added.
- P(had to compute new optimal vertex when adding h_i)
 - = P(optimal vertex changes when we remove a halfplane from C_i)

 \Rightarrow Total expected runtime is $\sum_{i=1}^{n} O(i) \frac{2}{i} = O(n)$