
Interprocess Communication
CMPS 4760/6760: Distributed Systems

1

Acknowledgement: slides adapted from the slides accompanied by the book: James Kurose and Keith 
Ross, Computer Networking: A Top-Down Approach (7th edition), Pearson, 2016



Outline

2

Applications: HTTP (1.6, 5.2), DNS (13.2), …

Middleware
layersUnderlying interprocess communication primitives:

Sockets, message passing, multicast support, overlay networks

TCP/IP

RPC and RMI, indirect communicationChapters 5 & 6

Chapter 3

Chapter 4



An Overview of the Internet

§ Packet switching

§ Performance

§ Internet protocol stack

§ Network layer: IP

§ Transport layer: UDP, TCP

§ Application layer: HTTP, DNS

3



A Nuts-and-Bolts View of the Internet
§ Hosts = end systems

• Running network apps
• Billions of connected computing devices

§ Communication links
• copper, cables, fiber, radio, satellite
• transmission rate (bit/sec), maximum distance

§ Packet switches: forward packets
• Routers and link-layer switches

• ISP: a network of packet switches

§ Internet: “network of networks”

mobile network

global ISP

regional ISP

home 
network

institutional
network

4



A closer look at network structure

§ Network Core
• Interconnected routers

§ Network Edge
• access networks: connect hosts to the core

• DSL, Cable, Ethernet, Wireless, Fiber to the home 
(FTTH), Satellite

• hosts: clients and servers
• clients: desktops, smartphones, smart devices
• servers: service/content providers, often in data 

centers

mobile network

global ISP

regional ISP

home 
network

institutional
network

5



The Network Core

§ mesh of interconnected routers

§ packet-switching: hosts break application-layer 
messages into packets

• A packet: header + payload (a set of bits)

• forward packets from one router to the next, across 
links on path from source to destination

• each packet transmitted at full link capacity

6



local forwarding table
header value output link

0100
0101
0111
1001

3
2
2
1

Key network-core functions

7

routing algorithm

1
23

0111

destination address in arriving
packet’s header

forwarding: move packets 
from router’s input to 
appropriate router output

routing: determines source-
destination route taken by packets

§ routing algorithms



Four sources of packet delay

8

nodal
processing queueing

A

B

dproc: nodal processing
§ check bit errors
§ determine output link
§ typically < msec

dqueue: queueing delay
§ time waiting at output link for 

transmission 
§ depends on congestion level 

of router



Four sources of packet delay

9

propagation

nodal
processing queueing

dnodal = dproc + dqueue + dtrans +  dprop

A

B

transmission

dtrans: transmission delay:
§ L: packet length (bits) 
§ R: link bandwidth (bps)
§ dtrans = L/R

dprop: propagation delay:
§ d: length of physical link
§ s: propagation speed (~2x108 m/sec)
§ dprop = d/s



Queueing and packet loss

§ Each output link has a queue (buffer) of finite space
§ An arriving packet will queue when link is busy
§ Packet loss will occur when the output queue is full 

10

A

B

CR = 100 Mb/s

R = 1.5 Mb/s
D

E
queue of packets

waiting for output link



Internet protocol stack

§ application: supporting network applications
• HTTP, SMTP, FTP,…

§ transport: process-process data transfer
• TCP, UDP

§ network: routing of datagrams from source to destination
• IP

§ link: data transfer between neighboring network elements
• Ethernet, WiFi, …

§ physical: bits “on the wire”

11

application

transport

network

link

physical



Internet protocol stack

12
[Walrand and Parekh] 



source
application
transport
network

link
physical

HtHn M

segment Ht

datagram

destination
application
transport
network

link
physical

HtHnHl M

HtHn M

Ht M

M

network
link

physical

link
physical

HtHnHl M

HtHn M

HtHn M

HtHnHl M

router

switch

Encapsulation

13

message M

Ht M

Hn

frame

[Kurose and Ross]



