Rp

Rs, Rt
Ra

PC
Acc
Lo, Hi

+

@
R2

DOTTED

MIPS32" Instruction Set
Quick Reference

DESTINATION REGISTER

SOURCE OPERAND REGISTERS

RETURN ADDRESS REGISTER (R31)
PROGRAM COUNTER

64-BIT ACCUMULATOR

ACCUMULATOR LOW (ACC31:0) AND HIGH (ACCg332) PARTS
SIGNED OPERAND OR SIGN EXTENSION
UNSIGNED OPERAND OR ZERO EXTENSION
CONCATENATION OF BIT FIELDS
MIPS32 RELEASE 2 INSTRUCTION
ASSEMBLER PSEUDO-INSTRUCTION

PLEASE REFER TO “MIPS32 ArcHITECTURE FOR PROGRAMMERS VOLUME II:

THE MIPS32 INSTRUCTION SET” FOR COMPLETE INSTRUCTION SET INFORMATION.

ARITHMETIC QPERATIONS

Logicat anp Bir-FiELp OPERATIONS

Jumps AND BrancHES (NotE: ONE DELaY SLOT)

ADD Rp, Rs, Rt Rp=Rs+Rr (OVERFLOW TRAP)
ADDI Rp, Rs, constl6 | RD=Rs + consT16® (OVERFLOW TRAP)
ADDIU Rb, Rs, constl6 | Rb = Rs + const16®
ADDU Rp, Rs, Rt Rp=Rs +Rr
CLO Rb, Rs Rb = CounTLEADINGONES(RS)
CLZ Rbp, Rs Rp = CountLEADINGZEROS(RS)
LA Rp, LABEL Rp = ADDRESS(LABEL)
LI Rp, mm32 Rp = mm32
Rbp, constl6 Rp = constl6 << 16
Rp, Rs Rp=Rs
Rp, Rs Rp=-Rs
Rp, Rs Rbp = Rsy*
Rp, Rs Rbp = Rs;s0"
Rp, Rs, Rt Rp=Rs—Rr (OVERFLOW TRAP)
Rb, Rs, Rt Rp=Rs—Rr

SHIFT AND ROTATE OPERATIONS

ROTR® Rp, Rs, BITSS RD = Rsprss_i0 3 RS31:mirss
ROTRV®? Rp, Rs, RT - RD = Rsgprao-10 33 RS31:r140
SLL Rb, Rs, sHirr5 ‘ Rp = Rs << surrr5

SLLV Rp, Rs, Rt Rp = Rs << Ry

SRA Rb, Rs, sHIFTS Rb = Rs* >> sHirr5
SRAV Rbp, Rs, Rt Rbp = Rs®™ >> Ry

SRL Rb, Rs, sHirr5 Rp = Rs? >> suirr5
SRLV Rbp, Rs, Rt Rp = Rs” >> Ry,

Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

AND Rb, Rs, Rt Rp=Rs &Rt

ANDI Rbp, Rs, const16 | Rp =Rs & consr16?

EXT® Rp,Rs,P, S Rs = Rspis.6”

INSR? Rp, Rs, P, S Rbpis.ip = Rssio

NOP No-op

NOR Rbp, Rs, Rt Rp=~(Rs|RT)

NOT Rp, Rs Rp =~Rs

OR Rp, Rs, Rt Rp=Rs|Rr

ORI Rp, Rs, constl6 | Rp = Rs | const16”

WSBH® Rbp, Rs RD = Rs23.16 2 RS3104 12 RSz 12 Rsyss

XOR Rp, Rs, Rt Rp=Rs @ Rr

XORI Rb, Rs, const16 | Rp = Rs @ const16”

ConoitioN TESTING AND ConpITIONAL MOVE OPERATIONS

MOVN Rbp, Rs, Rt FRT#0, Ro=Rs

MOVZ Rbp, Rs, Rt FRT=0, Rp=Rs

SLT Rp, Rs, Rt Rp=(Rs*<R1)?1:0

SLTI Rp, Rs, constl6 | Rp = (Rs* <constl6%)?1:0

SLTIU Rp, Rs, constl6 | Rp = (Rs? < const167) ?21: 0

SLTU Rbp, Rs,Rr Ro=(Rs?<R1%)?1:0
MouLtipLy AND D1vIDE OPERATIONS

DIV Rs, Rt Lo = Rs*/ Rr*; Hi = Rs* mop R1*

DIVU Rs,Rr Lo =Rs?/ R1?; Hi = Rs? mop R1?

