CMPS 2200 -- Fall 2015

Union-Find Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

11/11/15 CMPS 2200 Intro. to Algorithms

Disjoint-set data structure
(Union-Find)
Problem:
e Maintain a dynamic collection of pairwise-disjoint
setsS ={S., S,, ..., S, }.
 Each set S; has one element distinguished as the
representative element, rep|[S;].

e Must support 3 operations:
* MAKE-SET(X): adds new set {x} to S
with rep[{x}] = x (forany x ¢ S, forall i)
* UNION(X, y): replaces sets S,, S, with S, U S, in S
(forany x, y in distinct sets S, S,)
» FIND-SET(X): returns representative rep|S, |
of set S, containing element x

11/11/15 CMPS 2200 Intro. to Algorithms 2

Union-Find Example

s={} DL oo
MAKE-SET(2) S={{2

MAKE-SET(3) S ={{2}, {3}}
MAKE-SET(4) S={{2}, {3}, {4}}
~IND-SET(4) =4

UNION(2, 4) S={{2 4}, {3}}
~IND-SET(4) = 2

MAKE-SET(5) S={{2, 4}, {3}, {5}}

UNION(4, 5) S={{2 4,5}, {3}}

11/11/15 CMPS 2200 Intro. to Algorithms

Plan of attack

* We will build a simple disjoint-set data structure
that, in an amortized sense, performs significantly
better than ®(log n) per op., even better than
®(log log n), ®(log log log n), ..., but not quite ®(1).

* To reach this goal, we will introduce two key tricks.
Each trick converts a trivial ®(n) solution into a
simple ®(log n) amortized solution. Together, the
two tricks yield a much better solution.

e First trick arises in an augmented linked list.
Second trick arises In a tree structure.

11/11/15 CMPS 2200 Intro. to Algorithms 4

Augmented linked-list solution

Store S; = {X;, X5, ..., X} as unordered doubly linked list.
Augmentatlon Each element x; also stores pointer
rep[x;] to rep[S;] (which is the front of the list, x,).

As_sume b ki
pointer to x v
s given. S; : X T—L ol T —L | X%
rep[S]
* FIND-SET(X) returns rep|[x]. -0(1)

* UNION(X, V) concatenates lists containing
x and y and updates the rep pointers for
all elements in the list containing v. - O(n)

11/11/15 CMPS 2200 Intro. to Algorithms

Example of
augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S;].
UNION(X, V)
e concatenates the lists containing x and y, and
e updates the rep pointers for all elements in the
list containing .

rep

X T—L |%
rep[S,]

rep

Sy: Vol T—L V2| T—L V5

rep[S,]

11/11/15 CMPS 2200 Intro. to Algorithms 6

Example of
augmented linked-list solution
Each element x; stores pointer rep[x;] to rep[S;].

UNION(X, V)
e concatenates the lists containing x and y, and

e updates the rep pointers for all elements in the
list containing .

Sy U Sy !

rep

X1

11/11/15

rep[S,]

X5

\

\

rep

\

Y1

rep[S,]

CMPS 2200 Intro. to Algorithms

Yo

Y3

Example of
augmented linked-list solution
Each element x; stores pointer rep[x;] to rep[S;].

UNION(X, V)

e concatenates the lists containing x and y, and

e updates the rep pointers for all elements in the
list containing .

rep

S.uUS,:

X y-©

X | T
rep[S, v S]

11/11/15

X5

\

CMPS 2200 Intro. to Algorithms

\

\

Y1

Yo

Y3

Alternative concatenation

UNION(X, V) coulc
e concatenate t
e update the re

Instead
ne lists containing vy and x, and

0 pointers for all elements in the

list containing x.

rep

rep

rep[S,]

SY' Vol T—b Yo T—L (V3

rep[S,]

11/11/15

CMPS 2200 Intro. to Algorithms

Alternative concatenation

UNIoN(X, v) could instead
e concatenate the lists containing y and x, and
e update the rep pointers for all elements in the
list containing x.

rep

. re /4] %
S8y p /‘ rep[S,]

Vol T—Fk V2| T—k | Vs
rep[S,]

11/11/15 CMPS 2200 Intro. to Algorithms 10

Alternative concatenation

UNIoN(X, v) could instead
e concatenate the lists containing y and x, and
e update the rep pointers for all elements in the
list containing x.

rep

_ /1% T [%

Val T—L Vo T—L [V; /
rep[S, S,]

11/11/15 CMPS 2200 Intro. to Algorithms 11

Trick 1: Smaller into larger
(weighted-union heuristic)

To save work, concatenate the smaller list onto the
end of the larger list. Cost = ®(length of smaller list).
Augment list to store its weight (# elements).

* Let n denote the overall number of elements
(equivalently, the number of MAKE-SET operations).