Network Layer

§ transport segment from sending to 
receiving host 

§ network layer protocols in every host
& router

§ router examines header fields in all IP 
datagrams passing through it

§ The Internet’s network layer provides 
“best-effort” service

14

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical network

data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical



Network layer: data plane, control plane

15

Data plane

§ local, per-router function
• forwarding 
• dropping
• modify field
• …

Control plane
§ network-wide logic

• routing
• access control
• load balancing
• …

§ two control-plane approaches:
• traditional routing algorithms: 

implemented in routers
• software-defined networking 

(SDN): implemented in (remote) 
servers

1

23

0111

values in arriving 
packet header



IP addressing: introduction

§ IP address: 32-bit identifier for host, 
router interface

§ interface: boundary between 
host/router and physical link

• routers typically have multiple interfaces
• host typically has one or two interfaces (e.g., 

wired Ethernet, wireless 802.11)

§ IP addresses associated with each 
interface

16

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11



Subnets

§ IP address:
• subnet part - high order bits
• host part - low order bits 

§ what’s a subnet ?
• device interfaces with same subnet part 

of IP address
• can physically reach each other without 

intervening router

17

subnet mask: /24

223.1.1.0/24
223.1.2.0/24

223.1.3.0/24

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2223.1.3.1

subnet

223.1.1.2

223.1.3.27
223.1.2.2

223.1.2.1



Routing: graph abstraction

18

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5 c(x,x’) = cost of link (x,x’)
e.g., c(w,z) = 5

cost could always be 1, or 
inversely related to bandwidth,
or related to congestion or delay

cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)  

key question: what is the least-cost path between u and z ?

routing algorithm: algorithm that finds that least cost path



Making routing scalable

our routing study thus far - idealized 
§ all routers identical
§ network “flat”
… not true in practice

19

scale: with billions of destinations:

§ can’t store all destinations in 
routing tables!

§ routing table exchange would 
swamp links! 

administrative autonomy
• internet = network of 

networks
• each network admin may 

want to control routing in its 
own network



Internet approach to scalable routing

20

aggregate routers into regions known as “autonomous 
systems” (AS) (a.k.a. “domains”)

inter-AS routing
• routing among AS’es
• gateway router: at “edge” of its 

own AS, has link(s) to router(s) in 
other AS’es

• gateways perform inter-domain 
routing (as well as intra-domain 
routing)

intra-AS routing
§ routing among hosts, routers 

in same AS (“network”)
§ all routers in AS must run 

same intra-domain protocol
§ routers in different AS can run 

different intra-domain routing 
protocol



Interconnected ASes

21

3b

1d

3a

1c
2aAS3

AS1
AS2

1a

2c
2b

1b

Intra-AS
Routing 
algorithm

Inter-AS
Routing 
algorithm

Forwarding
table

3c

§ forwarding table  configured by 
both intra- and inter-AS routing 
algorithm
• intra-AS routing determine 

entries for destinations 
within AS

• inter-AS & intra-AS 
determine entries for 
external destinations



NAT: network address translation

§ IPv4 has ~4.3 billion IP addresses, but we have

• ~7.6 billion people in 2018, each with multiple devices 

• ~30 billion Internet of Things (IoT) devices in 2020

§ motivation: local network uses just one IP address as far as outside world is 
concerned:
§ range of addresses not needed from ISP:  just one IP address for all devices
§ can change addresses of devices in local network without notifying outside world
§ devices inside local net not explicitly addressable, visible by outside world (a security 

plus)

22



NAT: network address translation

23

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0/24

rest of
Internet

datagrams with source or 
destination in this network
have 10.0.0/24 address for 
source, destination (as usual)

all datagrams leaving local
network have same single 

source NAT IP address: 
138.76.29.7,different 
source port numbers

Private IP addresses:

10.x.x.x

192.168.x.x
172.16.0.0 – 172.31.255.255



IPv6

§ initial motivation: 32-bit address space soon to be completely allocated.  

