
9/9/14 CMPS 2200 Intro. to Algorithms 1

CMPS 2200 – Fall 2014

Red-black trees
Carola Wenk

Slides courtesy of Charles Leiserson with changes by Carola Wenk

9/9/14 CMPS 2200 Intro. to Algorithms 2

ADT Dictionary / Dynamic Set
Abstract data type (ADT) Dictionary
(also called Dynamic Set):
A data structure which supports operations
• Insert
• Delete
• Find
Using balanced binary search trees we can
implement a dictionary data structure such that
each operation takes O(log n) time.

8 1515

1010

1818

2222

3

7

1212 1717

9/9/14 CMPS 2200 Intro. to Algorithms 3

Search Trees

• A binary search tree is a binary tree. Each node stores a
key. The tree fulfills the binary search tree property:

For every node x holds:
• y x , for all y in the subtree left of x
• x < y, for all y in the subtree right of x

8 1515

1010

1818

2222

3

7

1212 1717

9/9/14 CMPS 2200 Intro. to Algorithms 4

Search Trees

Different variants of search trees:

• Balanced search trees (guarantee
height of log n for n elements)

• k-ary search trees (such as B-trees,
2-3-4-trees)

• Search trees that store keys only
in leaves, and store copies of
keys as split-values in
internal nodes

8 1515

1010

1818

2222

3

7

1212 1717

1 1212

10 25

6

2 7 8

12 15 21

11 14 20 23 24 27 40 50

30 45

121

6 8 12 14

17

26 35 41 42

43

59 61

6 26 41 59

1 14 35 43

428

17

9/9/14 CMPS 2200 Intro. to Algorithms 5

Balanced search trees
Balanced search tree: A search-tree data
structure for which a height of O(log n) is
guaranteed when implementing a dynamic
set of n items.

Examples:

• AVL trees
• 2-3 trees
• 2-3-4 trees
• B-trees
• Red-black trees

9/9/14 CMPS 2200 Intro. to Algorithms 6

Red-black trees
This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL’s) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x,

to a descendant leaf have the same number of
black nodes = black-height(x).

9/9/14 CMPS 2200 Intro. to Algorithms 7

Example of a red-black tree

h = 4

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

1. Every node is either red or black.

9/9/14 CMPS 2200 Intro. to Algorithms 8

Example of a red-black tree

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

2., 3. The root and leaves (NIL’s) are black.

h = 4

9/9/14 CMPS 2200 Intro. to Algorithms 9

Example of a red-black tree

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

4. If a node is red, then both its children are
black.

h = 4

9/9/14 CMPS 2200 Intro. to Algorithms 10

Example of a red-black tree

5. All simple paths from any node x, excluding
x, to a descendant leaf have the same
number of black nodes = black-height(x).

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

bh = 2

bh = 1

bh = 1

bh = 2

bh = 0

h = 4

9/9/14 CMPS 2200 Intro. to Algorithms 11

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h  2 log(n + 1).

Proof.
INTUITION:
• Merge red nodes

into their black
parents.

9/9/14 CMPS 2200 Intro. to Algorithms 12

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h  2 log(n + 1).

Proof.
INTUITION:
• Merge red nodes

into their black
parents.

9/9/14 CMPS 2200 Intro. to Algorithms 13

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h  2 log(n + 1).

Proof.
INTUITION:
• Merge red nodes

into their black
parents.

9/9/14 CMPS 2200 Intro. to Algorithms 14

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h  2 log(n + 1).

Proof.
INTUITION:
• Merge red nodes

into their black
parents.

9/9/14 CMPS 2200 Intro. to Algorithms 15

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h  2 log(n + 1).

Proof.
INTUITION:
• Merge red nodes

into their black
parents.

9/9/14 CMPS 2200 Intro. to Algorithms 16

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h  2 log(n + 1).

Proof.

• This process produces a tree in which each node
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h of leaves.

INTUITION:
• Merge red nodes

into their black
parents.

h

9/9/14 CMPS 2200 Intro. to Algorithms 17

Proof (continued)

h

h

• We have
h  h/2, since
at most half
the vertices on any
path are red.

• The number of leaves
in each tree is n + 1
 n + 1  2h'

 log(n + 1)  h'  h/2
 h  2 log(n + 1).

9/9/14 CMPS 2200 Intro. to Algorithms 18

Query operations

Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run in O(log n) time on a red-black
tree with n nodes.

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

9/9/14 CMPS 2200 Intro. to Algorithms 19

Modifying operations

The operations INSERT and DELETE cause
modifications to the red-black tree:
1. the operation itself,
2. color changes,
3. restructuring the links of the tree

via “rotations”.

9/9/14 CMPS 2200 Intro. to Algorithms 20

Rotations

AA

B

 


RIGHT-ROTATE(B)

B

AA




LEFT-ROTATE(A)

• Rotations maintain the inorder ordering of keys:
a  , b  , c   a  A  b  B  c.