MADD Rs, Rt Acc += Rs* x R1*

MADDU Rs, Rt Acc += Rs? x R1?

MSUB Rs, Rt Acc —= Rs* x R1*

MSUBU Rs, Rt Acc —= Rs? x R1°

MUL Rb, Rs, Rt Rp=Rs* x R1*

MULT Rs,Rr Acc = Rs" x R1™

MULTU Rs, Rt Acc =Rs” x R1?
AccumuLATOR ACCESS OPERATIONS

MFHI Rp Rp=Hi

MFLO Ro Rp=Lo

MTHI Rs Hi=Rs

MTLO Rs Lo=Rs

B OFF18 PC += orrl8*
BAL orr18 Ra=PC + 8, PC += orr18*
BEQ Rs, R, oFr18 IF Rs =R, PC += orr18*
BEQZ Rs, orrl8 1 Rs =0, PC += orr18*
BGEZ Rs, oFr18 IF Rs > 0, PC += orr18*
BGEZAL Rs, orrl8 Ra=PC+ 8;1¥r Rs >0, PC += orr18*
BGTZ Rs, oFrl8 F Rs >0, PC += orr18*
BLEZ Rs, oFr18 IF Rs <0, PC += orr18*
BLTZ Rs, oFrl8 ¥ Rs <0, PC += orr18*
BLTZAL Rs, orrl8 Ra=PC + 8; ¥ Rs <0, PC += orr18*
BNE Rs, R, oFr18 IF Rs # R, PC += orr18*

Rs, orr18 IF Rs #0, PC += orr18*
J ADDR28 PC = PCj a5 :: ADDR28?
JAL ADDR28 Ra=PC + 8; PC = PCs;.5 :: ADDR28”
JALR Rbp, Rs Rp=PC +8; PC=Rs
JR Rs PC=Rs

Lo4p AND STORE OPERATIONS

LB Rb, orr16(Rs) Rb = MemM8(Rs + orr16%)*
LBU Rb, orr16(Rs) Rp = MEMS(RS + 0FF16%)?
LH Rb, orr16(Rs) Rbp = MEM16(Rs + oFr16%)*
LHU Rp, orr16(Rs) Rp = MEM16(Rs + orF16%)?
Lw Rb, orr16(Rs) Rp = MEm32(Rs + orr16%)
LWL Rb, orr16(Rs) Rbp = LoaApDWorDLEFT(RS + 0FF167)
LWR Rb, orr16(Rs) Rp = LoADWOoRDRIGHT(RS + 0FF167)
SB Rs, oFr16(R1) MEM8(RT + 0FF16*) = Rs7,
SH Rs, orr16(RT) MEM16(RT + 0FF16%) = Rs;50
SW Rs, orr16(RT) MEM32(RT + 0FF16¥) = Rs
SWL Rs, orr16(RT) StorREWORDLEFT(RT + 0FF16%, Rs)
SWR Rs, orr16(RT) STorREWORDRIGHT(RT + 0FF16%, Rs)

Rb, orr16(Rs)

Rb = uNaLIGNED_MEM32(Rs + oFr16%)

USwW Rs, orr16(RT) UNALIGNED MEM32(RT + 0FF16%) = Rs
Artomic REaD-Mobiry-WRITE OPERATIONS

LL Rb, orr16(Rs) Rp = MeEM32(Rs + orr16%); LINK

sc Ro, orr16(Rs) 1F Atomic, MEM32(Rs + oFr16®) = Rp;

Ro=Artomic?1:0
MD00565 Revision 01.01

REGISTERS

0 zero | Always equal to zero
1 at | Assembler temporary; used by the assembler
2-3 v0-vl | Return value from a function call
4-7 a0-a3 | First four parameters for a function call
8-15 | t0-t7 Temporary variables; need not be preserved
16-23 | s0-s7 | Function variables; must be preserved

24-25 | t8-t9 | Two more temporary variables

28 gp | Global pointer

ReapinG THE CycLe Count ReGister From C

unsigned mips_cycle counter read()

{
unsigned cc;
asm volatile ("mfcO %0, $9" : "=r" (cc));
return (cc << 1);

AsSEMBLY-LANGUAGE Function ExaMPLE

Aromic REap-Mobpiry-WRITE EXAMPLE

26-27 | kO-k1 | Kernel use registers; may change unexpectedly

29 sp | Stack pointer
30 fp/s8 | Stack frame pointer or subroutine variable
31 ra Return address of the last subroutine call

DEeravLt C CaLLing Convention (032)

Stack Management
¢ The stack grows down.