§ additional motivation:
• header format helps speed processing/forwarding
• header changes to facilitate QoS

IPv6 datagram format: 
• 128-bit address space 
• fixed-length 40 byte header
• no fragmentation allowed

24



Transport layer

§ provide logical communication between 
app processes running on different hosts

§ transport protocols run in end systems 
• send side: breaks app messages into 

segments, passes to  network layer
• rcv side: reassembles segments into 

messages, passes to app layer

§ more than one transport protocol 
available to apps

• Internet: TCP and UDP

25

application
transport
network
data link
physical

logical end-end transport

application
transport
network
data link
physical



Transport vs. network layer

§network layer: logical communication between hosts

§ transport layer: logical communication between processes
• relies on, enhances, network layer services

26



Internet transport-layer protocols

§ unreliable, unordered delivery: UDP
• connectionless
• no-frills extension of “best-effort” IP

§ reliable, in-order delivery (TCP)
• connection-oriented: 3-way handshake
• flow control
• congestion control 

§ services not available: 
• delay guarantees
• bandwidth guarantees

27

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical network

data link
physical

logical end-end transport



Internet apps:  application, transport protocols

28

application

e-mail
remote terminal access

Web 
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube), 
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP



Addressing processes

29

§ to receive messages, process  
must have identifier

§ host device has unique 32-
bit IP address

§ Q: does IP address of host on 
which process runs suffice 
for identifying the process?

§ identifier includes both IP 
address and port numbers
associated with process on 
host.

§ example port numbers:
• HTTP server: 80
• mail server: 25

§ to send HTTP message to 
cs.tulane.edu web server:

• IP address: 129.81.226.25
• port number: 80

§ A: no, many processes 
can be running on same 
host



Socket
§ process sends/receives messages to/from its socket

§ socket analogous to door
• sending process shoves message out door
• sending process relies on transport infrastructure on other side of door to 

deliver message to socket at receiving process

30

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket



TCP multiplexing and demultiplexing

31

transport

application

physical
link

network

P2
transport

application

physical
link

transport

application

physical
link

network

P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP 
address A

host: IP 
address C

server: IP 
address B

network

P4

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P1

threaded server



Principles of reliable data transfer

§ important in application, transport, link layers
• top-10 list of important networking topics!

32



Principles of reliable data transfer

§ important in application, transport, link layers
• top-10 list of important networking topics!

33

characteristics of unreliable 
channel determine complexity 
of reliable data transfer protocol



Potential Channel Errors

§ bit errors

§ loss (drop) of packets

§ reordering or duplication

Ø characteristics of unreliable channel determine complexity of 
reliable data transfer protocol

34



A simple stop-and-wait protocol

35

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1



A simple stop-and-wait protocol

36

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1
ack1send pkt0

rcv ack1 pkt0

rcv pkt0
send ack0ack0



TCP reliable data transfer

37

§ TCP creates reliable data transfer service on top of IP’s 
unreliable service

• pipelined segments
• cumulative acks
• single retransmission timer

§ retransmissions triggered by:
• timeout events
• duplicate acks



TCP: retransmission scenarios

38

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

SendBase=92

SendBase=100

X
cumulative ACK

Seq=92, 8 bytes of data

ACK=100

Seq=120,  15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

Host BHost A



TCP fast retransmit

39

§ time-out period often relatively long:
• long delay before resending lost packet

§ detect lost segments via duplicate ACKs.
• sender often sends many segments back-to-back

• if a segment is lost, there will likely be many 
duplicate ACKs.

§ TCP fast retransmit
• if sender receives 3 duplicates ACKs for same data, 

resend unacked segment with smallest seq #
§ likely that unacked segment lost, so don’t wait 

for timeout

X

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut

ACK=100

ACK=100
ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data



Outline

40

Applications: HTTP (1.6, 5.2), DNS (13.2), …

Middleware
layersUnderlying interprocess communication primitives:

Sockets, message passing, multicast support, overlay networks

TCP/IP

RPC and RMI, indirect communicationChapters 5 & 6

Chapter 3

Chapter 4



HTTP overview

HTTP: HyperText Transfer Protocol
§ Web’s application layer protocol

§ client/server model
• client: browser that requests, 

receives, (using HTTP protocol) and 
“displays” Web objects 

• server: Web server sends (using 
HTTP protocol) objects in response 
to requests

