CMPS 2200 – Fall 2017

Knapsack Problem Carola Wenk

CMPS 2200 Intro. to Algorithms

Knapsack Problem

• Given a knapsack with weight capacity W > 0, and given *n* items of positive integer weights w_1, \ldots, w_n and positive integer values v_1, \ldots, v_n . (So, item *i* has value v_i and weight w_i .)

• 0-1 Knapsack Problem: Compute a subset of items that maximize the total value (sum), and they all fit into the knapsack (total weight at most W).

• Fractional Knapsack Problem: Same as before but we are allowed to take fractions of items (\rightarrow gold dust).

Greedy Knapsack

- Greedy Strategy:
 - Compute $\frac{v_i}{w_i}$ for each *i*
 - Greedily take as much as possible of the item with the highest value/weight. Then repeat/recurse.
 - \Rightarrow Sort items by value/weight
 - $\Rightarrow O(n \log n)$ runtime

Knapsack Example

item	1	2	3	
value	12	15	4	W=4
weight	2	3	1	
value/weight	6	5	4	

- Greedy fractional: Take item 1 and 2/3 of item 2 \Rightarrow weight=4, value=12+2/3.15 = 12+10 = 22
- Greedy 0-1: Take item 1 and then item 3 \Rightarrow weight = 1+2=3, value=12+4=16

greedy 0-1 \neq optimal 0-1

• **Optimal 0-1:** Take items 2 and 3, value =19

Optimal Substructure

- Let $s_1, ..., s_n$ be an optimal solution, where $s_i =$ amount of item *i* that is taken; $0 \le s_i \le 1$
- Suppose we remove one item. $\rightarrow n 1$ items left
- Is the remaining "solution" still an optimal solution for n 1 items?
- Yes; cut-and-paste.

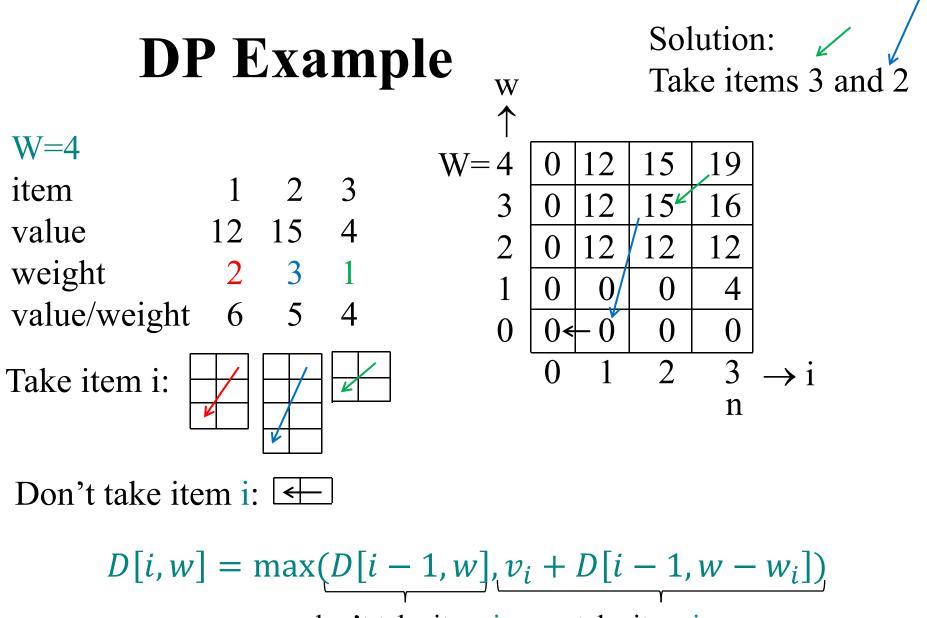
Correctness Proof for Greedy

- Suppose items 1, ..., *n* are numbered in decreasing order by value/weight.
- Greedy solution G: Takes all elements $1, ..., j, ..., i^*$ -1 and a fraction of i^* .
- Assume optimal solution S is different from G. Assume S takes only a fraction $\frac{1}{a}$ of item *j*, for $j \le i^*-1$.
- Create new solution S' from S by taking $w_j 1/a$ weight away from items > *j*, and add $w_j - 1/a$ of item *j* back in. Hence, all of item *j* is taken.

⇒ New solution S' has the same weight but increased value. This contradicts the assumption that S was optimal. \Rightarrow S=G.

General Solution: DP

- D[i, w] = max value possible for taking a subset of items
 1, ..., i with knapsack constraint w.
- D[0,w] = D[i,0] = 0 for all $0 \le i \le n$ and $0 \le w \le W$ $D[i,w] = -\infty$ for w < 0 $D[i,w] = \max(D[i-1,w], v_i + D[i-1,w-w_i])$ don't take item i take item i
- Compute D[n, W] by filling an $n \times W$ DP-table. \Rightarrow Two nested for-loops, runtime and space $\Theta(nW)$
- Trace back from D[n, W] by redoing computation or following arrows. $\Rightarrow \Theta(n + W)$ runtime



don't take item i take item i

CMPS 2200 Intro. to Algorithms