¢ Subtract from $sp to allocate local storage space.

¢ Restore $sp by adding the same amount at function exit.
¢ The stack must be 8-byte aligned.

¢ Modify $sp only in multiples of eight.

Function Parameters

¢ First four parameters are passed in registers $a0—$a3.
* 64-bit parameters are passed in register pairs:
¢ Little-endian mode: $al:$a0 or $a3:$a2.
¢ Big-endian mode: $a0:$al or $a2:$a3.
¢ Every subsequent parameter is passed through the stack.
¢ First 16 bytes on the stack are not used.
¢ Assuming $sp was not modified at function entry:
¢ The 1% stack parameter is located at 16(S$sp).
* The 2™ stack parameter is located at 20($sp), etc.
® 64-bit parameters are 8-byte aligned.

Return Values
* 32-bit and smaller values are returned in register $v0.
* 64-bit values are returned in registers $v0 and $v1:

¢ Little-endian mode: $v1:$v0.

* Big-endian mode: $v0:$v1.

MIPS32 VirruaL ADDRESS SPACE

¢ Every parameter smaller than 32 bits is promoted to 32 bits.

int asm max(int a, int b)

#{

int r = (a < b) 2 b : a;

return r;

)
.text
.set nomacro
.set noreorder
.global asm _max
.ent asm_max

asm max:
move Sv0, $al #r=a
slt $t0, $al0, $Sal # a<Db?
jr Sra # return
movn Sv0, $al, $tO # if yes, r = Db
.end asm_max

atomic inc:

11 $t0, 0($a0) # load linked
addiu Stl, $to0, 1 # increment

sc Stl, 0($a0) # store cond'l
beqgz S$tl, atomic inc # loop if failed
nop

AccesSING UNALIGNED D ATA
NoTE: ULW aND USW AUTOMATICALLY GENERATE APPROPRIATE CODE

LirrLe-ENpiaN MobE BiG-Enpian MopE
LWR Rb, orr16(Rs) LWL Rb, orr16(Rs)
LWL Rb, orr16+3(Rs) LWR Rb, orr16+3(Rs)
SWR Rp, orr16(Rs) SWL Rb, orr16(Rs)
SWL Rb, orr16+3(Rs) SWR Rb, orr16+3(Rs)

AccessING UNALIGNED Data From C

C / AssemBLY-LANGUAGE FuncTIoN INTERFACE

#include <stdio.h>
int asm max(int a, int b);

int main ()

{
int x = asm max (10, 100);
int y = asm _max (200, 20);
printf ("%d %d\n", x, y):

typedef struct
{

int u;
} __attribute_ ((packed)) unaligned;

int unaligned load(void *ptr)

{
unaligned *uptr = (unaligned *)ptr;
return uptr->u;

MIPS SDE-GCC CompiLEr DEFINES

_ mips MIPS ISA (= 32 for MIPS32)
__mips_isa rev MIPS ISA Revision (= 2 for MIPS32 R2)

__mips_dsp DSP ASE extensions enabled
_MIPSEB Big-endian target CPU
_MIPSEL Little-endian target CPU

kseg3 | 0xE000.0000 = OxFFFF.FFFF | Mapped Cached

Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

ksseg | 0xC000.0000 = OxDFFF.FFFF | Mapped Cached
ksegl | 0xA000.0000 =OxBFFF.FFFF | Unmapped @ Uncached
ksegO | 0x8000.0000 = Ox9FFF.FFFF | Unmapped Cached
useg | 0x0000.0000 Ox7FFF.FFFF | Mapped Cached

Invokine MULT Anp MADD Instructions From C

int dp(int a[], int b[], int n)
{

int 1i;
long long acc = (long long) al[0] * b[0];
for (i = 1; 1 < n; i++)

acc += (long long) ali] * blil;
return (acc >> 31);

_MIPS ARCH CPU Target CPU specified by -march=CPU

_MIPS_TUNE_CPU | Pipeline tuning selected by -mtune=CPU

Nortes

¢ Many assembler pseudo-instructions and some rarely used
machine instructions are omitted.

¢ The C calling convention is simplified. Additional rules apply
when passing complex data structures as function parameters.

¢ The examples illustrate syntax used by GCC compilers.

* Most MIPS processors increment the cycle counter every other
cycle. Please check your processor documentation.

MD00565 Revision 01.01