§ RFC 2068, RFC 2616, RFC 7230

41

PC running
Firefox browser

server 
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response



Non-persistent HTTP
suppose user enters URL: (contains text, references to 10 jpeg images)

www.someSchool.edu/someDepartment/home.index

42

1a. HTTP client initiates TCP connection 
to HTTP server (process) at 
www.someSchool.edu on port 80

2. HTTP client sends HTTP request 
message (containing URL) into TCP 
connection socket. Message 
indicates that client wants object 
someDepartment/home.index

1b. HTTP server at host 
www.someSchool.edu waiting for TCP 
connection at port 80.  “accepts”
connection, notifying client

3. HTTP server receives request 
message, forms response message
containing requested object, and 
sends message into its sockettime



Non-persistent HTTP (cont.)

43

5. HTTP client receives response 
message containing html file, 
displays html.  Parsing html file, 
finds 10 referenced jpeg  objects

6. Steps 1-5 repeated for each of 
10 jpeg objects

4. HTTP server closes TCP 
connection. 

time



Persistent HTTP

§ server leaves connection open after sending response

§ subsequent HTTP messages between same client/server sent over open 
connection

§ client sends requests as soon as it encounters a referenced object 
(pipelining)

44



HTTP request message
§ two types of HTTP messages: request, response
§ HTTP request message:

• ASCII (human-readable format)

45

request line
(GET, POST, 
HEAD commands)

header
lines

carriage return, 
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character



HTTP response message

46

status line
(protocol
status code
status phrase)

header
lines

data, e.g., 
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
data data data data data ... 



Web caches (proxy server)

§ goal: satisfy client request without involving origin server

47

§ user sets browser: Web 
accesses via cache

§ browser sends all HTTP 
requests to cache
• object in cache: cache 

returns object 
• else cache requests object 

from origin server, then 
returns object to client

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin 
server

origin 
server

HTTP response HTTP response



Conditional GET 

48

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.1 

304 Not Modified

object 
not 

modified
before 
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.1 200 OK

<data>

object 
modified 

after 
<date>

proxy server

HTTP request msg

HTTP response
HTTP/1.1

Last-Modified: <date>



More about Web caching

§ cache acts as both client and server
• server for original requesting client
• client to origin server

§ typically cache is installed by ISP (university, company, residential ISP)

why Web caching?

§ reduce response time for client request

§ reduce traffic on an institution’s access link

§ reduce Internet traffic as a whole

49



DNS: domain name system

50

people: many identifiers:
• SSN, name, passport #

Internet hosts, routers:
• IP address (32 bit) - used for 

addressing datagrams
• “name”, e.g., www.yahoo.com

- used by humans

Q: how to map between IP address 
and name, and vice versa ?

Domain Name System:
• distributed database implemented in 

hierarchy of many name servers
• application-layer protocol: hosts, 

name servers communicate to resolve
names (address/name translation)

• note: core Internet function, 
implemented as application-layer 
protocol

• complexity at network’s “edge”



DNS: a distributed, hierarchical database

51

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

client wants IP for www.amazon.com; 1st approximation:
• client queries root server to find com DNS server
• client queries .com DNS server to get amazon.com DNS server
• client queries amazon.com DNS server to get  IP address for 

www.amazon.com

… …

top-level domain (TLD) servers

authoritative DNS servers



DNS: a distributed, hierarchical database

52

why not centralize DNS?
• single point of failure
• traffic volume
• distant centralized database
• maintenance: huge database, frequent update

A: doesn’t scale!



DNS name resolution example

53

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server
§ host at cis.poly.edu wants IP 

address for gaia.cs.umass.edu

iterative query:
§ contacted server replies with 

name of server to contact
§ “I don’t know this name, but 

ask this server”

§ All DNS query and replay 
messages are sent within UDP 
datagrams to port 53



DNS name resolution example

54

recursive query:
§ puts burden of name 

resolution on contacted 
name server

§ heavy load at upper levels 
of hierarchy?

