
CMPS 3130/6130 Computational Geometry 1

CMPS 3130/6130 Computational Geometry
Spring 2015

Linear Programming and
Halfplane Intersection

Carola Wenk

CMPS 3130/6130 Computational Geometry 2

Word Problem
A company produces tables and chairs. The profit for a chair is
$2, and for a table $4. Machine group A needs 4 hours to produce
a chair, and 6 hours to produce a table. Machine group B needs 2
hours to produce a chair, and 6 hours to produce a table. Per day
there are at most 120 working hours for group A and at most 72
hours for group B.
How can the company maximize profit?
Variables:
cA = # chairs produced on machine group A
cB = # chairs produced on machine group B
tA = # tables produced on machine group A
tB = # tables produced on machine group B

Constraints:
4cA +6tA ≤ 120
2cB +6tB ≤ 72

Objective function (profit):
Maximize 2(cA+cB)+4(tA+tB)

CMPS 3130/6130 Computational Geometry 3

Linear Programming
Variables: x1,…,xd

Constraints:
h1: a11 x1+…+a1d xd≤ b1
h2: a21 x1+…+a2d xd≤ b2
. . .
hn: an1 x1+…+and xd≤ bn

Objective function:
Maximize fc (x) = c1 x1+…+cd xd

• Each constraint hi is a half-space in Rd

• ⋂ ݄
ୀଵ is the feasible region of the

linear program
• Maximizing fc (x) corresponds to

finding a point x that is extreme
in direction c.

Linear program in
d variables with
n constraints

CMPS 3130/6130 Computational Geometry 4

Sub-Problem: Halfspace Intersection
(in R2: Halfplane Intersection)

Given: A set H={h1, h2, …, hn} of halfplanes
hi: ai x + bi y ≤ ci

with constants ai, bi, ci ; for i=1,…,n .
Find: ⋂ ݄

ୀଵ , i.e., the feasible region of all points (x,y)R2

satisfying all n constraints at the same time. This is a convex
polygonal region bounded by at most n edges.

intersection
bounded

intersection
unbounded

intersection
empty

intersection
degenerated to

a point

D&C Halfplane Intersection
Algorithm Intersect_Halfplanes(H):
Input: A set H of n halfplanes in R2

Output: The convex polygonal region C= ⋂ ݄∈ு
if |H|=1 then

C = h , where H={h}
else

split H into two sets H1 and H2 of size n/2 each
C1 = Intersect_Halfplanes(H1)
C2 = Intersect_Halfplanes(H2)
C = Intersect_Convex_Regions(C1, C2)
return C

• Use a plane-sweep to develop an O(n)-time algorithm for
Intersect_Convex_Regions

• T(n) = 2T(n/2)+n T(n)O(n log n)

Incremental Linear Programming
• 2D linear program (LP)
• Assume the LP is bounded (otherwise add constraints)
• Assume there is one unique solution (if any);

take the lexicographically smallest solution

• Incremental approach: Add one halfplane after the other.
ܪ ൌ ݄ଵ,… , ݄ ܥ ൌ ݄ଵ ∩ ⋯∩ ݄ ܥ ൌ ܥ ൌ ⋂ ݄∈ு
Let vi = unique optimal vertex for feasible region Ci , for ݅ 2 .

Then ܥଵ ⊇ ଶܥ ⊇ 	… 	⊇ ܥ ൌ 	ܥ , and hence
if ܥ ൌ ∅ for some ݅ then ܥ ൌ ∅ for all ݆ ݅ .

Incremental Linear Programming
Lemma: Let 2≤i≤n.
(i) If ݒିଵ ∈ ݄ then ݒ ൌ ିଵݒ
(ii) If ݒିଵ ∉ ݄ then

ܥ ൌ ∅
or ݒ ∈ ݈ ൌ	the line bounding ݄

Handling case (ii) involves solving a
1-dimensional LP on ݈ :
• The feasible region is just an interval,

that can be computed in linear time
[rightmost left-bounded halfplane,
leftmost right-bounded halfplane]

• We can compute a new ݒ, or decide that the LP is
infeasible, in O(i) time

2D_Bounded_LP
Algorithm 2D_Bounded_LP(H , c):
Input: A two-dimensional LP (H , c)
Output: Report if (H , c) is infeasible. Otherwise report the lexicographically smallest

point that maximizes f c .
Let ݄ଵ, … , ݄ be the halfplanes of H
Let ݒଶ be the corner of ܥଶ, which exists because LP is bounded
for i=3 to n do

if ݒିଵ ∈ ݄	then ݒ ൌ ିଵݒ
else // Case (ii)
ݒ ൌ point on ݈ that maximizes f c subject to constraints in ܪିଵ
if such a point does not exist then

Report that the LP is infeasible
break;

return ݒ

• Runtime: ∑ ܱሺ݅ሻ
ୀଵ ൌ ܱሺ݊ଶሻ

Storage: ܱሺ݊ሻ

Randomized Incremental LP
Depending on the insertion order of the halfplanes the runtime
varies between O(n) and O(n2).
 Randomize the input order of the halfplanes.

Theorem: 2D_Randomized_Bounded_LP runs in O(n) expected
time and O(n) deterministic space.

Proof: Define a random variable ܺ ൌ ൜1, ିଵݒ ∉ ݄0, 										݁ݏ݈݁

The total time spent to resolve case (ii), over all ݄ଵ, … , ݄	is

ܱ ݅ ܺ

ୀଵ

Randomized Incremental LP
We now need to bound the expected value
E(∑ ܱ ݅ ܺሻ ൌ ∑ ܱ ݅ ሺܧ ܺሻ		

ୀଵ

ୀଵ

and we know that ܧሺ ܺሻ ൌ ܲ ܺ ൌ ܲሺݒିଵ ∉ ݄ሻ.
Apply backwards analysis to bound ܧሺ ܺሻ:

– Fix ܪ ൌ ݄ଵ, … , ݄ which determines ܥ.
– Analyze what happened in last step when ݄ was added.
– P(had to compute new optimal vertex when adding ݄)

= P(optimal vertex changes when we remove a halfplane from ܥ)
 ଶ

 ሺܧ ܺሻ
ଶ

 Total expected runtime is ∑ ܱ ݅ ଶ

ൌ ܱሺ݊ሻ

ୀଵ

2 lines
defining vi