 Let m denote the total number of operations.

e Let f denote the number of FIND-SET operations.

Theorem: Cost of all UNION’s 1s O(n log n).
Corollary: Total cost is O(m + n log n).

11/11/15 CMPS 2200 Intro. to Algorithms 12

Analysis of Trick 1

(weighted-union heuristic)

Theorem: Total cost of UNION’s IS O(n log n).

Proof. « Monitor an element x and set S, containing it.
o After initial MAKE-SET(x), weight[S,] = 1.
* Each time S, is united with S, :
o If Welght[S] = weight[S,]:
—pay 1 to update rep[x], and
— weight[S,] at least doubles (increases by weight[S,]).
* If weight[S,] < weight[S,]:
— pay nothlng and
—weight[S,] only increases.
Thus pay < log n for x.

11/11/15 CMPS 2200 Intro. to Algorithms 13

Disjoint set forest:
Representing sets as trees

Store each set S; = {Xy, X,, ..., X+ as an unordered,
potentially unbalanced, not necessarily binary tree,
storing only parent pointers. rep[S;] Is the tree root.

 MAKE-SET(X) Initializes x =
as alone node. —O(1) o K X)
* FIND-SET(X) walks up the rep[Si] | x,
tree containing x until it
reaches the root. — ©(depth[x])
* UNION(X, V) calls FIND-SET twice
and concatenates the trees
containing x and y...— ©(depth[x])

11/11/15 CMPS 2200 Intro. to Algorithms 14

Trick 1 adapted to trees

e UNION(X, y) can use a simple concatenation strategy:
Make root FIND-SET(Y) a child of root FIND-SET(X).

* Adapt Trick 1 to this context: e\
Union-by-weight: ”
Merge tree with smaller
welight into tree with
larger weight.

L 4

X6 Y4

o Variant of Trick 1 (see book): Y, yv5

Union-by-rank:
rank of a tree = its height Example: UNION(x,, v,)

11/11/15 CMPS 2200 Intro. to Algorithms 15

Trick 1 adapted to trees
(union-by-weight)
* Height of tree is logarithmic in weight, because:

e Induction onn
 Height of atree T is determined by the two subtrees

T,, T, that T has been united from.
e Inductively the heights of T,, T, are the logs of their

weights.
 If T, and T, have different heights:
height(T) = max(height(T,), height(T,))
= max(log weight(T,), log weight(T,))
< log weight(T)
 If T, and T, have the same heights:
(Assume 2<weight(T,)<weight(T,))
height(T) = height(T,) + 1 =log (2*weight(T,))
< log weight(T)

* Thus the total cost of any m operations is O(m log n).
11/11/15 CMPS 2200 Intro. to Algorithms 16

Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative

for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(X)
Is still ®(depth[x]).

FIND-SET(Y,)

11/11/15 CMPS 2200 Intro. to Algorithms

Ys

17

Trick 2: Path compression

When we execute a FIND-SET operation and walk

up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(X)

Y4 Y?{
Is still ®(depth[x]). FIND-SET(Y,) Vz—‘ v
) 2

11/11/15 CMPS 2200 Intro. to Algorithms 18

Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative

for all the nodes on path p. y
1
Path compression makes 44

all of those nodes direct YillY2] | Y3
children of the root.] T
Cost of FIND-SET(X) Y4 E

Is still ®(depth[x]). FIND-SET(Y,)
= 2

11/11/15 CMPS 2200 Intro. to Algorithms 19

Trick 2: Path compression

* Note that UNION(x,y) first calls FIND-SET(x) and
FIND-SET(Y). Therefore path compression also
affects UNION operations.

11/11/15 CMPS 2200 Intro. to Algorithms 20

Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET’s IS O(m log n).
Proof: By amortization. Omitted.

11/11/15 CMPS 2200 Intro. to Algorithms

21

Analysis of Tricks 1 + 2

for disjoint-set forests

Theorem: In general, total cost is O(m a.(n)).

Proof: Long, tricky proof by amortization. Omitted.
See book for a proof sketch for O(m log™(n))
runtime.

11/11/15 CMPS 2200 Intro. to Algorithms 22

Ackermann’s functlon A, and
It’s “Inverse’

Defi (i) = J+1 |fk—O,
efine Al _iAﬁIl)(j) If k>1. - iterate|+1 times
Al)=]+1 Ay(1) =2
Al)~2) A (1) =3
A(j)~2)2>2 A,(1)=7
20 A5(1) = 2047
22.. >j ..22047 |
As(j) > 2 J 22' » 2048 times
A,(]) is a lot bigger. A,(1) > 2 ,

Define a(n) = min {k : A (1) > n} <4 for practlcal .

11/11/15 CMPS 2200 Intro. to Algorithms

