
9/11/14 CMPS 2200 Intro. to Algorithms 1

CMPS 2200 – Fall 2014

B-trees

Carola Wenk

9/11/14 CMPS 2200 Intro. to Algorithms 2

External memory dictionary

Task: Given a large amount of data that does not
fit into main memory, process it into a dictionary
data structure
• Need to minimize number of disk accesses
• With each disk read, read a whole block of data
• Construct a balanced search tree that uses one
disk block per tree node
• Each node needs to contain more than one key

9/11/14 CMPS 2200 Intro. to Algorithms 3

k-ary search trees
A k-ary search tree T is defined as follows:
•For each node x of T:

• x has at most k children (i.e., T is a k-ary tree)
• x stores an ordered list of pointers to its children,
and an ordered list of keys
• For every internal node: #keys = #children-1
• x fulfills the search tree property:
keys in subtree rooted at i-th child  i-th key <
keys in subtree rooted at (i+1)-st child

9/11/14 CMPS 2200 Intro. to Algorithms 4

Example of a 4-ary tree

9/11/14 CMPS 2200 Intro. to Algorithms 5

Example of a 4-ary search tree

10 25

6

2 7 8

12 15 21

11 14 20 23 24 27 40 50

30 45

1 16 18

9/11/14 CMPS 2200 Intro. to Algorithms 6

B-tree

A B-tree T with minimum degree k  2 is
defined as follows:

1. T is a (2k)-ary search tree
2. Every node, except the root, stores at least

k-1 keys
(every internal non-root node has at least k
children)

3. The root must store at least one key
4. All leaves have the same depth

9/11/14 CMPS 2200 Intro. to Algorithms 7

B-tree with k=2

10 25

6

2 7 8

12 15 21

11 14 20 23 24 27 40 50

30 45

1. T is a (2k)-ary search tree

9/11/14 CMPS 2200 Intro. to Algorithms 8

B-tree with k=2

10 25

6

2 7 8

12 15 21

11 14 20 23 24 27 40 50

30 45

2. Every node, except the root, stores at least
k-1 keys

9/11/14 CMPS 2200 Intro. to Algorithms 9

B-tree with k=2

10 25

6

2 7 8

12 15 21

11 14 20 23 24 27 40 50

30 45

3. The root must store at least one key

9/11/14 CMPS 2200 Intro. to Algorithms 10

B-tree with k=2

10 25

6

2 7 8

12 15 21

11 14 20 23 24 27 40 50

30 45

4. All leaves have the same depth

9/11/14 CMPS 2200 Intro. to Algorithms 11

B-tree with k=2

10 25

6

2 7 8

12 15 21

11 14 20 23 24 27 40 50

30 45

Remark: This is a 2-3-4 tree.

9/11/14 CMPS 2200 Intro. to Algorithms 12

Height of a B-tree

Theorem: For a B-tree with minimum degree
k  2 which stores n keys and has height h holds:

h ≤ logk (n+1)/2

Proof: #nodes  1+2+2k+2k2+…+2kh-1

level 0
level 1

level 2
level 3

n = #keys  1+(k-1)2ki = 1+2(k-1) = 2kh-1
i=0

h-1 kh-1
k-1

9/11/14 CMPS 2200 Intro. to Algorithms 13

B-tree search
B-TREE-SEARCH(x,key)

i  1
while i<#keys of x and key > i-th key of x

do i++
if i<#keys of x and key = i-th key of x

then return (x,i)
if x is a leaf

then return NIL
else b=DISK-READ(i-th child of x)

return B-TREE-SEARCH(b,key)

9/11/14 CMPS 2200 Intro. to Algorithms 14

B-tree search runtime

• O(k) per node
• Path has height h = O(logk n)
• CPU-time: O(k logk n)

