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External memory dictionary

Task: Given a large amount of data that does not 
fit into main memory, process it into a dictionary 
data structure
• Need to minimize number of disk accesses
• With each disk read, read a whole block of data
• Construct a balanced search tree that uses one 
disk block per tree node 
• Each node needs to contain more than one key
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k-ary search trees
A k-ary search tree T is defined as follows:
•For each node x of T:

• x has at most k children (i.e., T is a k-ary tree)
• x stores an ordered list of pointers to its children, 
and an ordered list of keys
• For every internal node: #keys = #children-1
• x fulfills the search tree property: 
keys in subtree rooted at i-th child  i-th key <
keys in subtree rooted at (i+1)-st child
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Example of a 4-ary tree
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Example of a 4-ary search tree

10    25

6

2 7   8

12   15    21

11 14 20 23 24 27 40 50

30  45

1 16 18
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B-tree

A B-tree T with minimum degree k  2 is 
defined as follows:

1. T is a (2k)-ary search tree
2. Every node, except the root, stores at least 

k-1 keys
(every internal non-root node has at least k
children)

3. The root must store at least one key
4. All leaves have the same depth
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B-tree with k=2
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1. T is a (2k)-ary search tree
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B-tree with k=2
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2. Every node, except the root, stores at least 
k-1 keys
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B-tree with k=2
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3. The root must store at least one key
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B-tree with k=2
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4. All leaves have the same depth
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B-tree with k=2
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Remark: This is a 2-3-4 tree.
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Height of a B-tree

Theorem: For a B-tree with minimum degree 
k  2 which stores n keys and has height h holds:

h ≤ logk (n+1)/2

Proof: #nodes  1+2+2k+2k2+…+2kh-1

level 0
level 1

level 2
level 3

n = #keys  1+(k-1)2ki = 1+2(k-1) = 2kh-1
i=0

h-1 kh-1
k-1
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B-tree search
B-TREE-SEARCH(x,key) 

i  1
while i<#keys of x and key > i-th key of x

do i++
if i<#keys of x and key = i-th key of x

then return (x,i)
if x is a leaf

then return NIL
else b=DISK-READ(i-th child of x)

return B-TREE-SEARCH(b,key) 
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B-tree search runtime

• O(k) per node
• Path has height h = O(logk n)
• CPU-time: O(k logk n)

• Disk accesses: O(logk n)
disk accesses are more expensive than CPU time
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B-tree insert
• There are different insertion strategies. We just cover 
one of them 
• Make one pass down the tree:

• The goal is to insert the new key into a leaf
• Search where key should be inserted
• Only descend into non-full nodes:

• If a node is full, split it. Then continue 
descending.
• Splitting of the root node is the only way a B-
tree grows in height
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B-TREE-SPLIT-CHILD(x,i,y)
• Split full node y into two nodes y and z of k-1 keys
• Median key S of y is moved up into y’s parent x
• Example below for k = 4

has 2k-1 keys
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Split root: B-TREE-SPLIT-CHILD(s,1,r)
• The full root node r is split in two.
• A new root node s is created
• s contains the median key H of r and has the
two halves of r as children
• Example below for k = 4
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B-TREE-INSERT(T,key)

r = root[T]
if (# keys in r) = 2k-1 // root r is full

//insert new root node:
s ALLOCATE-NODE()
root[T]  s
// split old root r to be two children of new root s
B-TREE-SPLIT-CHILD(s,1,r)
B-TREE-INSERT-NONFULL(s,key)

else B-TREE-INSERT-NONFULL(r,key)
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B-TREE-INSERT-NONFULL(x,key)
if x is a leaf then

insert key at the correct (sorted) position in x
DISK-WRITE(x)

else
find child c of x which by the search tree property 

should contain key
DISK-READ(c)
if c is full then // c contains 2k-1 keys

B-TREE-SPLIT-CHILD(x,i,c)
c=child of x which should contain key

B-TREE-INSERT-NONFULL(c,key)
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Insert example (k=3)

G M P X

A C D E J K N O R S T U V Y Z

• Insert B:

A C D E

G M P X

A B C D E J K N O R S T U V Y Z
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Insert example (k=3)   -- cont.

• Insert Q:

G M P X

A B C D E J K N O R S T U V Y ZR S T U V

node is full

G M P T X

A B C D E J K N O Y ZR S U VQ R S
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Insert example (k=3)   -- cont.

• Insert L:

G M P T X

A B C D E J K N O Y ZQ R S U V

G M P T Xnode is full

A B C D E J K N O Y ZQ R S U V

G M T X

P

J K L

G M
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Insert example (k=3)   -- cont.

• Insert F:
A B C D E N O Y ZQ R S U V

G M T X

P

J K LA B C D E

node is full

D E N O Y ZQ R S U V

C G M T X

P

J K LA B D E F
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Runtime of B-TREE-INSERT 

• O(k) runtime per node
• Path has height h = O(logk n)
• CPU-time: O(k logk n)

• Disk accesses: O(logk n)
disk accesses are more expensive than CPU time
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Deletion of an element

• Similar to insertion, but a bit more complicated

• If sibling nodes get not full enough, they are merged 
into a single node

• Same complexity as insertion
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B-trees -- Conclusion
• B-trees are balanced 2k-ary search trees

• The degree of each node is bounded from 
above and below using the parameter k

• All leaves are at the same height

• No rotations are needed: During insertion (or 
deletion) the balance is maintained by node 
splitting (or node merging)

• The tree grows (shrinks) in height only by 
splitting (or merging) the root