45

6

3

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

TLD DNS 
server



DNS: caching, updating records

§ once (any) name server learns mapping, it caches mapping
• cache entries timeout (disappear) after some time (Time to live, or TTL)
• TLD servers typically cached in local name servers

• thus root name servers not often visited

§ cached entries may be out-of-date (best effort name-to-address translation!)
• if name host changes IP address, may not be known Internet-wide until all TTLs 

expire

§ update/notify mechanisms proposed IETF standard

55



DNS records

56

DNS: distributed database storing resource records (RR)

type=NS
• name is domain (e.g., 

foo.com)
• value is hostname of 

authoritative name 
server for this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some 

“canonical” (the real) name
§ www.ibm.com is really

servereast.backup2.ibm.com

§ value is canonical name

type=MX
§ value is canonical name of a mail 

server associated with alias name



Outline

57

Applications: HTTP (1.6, 5.2), DNS (13.2), …

Middleware
layersUnderlying interprocess communication primitives:

Sockets, message passing, multicast support, overlay networks

TCP/IP

RPC and RMI, indirect communicationChapters 5 & 6

Chapter 3

Chapter 4



Socket programming 

§ goal: learn how to build client/server applications that communicate 
using sockets

58

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket



Socket programming 

59

Application Example:

1. client reads a string and sends it to server

2. server receives the data and converts characters to uppercase

3. server sends modified data to client

4. client receives modified data and displays line on its screen



Java Socket Programming: TCP client

60

import java.net.*;
import java.io.*;
public class TCPClient {

public static void main (String args[]) {
// arguments supply message and hostname of destination
Socket s = null;

try{
int serverPort = 7896;
s = new Socket(args[1], serverPort);    
DataInputStream in = new DataInputStream( s.getInputStream());
DataOutputStream out =

new DataOutputStream( s.getOutputStream());
out.writeUTF(args[0]);        // UTF is a string encoding see Sn 4.3
String data = in.readUTF();
System.out.println("Received: "+ data) ;      

}catch (UnknownHostException e){
System.out.println("Sock:"+e.getMessage()); 

}
…

}
}



Java Socket Programming: TCP server

61

import java.net.*;
import java.io.*;
public class TCPServer {

public static void main (String args[]) {
try{

int serverPort = 7896; 
ServerSocket listenSocket = new ServerSocket(serverPort);
while(true) {

Socket clientSocket = listenSocket.accept();
Connection c = new Connection(clientSocket);

}
} catch(IOException e) {System.out.println("Listen :"+e.getMessage());}

}
}



62

class Connection extends Thread {
DataInputStream in;
DataOutputStream out;
Socket clientSocket;
public Connection (Socket aClientSocket) {

try {
clientSocket = aClientSocket;
in = new DataInputStream( clientSocket.getInputStream());
out =new DataOutputStream( clientSocket.getOutputStream());
this.start();

} catch(IOException e)  {System.out.println("Connection:"+e.getMessage());}
}
public void run(){

try { // an echo server
String data = in.readUTF();
out.writeUTF(data.toUpperCase());

} catch(EOFException e) {System.out.println("EOF:"+e.getMessage());
} catch(IOException e) {System.out.println("IO:"+e.getMessage());}
} finally{ try {clientSocket.close();}catch (IOException e){/*close failed*/}}

}
}



IP Multicast

§ Unreliable multicast
• UDP with multicast address: no guarantee on 

reliability and ordering
• Reliable multicast discussed in Chapter 15

§ Weak group membership service 
• Allow processes to join or leave groups dynamically
• Does not maintain group views 
• View-synchronous group communication discussed 

in Chapter 18

63

• IP multicast addresses: 
224.0.0.0 - 239.255.255.255

• IP broadcast address: 
255.255.255.255



An Example of Java IP multicast 

64

import java.net.*;
import java.io.*;
public class MulticastPeer{

public static void main(String args[]){ 
// args give message contents & destination multicast group (e.g., "228.5.6.7")

MulticastSocket s =null;
try {

InetAddress group = InetAddress.getByName(args[1]);
s = new MulticastSocket(6789);
s.joinGroup(group);
byte [] m = args[0].getBytes();
DatagramPacket messageOut = 

new DatagramPacket(m, m.length, group, 6789);
s.send(messageOut);

Any UDP socket can send 
to multicast addresses. 
However, to receive 
multicast datagrams, you 
must join that specific 
group address. 