• Disk accesses: O(logk n)
disk accesses are more expensive than CPU time

9/11/14 CMPS 2200 Intro. to Algorithms 15

B-tree insert
• There are different insertion strategies. We just cover
one of them
• Make one pass down the tree:

• The goal is to insert the new key into a leaf
• Search where key should be inserted
• Only descend into non-full nodes:

• If a node is full, split it. Then continue
descending.
• Splitting of the root node is the only way a B-
tree grows in height

9/11/14 CMPS 2200 Intro. to Algorithms 16

B-TREE-SPLIT-CHILD(x,i,y)
• Split full node y into two nodes y and z of k-1 keys
• Median key S of y is moved up into y’s parent x
• Example below for k = 4

has 2k-1 keys

9/11/14 CMPS 2200 Intro. to Algorithms 17

Split root: B-TREE-SPLIT-CHILD(s,1,r)
• The full root node r is split in two.
• A new root node s is created
• s contains the median key H of r and has the
two halves of r as children
• Example below for k = 4

9/11/14 CMPS 2200 Intro. to Algorithms 18

B-TREE-INSERT(T,key)

r = root[T]
if (# keys in r) = 2k-1 // root r is full

//insert new root node:
s ALLOCATE-NODE()
root[T]  s
// split old root r to be two children of new root s
B-TREE-SPLIT-CHILD(s,1,r)
B-TREE-INSERT-NONFULL(s,key)

else B-TREE-INSERT-NONFULL(r,key)

9/11/14 CMPS 2200 Intro. to Algorithms 19

B-TREE-INSERT-NONFULL(x,key)
if x is a leaf then

insert key at the correct (sorted) position in x
DISK-WRITE(x)

else
find child c of x which by the search tree property

should contain key
DISK-READ(c)
if c is full then // c contains 2k-1 keys

B-TREE-SPLIT-CHILD(x,i,c)
c=child of x which should contain key

B-TREE-INSERT-NONFULL(c,key)

9/11/14 CMPS 2200 Intro. to Algorithms 20

Insert example (k=3)

G M P X

A C D E J K N O R S T U V Y Z

• Insert B:

A C D E

G M P X

A B C D E J K N O R S T U V Y Z

9/11/14 CMPS 2200 Intro. to Algorithms 21

Insert example (k=3) -- cont.

• Insert Q:

G M P X

A B C D E J K N O R S T U V Y ZR S T U V

node is full

G M P T X

A B C D E J K N O Y ZR S U VQ R S

9/11/14 CMPS 2200 Intro. to Algorithms 22

Insert example (k=3) -- cont.

• Insert L:

G M P T X

A B C D E J K N O Y ZQ R S U V

G M P T Xnode is full

A B C D E J K N O Y ZQ R S U V

G M T X

P

J K L

G M

9/11/14 CMPS 2200 Intro. to Algorithms 23

Insert example (k=3) -- cont.

• Insert F:
A B C D E N O Y ZQ R S U V

G M T X

P

J K LA B C D E

node is full

D E N O Y ZQ R S U V

C G M T X

P

J K LA B D E F

9/11/14 CMPS 2200 Intro. to Algorithms 24

Runtime of B-TREE-INSERT

• O(k) runtime per node
• Path has height h = O(logk n)
• CPU-time: O(k logk n)

• Disk accesses: O(logk n)
disk accesses are more expensive than CPU time

9/11/14 CMPS 2200 Intro. to Algorithms 25

Deletion of an element

• Similar to insertion, but a bit more complicated

• If sibling nodes get not full enough, they are merged
into a single node

• Same complexity as insertion

9/11/14 CMPS 2200 Intro. to Algorithms 26

B-trees -- Conclusion
• B-trees are balanced 2k-ary search trees

• The degree of each node is bounded from
above and below using the parameter k

• All leaves are at the same height

• No rotations are needed: During insertion (or
deletion) the balance is maintained by node
splitting (or node merging)

• The tree grows (shrinks) in height only by
splitting (or merging) the root

