
Data Structures and 
Object-Oriented Design

Spring 2014
Carola Wenk



Data Types So Far
• With classes we can define our own ‘abstract data types’. 

The purpose of classes is to package data and functionality.

The goal in packaging is to hide complexity and only expose 
data/functionality necessary.

[Booch ’98]



Data Types So Far
• With classes we can define our own ‘abstract data types’. 

The purpose of classes is to package data and functionality.

The programmer provides all the details, the user just invokes 
what is necessary and expects correct behavior.

Class/Instance
“Programmer” “user”

...



Stacks
• A stack is a “last-in, first-out” data structure. The functionality 

is very simple, but how do we implement it?

“Push” “Pop”
class Stack {

...

public Stack(..) {
...

}

public int pop() {
...

}

public void push(int x) {
...

}



Stacks

class Stack {

...

public Stack(...) {
...

}

public int pop() {
...

}

public void push(...) {
...

}

A stack is a “last-in, first-out” data structure. The functionality is 
very simple, but how do we implement it?



Stacks
• Are the methods in this class guaranteed to work? What kind 

of specifications can we guarantee to ensure the correctness 
of push and pop?

• How does pop handle empty stacks?

public int pop() {
return S[top--];

} public int pop() {
if (top >= 0) 
return S[top--];

}

Does not 
run.



Java Exceptions
• In Python, we were allowed to write functions like this:

def f(a, b):
if (a + b > 0):
return a+b

Note that this kind of function can return nothing at all, even 
though we can use it in an assignment statement or comparison.

This is not allowed in Java, and so we really need a way to avoid 
returning something of the declared type when we “need” to.



Stacks
• Are the methods in this class guaranteed to work? What kind 

of specifications can we guarantee to ensure the correctness 
of push and pop?

• How does pop handle empty stacks?

public int pop() {
return S[top--];

} public int pop() {
if (top >= 0) 
return S[top--];

}

public int pop() {
if (top >= 0) 
return S[top--];

else
return -999;

}

public int pop() {
if (top >= 0) 
return S[top--];

else
throw new RuntimeException(“Stack is empty”);

}



Java Exceptions
• Java allows the programmer to subvert the type system to 

return error messages: 
...

try { f(a, b); }
catch(Exception e) {
System.out.println(e.getMessage());
}
finally {
// “clean up” area
}
...

...

public int f(int a, int b) throws 
Exception {
if (a + b > 0)

return a+b;
else

throw new Exception(“Error!”);

...

Some exceptions must always be handled (either by the caller or 
higher up), while others are handled by the system.

Java exceptions are just classes, and can be treated as such.



Stacks
• Are the methods in this class guaranteed to work? What kind 

of specifications can we guarantee to ensure the correctness 
of push and pop?

• How does pop handle empty stacks?

public int pop() {
return S[top--];

} public int pop() {
if (top >= 0) 
return S[top--];

}

public int pop() {
if (top >= 0) 
return S[top--];

else
return -999;

}

public int pop() {
if (top >= 0) 
return S[top--];

else
throw new RuntimeException(“Stack is empty”);

}