65

// get messages from others in group
byte[] buffer = new byte[1000];
for(int i=0; i< 3; i++) {

DatagramPacket messageIn = 
new DatagramPacket(buffer, buffer.length);

s.receive(messageIn);
System.out.println("Received:" + new String(messageIn.getData()));

}
s.leaveGroup(group);

}catch (SocketException e){System.out.println("Socket: " + e.getMessage());
}catch (IOException e){System.out.println("IO: " + e.getMessage());}

}finally {if(s != null) s.close();}
}

}



Outline

66

Applications: HTTP (1.6, 5.2), DNS (13.2), …

Middleware
layersUnderlying interprocess communication primitives:

Sockets, message passing, multicast support, overlay networks

TCP/IP

RPC and RMI, indirect communicationChapters 5 & 6

Chapter 3

Chapter 4



Remote Procedure Call

§ Data representation and marshalling

§ Programming with interfaces

§ Supporting different call semantics

§ Providing at least location & access transparencies

67



External data representation and marshalling

§ Heterogeneity in data representation

• integers: Big-endian vs. little-endian

• characters: ASCII vs. Unicode

• floating-point numbers, arrays, structures, objects, …

68



External data representation and marshalling

§ A common data representation

• Data converted to an agreed extern format

• Data transmitted in sender’s format together with an indicator of format

§ Marshalling - taking a collection of data items and assembling them into a form 
suitable for transmission in a message

§ Unmarshalling – disassembling data on arrival on arrival to produce an equivalent 
collection of data items at the destination

69



Examples of Data Representation Approaches

§ CORBA’s common data representation
• External representation for primitive and structured types 
• Support a variety of languages

§ Java object serialization
• Flattening and representation of any single object or a tree of objects
• Java only

§ XML
• A textual format for representing structured data
• May refer to externally defined namespaces

§ More recent approaches: Google’s protocol buffers, JSON, …

70



Java Object Serialization

§ Implemented by java.io.ObjectOutputStream and java.io.ObjectInputStream

§ Not everything should be serialized: e.g., references to local files 71

The true serialized form contains additional type markers; h0 and h1 are handles

§ Person p = new Person(1984 , "Smith", "London");



Programming with interfaces

§ Separation between interface and implementation details 

§ Manage heterogeneity in programming languages and platforms

§ Support for software evolution

72



Request-reply communication

73



Operations of the request-reply protocol

74



Request-reply message structure

§ A message identifier includes a requestId and an identifier for the sender process 

(e.g., sender’s IP address and port number) 
75



Common Failure Types

§ Omission failures: request or reply message lost 

§ Crash failures: server crashes (before or after the procedure is 
executed)

§ Byzantine failures

76



Call Semantics

77



Call Semantics

78

§ Maybe semantics: the remote procedure call may be executed once or not at all



Call Semantics

79

§ At-least-once semantics: the invoker receives either a result, in which case the invoker 
knows that the procedure was executed at least once, or an exception informing it that no 
result was received.

§ Idempotent operation: performed repeatedly has the same effect as performed exactly once



Call Semantics

80

§ At-most-once semantics: the caller receives either a result, in which case the caller knows that 
the procedure was executed exactly once, or an exception informing it that no result was 
received, in which case the procedure will have been executed either once or not at all.



Transparency

§ Ideally, RPC should provide at least location & access transparencies 
§ In practice, RPC needs to deal with 

• failures of the network and remote server process: hard to distinguish
• latency: abort a remote call that takes too long (restore things at the server)
• call by value only

§ Current consensus 
• Provide same syntax to local and remote calls
• Expose the differences at the service interface: remote exception, call 

semantics, etc. 

