Data Structures and
Object-Oriented Design
\VAl

Spring 2014
Carola Wenk

Data Structures We Know

« We've seen arrays and linked structures. All gueue and stack
operations take constant time, but what about if we want to
\add, remove and find’from the items being stored?

L :
Col lection interface

ﬂ\/Vﬂ@

et SIS - —

list
%ﬁ
B
binary % —
tree \\ g
—l

Collection Interface

public interface Collection<T>{
public void add(T item);
public void remove(T item);
public boolean contains(T item);

} ﬁor -Find]

Collections

« Java uses “growable” arrays and linked lists to implement
various interfaces derived from Collection.

< <Interface>>
Collection

/

TA

< <Interface>>
< <Interface>> extends List
Set
< <Interface>>

Queue

a4 A

% ArrayList
< <Interface>> Vector
HashSet SortedSet \ implements | < <Interface>>
\ Deque
v JAN
’ ’ D ! |
Vi ' \\ I
TreeSet LinkedHashSet Stack
\ I
LinkedList

Some of these collections require ordered elements, others do
not. What is a “hash” table?

Dynamic Lists

Static
0 s
Dynamic
somewhere

IN memory

- [g :

In a dynamic list each element is indirectly adjacent to its
neighbor.

Dynamic Lists

Static
0 B
Dynamic
somewhere
IN memory

y g :

How do we add an item to the dynamic list?

Dynamic Lists

Static
0 B
Dynamic
somewhere
IN memory

gy g :

How do we add an item to the dynamic list?

Dynamic Lists

Static
0 s
Dynamic
somewhere

IN memory

5 Es ;
G
Because it is indirectly defined, to add an element to the dynamic
list, we just need to reassign neighbor relationships.

Dynamic Lists

Static
0 B
Dynamic
somewhere
IN memory

5 DEs ;
G
In contrast to the static list, we only need to perform a constant
amount of work to add an item to the dynamic list.

Remember Binary Search?

median

data

The two halves of a binary search tree can be defined
recursively.

Binary Search Trees

median

data

Sma..emarger

« How do we define this type of structure in Java?

Summary of Binary Search Trees

—

between
logarithmic and
linear

« The time to perform operations in binary search trees is highly
dependent on how they are built.

 The best-case depth of a binary tree is logarithmic in the
number of elements; there are sophisticated techniques (AVL,
red-black) for ensuring this depth in the worst-case.

Collections

« Java uses “growable” arrays and linked lists to implement
various interfaces derived from Collection.

< <Interface>>
Collection

/

TA

< <Interface>>
< <Interface>> extends List
Set
< <Interface>>

Queue

a4 A

% ArrayList
< <Interface>> Vector
HashSet SortedSet \ implements | < <Interface>>
\ Deque
v JAN
’ ’ D ! |
Vi ' \\ I
TreeSet LinkedHashSet Stack
\ I
LinkedList

Some of these collections require ordered elements, others do
not. What is a “hash” table?

Collections and Maps

e The Collection interface Is for storage and access, while a
Map Interface Is geared towards associating keys with objects.

< <Interface>>
Collection
< <Interface>>
<<Int§:ftace>> extends List
<<Interface>> 4 A
JAN Queue / i
\
ArrayList
< <Interface>> d ? : Vector v
HashSet SortedSet ' implements | <<Interface>>
\ Deque I
q] I
s ’ \\ D : é
, d \ \]
TreeSet LinkedHashSet \ . Stack
L I
\
LinkedList

< <Interface>>
Map

w4 B

<<Interface>>
SortedMap

D\

’ ’ \ \
HashTable LinkedHashMap HashMap TreeMap

Student database problem

Tulane’s student database D stores n records:

record

D | key Operations on D:

\ame [Vvalue oD. r;ﬁqi:(key,val ue)
“find”

Address o) get(key)

e =D.remove(key)

How should the data structure D be organized?

Direct-Access Table (array)

e Suppose every key is a different number: K < {0, 1, ..., m-1}
e Set up an array D[O . . m—1] such that D[key] = value for every
record, and D[key]=null for keys without records.

00000006 000747111
John Welch David Filo
Jones

put, get, remove take O(1) time.

Direct-Access Table (array)

e Suppose every key is a different number: K < {0, 1, ..., m-1}
e Set up an array D[O . . m—1] such that D[key] = value for every
record, and D[key]=null for keys without records.

00000006 000747111

John Welch David Filo
Jones

Problem: The range of keys can be large:

* 64-bit numbers (which represent
18,446,744,073,709,551,616 different keys),

 Character strings (even more!).

