CMPS 2200 — Fall 2015

Divide-and-Conquer 111
Carola Wenk

Slides courtesy of Charles Leiserson
with changes and additions by Carola Wenk

9/24/15 CMPS 2200 Introduction to Algorithms

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are fractions of the
original problem size.

2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions.

— Runtime recurrences

9/24/15 CMPS 2200 Introduction to Algorithms 2

The master method

The master method applies to recurrences of
the form

T(ny=aT(n/b) +f(n),

where a > 1, b > 1, and f is asymptotically
positive.

9/24/15 CMPS 2200 Introduction to Algorithms

Example: merge sort

1. Divide: Trivial.

2. Conquer: Recursively sort a=2
subarrays of size n/2=n/b

3. Combine: Linear-time merge, runtime
f(n)eO(n)
T(n) =2T(n/2) + O(N)~_

subproblems subproblem size \évr?g ‘;gmmﬁg
\

T(n)=aT(n/b) + f(n)

9/24/15 CMPS 2200 Introduction to Algorithms 4

Master Theorem
CASE 1: T(n) — aT(n/b) + f(n)
f (n) = O(nlogba—g) — T(n) = @(nlogba)

for some £>0
CASE 2:
f (n) = ®(nlogb2 Jogkn) = T(n) = O(nlogb2 Jogktin)

for some k>0

CASE 3:

(i) f (n) = Q(nogv272) -
for some £>0 = T(n) = O(f(n))
and (i) af(n/b)y<cf(n) [

for some Cc < | |
9/24/15 CMPS 2200 Introduction to Algorithms 5

How to apply the theorem

Compare f(n) with n'ogba ;

1. f(n)= O(nloeba-¢) for some constant & > 0.

* f(n) grows polynomially slower than n'ogba
(by an n¢ factor).

Solution: T(n) = ®(n'ogb?)

2. f(n)=0O(n"2]ogkn) for some constant k > 0.

* f(n) and n'°2b? grow at similar rates.
Solution: T(n) = O(n'ogba [ogk™In) .

9/24/15 CMPS 2200 Introduction to Algorithms 6

How to apply the theorem

Compare f(n) with n'ogba ;

3. f(n)= Q(n'ep?*) for some constant € > 0.

* f(n) grows polynomially faster than n'oeb? (by
an n® factor),

and f(n) satisfies the regularity condition that
af(n/b) <cf(n) for some constant ¢ < 1.

Solution: T(n)=G(f(n)).

9/24/15 CMPS 2200 Introduction to Algorithms 7

Example: merge sort

1. DiviC
2. Cono

e: Trivial.
uer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

subproblems-sybproblem size

T(n)=2T(/2) +0O(N)~—_
work dividing
and combining

nloghd = plog2 = nl =n = Case 2 (k=0)
= T(n)=0(nlogn).

9/24/15

CMPS 2200 Introduction to Algorithms 8

Example: binary search
T(n) =1T(n/2) +©(1)

subproblems work dividing
subproblem size and combining

nlognd = plogal =0 =1 = CasSE 2 (k =0)
= T(n)=0ogn).

9/24/15 CMPS 2200 Introduction to Algorithms

Matrix multiplication:

Divide-and-conguer algorithm

IDEA:
NxN matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

O
1
vy

r =a-efb:g"

s =a-f+Db-h (8 recursive mults of (n/2)x(n/2) submatrices

t =cefdg >4 adds of (n/2)x(n/2) submatrices

u =c:f&d-h_

9/24/15 CMPS 2200 Introduction to Algorithms 10

Matrix multiplication:
Analysis of D&C algorithm

T(n)=8T(n/2) + B(N*)

g |
submatrices work adding

. submatrices
submatrix size

nloghd = plogd =n3 = Case 1 = T(n)= O(N°)

No better than the ordinary matrix
multiplication algorithm.

9/24/15 CMPS 2200 Introduction to Algorithms 11

Strassen’s algorithm

1. Divide: Partition A and B into
(n/2)x(n/2) submatrices. Form P-terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n)=7T(n/2) + O(n?)
nloghd = plog27 x N281 = CASE 1 = T(n) = O(nloe7’)

9/24/15 CMPS 2200 Introduction to Algorithms 12

Master theorem: Examples

EX. T(n) =4T(n/2) + sqrt(n)
a =4, b=2= nlogd=n2; f(n) = sqrt(n).
Case 1: f(n)=0(n’¢) fore = 1.5.
- T(n) = O(n?).

Ex. T(n) =4T(n/2) + n?
a=4,b=2= nlogd=n2; f(n)=n>.
CASE 2: f(n) = ©(n’log"n), that is, k = 0.
- T(n) = O(n%logn).

9/24/15 CMPS 2200 Introduction to Algorithms 13

Master theorem: Examples

Ex. T(n) =4T(n/2) +n’
a=4,b=2= nlogd=n2; f(n)=n3.
CAsSE 3: f(n)=Q(n*>"¢) fore =1
and 4(n/2)°> < cn’ (reg. cond.) for c = 1/2.
- T(n) = O(nd).

Ex. T(n) =4T(n/2) + n%/logn
a=4,b=2= nlgwa=n2; f(n)=n%logn.
Master method does not apply. In particular,
for every constant € > 0, we have log n € o(n®).

9/24/15 CMPS 2200 Introduction to Algorithms 14

Conclusion

* Divide and conquer 1s just one of several
powerful techniques for algorithm design.

 Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method .

* Can lead to more efficient algorithms

9/24/15 CMPS 2200 Introduction to Algorithms 15

