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The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are fractions of the
original problem size.

2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions.

— Runtime recurrences
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The master method

The master method applies to recurrences of
the form

T(ny=aT(n/b) +f(n),

where a > 1, b > 1, and f is asymptotically
positive.
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Example: merge sort

1. Divide: Trivial.

2. Conquer: Recursively sort a=2
subarrays of size n/2=n/b

3. Combine: Linear-time merge, runtime
f(n)eO(n)
T(n) =2T(n/2) + O(N)~_

# subproblems subproblem size \évr?g ‘;gmmﬁg
\

T(n)=aT(n/b) + f(n)
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Master Theorem
CASE 1: T(n) — aT(n/b) + f(n)
f (n) = O(nlogba—g) — T(n) = @(nlogba)

for some £>0
CASE 2:
f (n) = ®(nlogb2 Jogkn) = T(n) = O(nlogb2 Jogktin)

for some k>0

CASE 3:

(i) f (n) = Q(nogv272) -
for some £>0 = T(n) = O(f(n))
and (i) af(n/b)y<cf(n) [

for some Cc < | |
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How to apply the theorem

Compare f(n) with n'ogba ;

1. f(n)= O(nloeba-¢) for some constant & > 0.

* f(n) grows polynomially slower than n'ogba
(by an n¢ factor).

Solution: T(n) = ®(n'ogb?)

2. f(n)=0O(n"2]ogkn) for some constant k > 0.

* f(n) and n'°2b? grow at similar rates.
Solution: T(n) = O(n'ogba [ogk™In) .
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How to apply the theorem

Compare f(n) with n'ogba ;

3. f(n)= Q(n'ep?* ) for some constant € > 0.

* f(n) grows polynomially faster than n'oeb? (by
an n® factor),

and f(n) satisfies the regularity condition that
af(n/b) <cf(n) for some constant ¢ < 1.

Solution: T(n)=G(f(n)).
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Example: merge sort

1. DiviC
2. Cono

e: Trivial.
uer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

# subproblems-sybproblem size

T(n)=2T(/2) +0O(N)~—_
work dividing
and combining

nloghd = plog2 = nl =n = Case 2 (k=0)
= T(n)=0(nlogn).
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Example: binary search
T(n) =1T(n/2) +©(1)

# subproblems work dividing
subproblem size and combining

nlognd = plogal =0 =1 = CasSE 2 (k =0)
= T(n)=0ogn).
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Matrix multiplication:

Divide-and-conguer algorithm

IDEA:
NxN matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

O
1
vy

r =a-efb:g"

s =a-f+Db-h (8 recursive mults of (n/2)x(n/2) submatrices

t =cefdg >4 adds of (n/2)x(n/2) submatrices

u =c:f&d-h_
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Matrix multiplication:
Analysis of D&C algorithm

T(n)=8T(n/2) + B(N*)

g |
# submatrices work adding

. submatrices
submatrix size

nloghd = plogd =n3 = Case 1 = T(n)= O(N°)

No better than the ordinary matrix
multiplication algorithm.
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Strassen’s algorithm

1. Divide: Partition A and B into
(n/2)x(n/2) submatrices. Form P-terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n)=7T(n/2) + O(n?)
nloghd = plog27 x N281 = CASE 1 = T(n) = O(nloe7’)
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Master theorem: Examples

EX. T(n) =4T(n/2) + sqrt(n)
a =4, b=2= nlogd=n2; f(n) = sqrt(n).
Case 1: f(n)=0(n’¢) fore = 1.5.
- T(n) = O(n?).

Ex. T(n) =4T(n/2) + n?
a=4,b=2= nlogd=n2; f(n)=n>.
CASE 2: f(n) = ©(n’log"n), that is, k = 0.
- T(n) = O(n%logn).
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Master theorem: Examples

Ex. T(n) =4T(n/2) +n’
a=4,b=2= nlogd=n2; f(n)=n3.
CAsSE 3: f(n)=Q(n*>"¢) fore =1
and 4(n/2)°> < cn’ (reg. cond.) for c = 1/2.
- T(n) = O(nd).

Ex. T(n) =4T(n/2) + n%/logn
a=4,b=2= nlgwa=n2; f(n)=n%logn.
Master method does not apply. In particular,
for every constant € > 0, we have log n € o(n®).
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Conclusion

* Divide and conquer 1s just one of several
powerful techniques for algorithm design.

 Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method .

* Can lead to more efficient algorithms
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