CMPS 3130/6130 Computational Geometry
Spring 2015

Delaunay Triangulations I
Carola Wenk

Based on:
Computational Geometry: Algorithms and Applications
Triangulation

• Let $P = \{p_1, ..., p_n\} \subseteq \mathbb{R}^2$ be a finite set of points in the plane.
• A **triangulation of** P is a simple, plane (i.e., planar embedded), connected graph $T=(P,E)$ such that
 – every edge in E is a line segment,
 – the outer face is bounded by edges of $\text{CH}(P)$,
 – all inner faces are triangles.
Dual Graph

- Let $G = (V, E)$ be a plane graph. The dual graph G^* has
 - a vertex for every face of G,
 - an edge for every edge of G, between the two faces incident to the original edge.
Delaunay Triangulation

- Let G be the plane graph for the Voronoi diagram $VD(P)$. Then the dual graph G^* is called the **Delaunay Triangulation** $DT(P)$.

Can be stored as an abstract graph, without geometric information. (No such obvious storing scheme for $VD(P)$.)

- If P is in general position (no three points on a line, no four points on a circle) then every inner face of $DT(P)$ is indeed a triangle.
Straight-Line Embedding

- **Lemma:** DT(\(P\)) is a plane graph, i.e., the straight-line edges do not intersect.

- **Proof:**
 - \(pp'\) is an edge of DT(\(P\)) ⇔ There is an empty closed disk \(D_p\) with \(p\) and \(p'\) on its boundary, and its center \(c\) on the bisector.
 - Let \(qq'\) be another Delaunay edge that intersects \(pp'\)
 \(⇒ q\) and \(q'\) lie outside of \(D_p\), therefore \(qq'\) also intersects \(pc\) or \(p'c\).
 - Similarly, \(pp'\) also intersects \(qc'\) or \(q'c'\)

\(⇒ (pc\) or \(p'c')\) and \((qc'\) or \(q'c')\) intersect
\(⇒\) The edges are not in different Voronoi cells
\(⇒\) Contradiction
Characterization I of DT(P)

- **Lemma**: Let $p, q, r \in P$ let Δ be the triangle they define. Then the following statements are equivalent:
 a) Δ belongs to $DT(P)$
 b) The circumcenter of Δ is a vertex in $VD(P)$
 c) The circumcircle of Δ is empty (i.e., contains no other point of P)

- **Characterization I**: Let T be a triangulation of P. Then $T = DT(P) \iff$ The circumcircle of any triangle in T is empty.
Illegal Edges

- **Definition:** Let \(p_i, p_j, p_k, p_l \in P \). Then \(p_i p_j \) is an illegal edge \(\iff \) \(p_l \) lies in the interior of the circle through \(p_i, p_j, p_k \).

- **Lemma:** Let \(p_i, p_j, p_k, p_l \in P \). Then \(p_i p_j \) is illegal \(\iff \min_{1 \leq i \leq 6} \alpha_i < \min_{1 \leq i \leq 6} \alpha'_i \).

- **Theorem (Thales):** Let \(a, b, p, q \) be four points on a circle, and let \(r \) be inside and let \(s \) be outside of the circle, such that \(p, q, r, s \) lie on the same side of the line through \(a, b \). Then \(\angle a, s, b < \angle a, q, b = \angle a, p, b < \angle a, r, b \).
Characterization II of DT(P)

- **Definition:** A triangulation is called legal if it does not contain any illegal edges.

- **Characterization II:** Let T be a triangulation of P. Then $T = DT(P) \iff T$ is legal.

- **Algorithm Legal_Triangulation(T):**

 Input: A triangulation T of a point set P

 Output: A legal triangulation of P

 while T contains an illegal edge $\overline{p_ip_j}$ do

 //Flip $\overline{p_ip_j}$

 Let p_i, p_j, p_k, p_l be the quadrilateral containing $\overline{p_ip_j}$

 Remove $\overline{p_ip_j}$ and add $\overline{p_kp_l}$

 return T

 Runtime analysis:

 - In every iteration of the loop the angle vector of T (all angles in T sorted by increasing value) increases

 - With this one can show that a flipped edge never appears again

 - There are $O(n^2)$ edges, therefore the runtime is $O(n^2)$
Characterization III of DT(P)

• **Definition:** Let T be a triangulation of P and let α_1, α_2, ..., α_m be the angles of the m triangles in T sorted by increasing value. Then $A(T)=(\alpha_1, \alpha_2, ..., \alpha_m)$ is called the angle vector of T.

• **Definition:** A triangulation T is called **angle optimal** $\iff A(T) > A(T')$ for any other triangulation of the same point set P.

• Let T' be a triangulation that contains an illegal edge, and let T'' be the resulting triangulation after flipping this edge. Then $A(T'') > A(T')$.

• T is angle optimal \Rightarrow T is legal $\Rightarrow T=DT(P)$

• **Characterization III:** Let T be a triangulation of P. Then $T=DT(P) \iff T$ is angle optimal.

(If P is not in general position, then any triangulation obtained by triangulating the faces maximizes the minimum angle.)