Carola Wenk's web pages.
Computational Geometry

In Computational Geometryw we deal with geometric algorithms. So, for example, imagine a few pins on a pinboard, and now hold a rubber band around them, and let the rubber band snap tight. It will form a polygon around the pins, which is called the convex hull of the pins. How do you compute it?

Related projects:
[LOGO] Shape Matching of Curves
Compare geometric shapes described by polygonal curves using adequate distance measures such as the "man-dog" Fréchet distance.
[LOGO] Geodesic Distances for Shapes
Compare shapes on surfaces using shortest distances between points along the surface. This has high applicability in military and GIS applications in which objects traveling on various terrains are involved.
[LOGO] Map-Matching and Routing
Algorithms for matching GPS curves to a given roadmap and reactive routing algorithms that adapt to dynamically changing travel-times are essential technical components for Traffic Estimation and Prediction Systems.
[LOGO] Drawing Graphs with Fat Edges
Drawing graphs with edges of variable thickness. The thickness of an edge is often used as a visualization cue, to indicate importance, or to convey some additional information.
[LOGO] 2D Frechet Distance
The Frechet distance is a well-suited distance measure for the comparison of surfaces.

Last modified by Carola Wenk,   cwenk  -at-   tulane  -dot-   edu ,