• Rotations maintain the binary search tree property
• A rotation can be performed in O(1) time.

9/9/14 CMPS 2200 Intro. to Algorithms 21

Red-black trees
This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL’s) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x,

to a descendant leaf have the same number of
black nodes = black-height(x).

9/9/14 CMPS 2200 Intro. to Algorithms 22

Insertion into a red-black tree

1515

Example:
• Insert x =15.

8 1111

1010

1818

2626

2222

7

3

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

9/9/14 CMPS 2200 Intro. to Algorithms 23

Insertion into a red-black tree

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree. 8 1111

1010

1818

2626

2222

7

3

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

9/9/14 CMPS 2200 Intro. to Algorithms 24

Insertion into a red-black tree

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree. 8 1111

1010

1818

2626

2222

7

3

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

9/9/14 CMPS 2200 Intro. to Algorithms 25

Insertion into a red-black tree

8 1111

1010

1818

2626

2222

7

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).

3

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

9/9/14 CMPS 2200 Intro. to Algorithms 26

Insertion into a red-black tree

8

1111

1010

1818

2626

2222

7

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).

3

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

9/9/14 CMPS 2200 Intro. to Algorithms 27

Insertion into a red-black tree

8

1111

1010

1818

2626

2222

7

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7)

3

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

9/9/14 CMPS 2200 Intro. to Algorithms 28

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

8 1111

1010

1818

2626

2222

7

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7)

3

9/9/14 CMPS 2200 Intro. to Algorithms 29

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

8 1111

1010

1818

2626

2222

7

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

3

9/9/14 CMPS 2200 Intro. to Algorithms 30

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

8 1111

1010

1818

2626

2222

7

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

3

9/9/14 CMPS 2200 Intro. to Algorithms 31

Pseudocode
RB-INSERT(T, x)

TREE-INSERT(T, x)
color[x]  RED ⊳ only RB property 4 can be violated
while x  root[T] and color[p[x]] = RED

do if p[x] = left[p[p[x]]
then y  right[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
then Case 1
else if x = right[p[x]]

then Case 2 ⊳ Case 2 falls into Case 3
Case 3

else “then” clause with “left” and “right” swapped
color[root[T]]  BLACK

9/9/14 CMPS 2200 Intro. to Algorithms 32

Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.

9/9/14 CMPS 2200 Intro. to Algorithms 33

Case 1

B

C

DA

x
y

(Or, A’s children are swapped.)

B

C

DA

new x

Push C’s black onto A
and D, and recurse,
since C’s parent may be
red.

Recolor

p[x] = left[p[p[x]]
y  right[p[p[x]]
color[y] = RED

Continue

9/9/14 CMPS 2200 Intro. to Algorithms 34

Case 2

B

C

A

x

y
LEFT-ROTATE(A)

A

C

B

x

y

Transform to Case 3.
p[x] = left[p[p[x]]
y  right[p[p[x]]

x = right[p[x]]
color[y] = BLACK

9/9/14 CMPS 2200 Intro. to Algorithms 35

RIGHT-ROTATE(C)
(and recolor)

Case 3

A

C

B

x

y
A

B

C

Done! No more
violations of RB
property 4 are
possible.

p[x] = left[p[p[x]]
y  right[p[p[x]]

x = left[p[x]]
color[y] = BLACK

9/9/14 CMPS 2200 Intro. to Algorithms 36

Analysis

• Go up the tree performing Case 1, which only
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(log n) with O(1) rotations.
RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT.

9/9/14 CMPS 2200 Intro. to Algorithms 37

Pseudocode (part II)
else “then” clause with “left” and “right” swapped
⊳ p[x] = right[p[p[x]]
then y  left[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
then Case 1’
else if x = left[p[x]]

then Case 2’ ⊳ Case 2’ falls into Case 3’
Case 3’

color[root[T]]  BLACK

9/9/14 CMPS 2200 Intro. to Algorithms 38

Case 1’
C

y

(Or, A’s children are swapped.)

Recolor

p[x] = right[p[p[x]]
y  left[p[p[x]]
color[y] = RED

B

A

x
D

Push C’s black onto A
and D, and recurse,
since C’s parent may be
red.

new xC

y

B

A

x
D

Continue

9/9/14 CMPS 2200 Intro. to Algorithms 39

Case 2’

C RIGHT-ROTATE(A)

p[x] = right[p[p[x]]
y  left[p[p[x]]

x = left[p[x]]
color[y] = BLACK

Ay
Bx

Transform to Case 3’.

C

A

y B x

9/9/14 CMPS 2200 Intro. to Algorithms 40

Case 3’

LEFT-ROTATE(C)
(and recolor)

C

B

A

Done! No more
violations of RB
property 4 are
possible.

p[x] = right[p[p[x]]
y  left[p[p[x]]

x = right[p[x]]
color[y] = BLACK

C

A

y B x