81



Remote Procedure Call: Implementation

§ Stub: marshalling and unmarshalling

§ Communication module: request-reply, call semantics
82



From RPC to RMI

§ Commonalities: 
• Programming by interfaces
• Similar call semantics
• Similar level of transparency

§ Differences
• RMI provides full expressive power of object-orient programming in 

distributed settings
• All objects in RMI (local or remote) have unique object refences: call by 

reference

83



Remote and local method invocations

§ local method invocations:  method invocations between objects in the same process

§ remote method invocations: method invocations between objects in different 
processes, whether in the same computer or not

§ remote objects: objects that can receive remote invocations
84



Remote Object References

§ Other objects can invoke the methods of a remote object if they have access 
to its remote object reference

§ Remote object references may be passed as arguments and results of remote 
method invocations

§ Each remote object has a unique remote object reference

§ Example:

• Not location transparent
85



A remote object and its remote interface

86



Implementation of RMI

§ The classes for the proxy, dispatcher and skeleton are generated automatically by 
an interface compiler

87



Case Study: Java RMI

§ Built on top of TCP

§ Generic dispatcher via reflection (since Java 1.2) 
• No skeleton needed 

§ Dynamic stub generation (since J2SE 5.0)

§ Dynamic class downloading: java codebase

§ Distributed garbage collection

§ Activatable objects

88



Case Study: Java RMI

§ Remote interfaces 
• defined by extending the Remote interface in java.rmi
• the methods must throw RemoteExeption

§ Parameter and result passing
• Only passing objects that are serializable (implementing the Serializable

interface)
• Remote objects are passed by reference
• Non-remote objects are passed by value

89



The Binder - RMIregistry

§ Client programs generally require a means of obtaining a 
remote object reference for at least one of the remote 
objects held by a server

§ A binder is a naming service that maintains a table containing 
mappings from textual names to remote object references

• used by servers to register their remote objects by name 
and by clients to look them up

90



RMIregistry and Codebase

91

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/codebase.html



Example: “Hello World” with Java RMI

§ https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/hello/hello-
world.html

Hello.java - a remote interface
Server.java - a remote object implementation that implements the remote 
interface
Client.java - a simple client that invokes a method of the remote interface

92

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/hello/Hello.java
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/hello/Hello.java
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/hello/Server.java
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/hello/Client.java


Hello.java

93

package example.hello; 

import java.rmi.Remote; 
import java.rmi.RemoteException; 

public interface Hello extends Remote { 
String sayHello() throws RemoteException; 

}



Server.java
package example.hello; 
import java.rmi.registry.Registry; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.RemoteException; 
import java.rmi.server.UnicastRemoteObject; 

public class Server implements Hello {

public Server() {} 
public String sayHello() { return "Hello, world!"; }

public static void main(String args[]) { 
try { 

Server obj = new Server(); 
Hello stub = (Hello) UnicastRemoteObject.exportObject(obj, 0); 
// Bind the remote object's stub in the registry 
Registry registry = LocateRegistry.getRegistry(); 
registry.bind("Hello", stub); 
System.err.println("Server ready"); 

}   catch (Exception e) {  System.err.println("Server exception: " + e.toString()); e.printStackTrace(); } 
}

}
94

using an 
anonymous port



Client.java

package example.hello; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.registry.Registry; 

public class Client { 
private Client() {} 
public static void main(String[] args) { 

String host = (args.length < 1) ? null : args[0];
try { 

Registry registry = LocateRegistry.getRegistry(host); 
Hello stub = (Hello) registry.lookup("Hello"); 
String response = stub.sayHello(); 
System.out.println("response: " + response); 

} catch (Exception e) { System.err.println("Client exception: " + e.toString()); e.printStackTrace(); } 
} 

}

95



To run the example

Compile the source files:  javac -d destDir Hello.java Server.java Client.java

Start the Java RMI registry: rmiregistry & (mac, linux)
start rmiregistry (windows)

Start the server:
java -classpath classDir -Djava.rmi.server.codebase=file:classDir/ 
example.hello.Server &

Run the client: 

java -classpath classDir example.hello.Client

96



Lab 1: Implementing an Election service using Java RMI

§ Election interface
• vote (string name, int voter)
• result (string name, int num)  

§ Server: implement the Election service

§ Clients: submit votes and query result
§ Requirements

• ensure each user votes once only
• records remain consistent when accessed concurrently by multiple clients

• e.g., using synchronized methods

• records are safely stored even when the server process crashes
• e.g.,  saving records to a file on your disk 

97


