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Overview

§ Physical clocks

§ States and events

§ Logical clocks and vector clocks

§ Global states and snapshot algorithm
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Time and Clock 

§ Primary standard of time: rotation of earth 
• 1 solar second = 1/86,400th of a solar day that the Earth takes to complete one 

revolution around its axis

§ De facto primary standard of time: atomic clocks
• 1 atomic second = 9,192,631,770 orbital transitions of Cesium-133 atom. 
• 86400 atomic sec = 1 solar day – approx. 3 ms (leap second correction each year)

§ Coordinated Universal Time (UTC) does the adjustment for leap seconds ±
number of hours in your time zone
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Global Posi6oning System: GPS

A system of 30+ satellites broadcasting 
accurate spatial coordinates and atomic times

• Location and precise time computed by 
triangulation 

• no leap sec. correction => 18 seconds ahead of 
UTC (as of 2017) 

• Per the theory of relativity, an additional 
correction is needed. Locally compensated by the 
receivers
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Terminology
Drift rate 𝜌 = ! " # $#

!#
Clock skew 𝛿
Resynchronization interval 𝑅

Max drift rate 𝜌%&' implies: 

1 − 𝜌%&' ≤ !"(#)
!#

≤ 1 + 𝜌%&'

Drift is unavoidable:
§ Ordinary quartz-oscillators clocks:  10$*

§ “High precision” quartz clocks: 10$+

§ Atomic clocks: 10$,-
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Physical clock synchronization

§ Why accurate physical Bme is important? 

• Accurate Ime keeping: air-traffic control systems 

• Accurate Imestamps: mulI-version objects

• Some security mechanisms depend on the physical Imes of events, e.g., 
Kerberos

6



Physical clock synchronization

§ External Synchronization: 𝐶! 𝑡 − 𝑆 𝑡 < 𝛿/2

• 𝑆: a source of UTC time

§ Internal Synchronization: 𝐶! 𝑡 − 𝐶" 𝑡 < 𝛿

§ Challenges: account for propagation delay, processing delay, and faulty clocks
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Physical clock synchronization

§ Bounded drift rate

§ Monotonicity:  𝑡# > 𝑡 ⇒ 𝐶 𝑡# > 𝐶(𝑡)

• Y2K bug

§ Hardware clock vs. Software clock 

• 𝐶! 𝑡 = 𝛼𝐻! 𝑡 + 𝛽
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External Synchronization: Cristian’s method
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§ Developed by Cristian in 1989

§ Client sends a request to a time server at 𝑇$
§ Server receives the request at 𝑇% and sends it back

§ Client receives the response at 𝑇&, estimates the round trip
time 𝑅𝑇𝑇 = 𝑇& − 𝑇$, and sets 𝐶! = 𝑇% + 𝑅𝑇𝑇/2

• Q: Assume that the minimum transmission 𝑚𝑖𝑛 is 
known, what is the accuracy of client’s clock right after 
synchronization ?

• A: ±(𝑅𝑇𝑇/2 −𝑚𝑖𝑛)



External Synchronization: Cristian’s method

§ 𝛿/2 − desired accuracy bound

§ 𝜌 − clock drift rate

§ Client pulls data from a time server every 𝑅 unit of time, where
𝑅 < 𝛿/2𝜌 (why?)

• RTT should be sufficiently short compared with the 
required accuracy

§ Improve accuracy and fault tolerance

• Query multiple times & take minimum RTT

• Query multiple time servers
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Internal Synchronization: The Berkeley Algorithm 
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§ Initially designed by Gusella and Zatti in 1989 for internal 
synchronization of a collection of computers running Berkeley UNIX

§ The participants elect a master (leader)

§ The master coordinates the synchronization

Step 1. Salves send their clock values to the master

Step 2. Master discards outliers and computes the average

Step 3. Master sends the needed adjustment to the slaves



The Berkeley Algorithm

To maintain Monotonicity 

§ Negative correction => 
slowdown 

§ Positive correction => 
speedup

12
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Internal synchronization with Byzantine clocks

§ Lamport and Melliar-Smith’s algorithm
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A faulty clock exhibits 2-faced or 
byzantine behavior

Bad clock

j

k

i

c +δ

c c −δ

c − 2δ

Assume𝑁 clocks, at most 𝑓 are faulty

Clock 𝑖 runs the following algorithm:

Step 1. Read every clock in the system

• 𝑐![𝑗]: clock 𝑖’s reading of clock 𝑗’s value

Step 2. if 𝑐.[𝑗] − 𝑐.[𝑖] > 𝛿, 𝑐.[𝑗] = 𝑐.[𝑖]

Step 3. Update the clock using the average of
these values

Synchronization is maintained if  𝑵 > 𝟑𝒇



Lamport and Melliar-Smith’s algorithm
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Bad clocks
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The maximum difference between 
the averages computed by two  
non-faulty nodes is (3𝑓𝛿/𝑁)

To keep the clocks synchronized,
'()
* < 𝛿 ⟺ 𝑁 > 3𝑓



Overview

§ Physical clocks

§ States and events

§ Logical clocks and vector clocks

§ Global states and snapshot algorithm
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System Model 

§ A distributed program consists of a set of 𝑁 processes, {𝑃&, 𝑃', …𝑃(}, 
and a set of unidirectional channels. 

• Message passing only, no shared memory, no global clock

• Channel model: error free, arbitrary but finite delay, no assumptions on ordering
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States and Actions

§ Each process 𝑃! has a state 𝑠! that, in general, it transforms as it executes

• a state includes the values of all the variables within it (including the program counter)

• may also include the values of any objects in its local operating system environment 
that it affects, such as files

§ As each process 𝑃! executes it takes a series of actions, each of which is either 

• message send or receive operation

• or an operation that transforms 𝑃.’s state – one that changes one or more of the values 
in 𝑠.

§ State of a channel: sequence of messages set along the channel but not received

• A process may record messages sent and received as part of its local state
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States and Events

§ An event 𝑒 ∈ 𝐸 corresponds to an acIon and may change the state of a process 
and the state of at most one channel incident on that process

• Internal events only change the state of a process 

• External events: sends to/receives from other process

§ A set of events (𝑒!+, 𝑒!$, 𝑒!&, … ) in a single process is called sequenIal, and their 
occurrences can be totally ordered in Ime using the clock at that process

§ A run or a computaIon of a process 𝑃! is defined as a sequence of local states 
and events: 𝑠!+𝑒!+𝑠!$…𝑒!,𝑠!,
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Global States

§ The set of global states = the 
cross product of local states and 
the states of channels. 

§ An initial global state is one in 
which all local states are initial, 
and all the channels are empty
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Global States

§ “time-based model”:  a global state is a set 
of local states that occur simultaneously

§ “happened-before model”: a global state is 
a set of local states that are all concurrent
with each other 
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Alice

Bob
Explosion 1

Explosion 2

There is nothing called simultaneous in 
the physical world.



Global States

§ Questions: 

• How do we decide if an event happened before another event when the two 
events are on different processes?

• How do we decide if two events are concurrent?

• Can we do these without using physical clocks, since physical clocks are not be 
perfectly synchronized?
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Causality

§ The event of sending message must have happened before the event 
of receiving that message
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Happened Before Model 

Notations:

𝑒 ≺ 𝑓 iff 𝑒, 𝑓 are two events in a single process 𝑃, and 𝑒 proceeds 𝑓

𝑒 ≼ 𝑓 iff 𝑒 ≺ 𝑓 ∨ 𝑒 = 𝑓

𝑒 ↝ 𝑓 iff 𝑒 = sending a message, and 𝑓 = receipt of that message

These definitions also apply to states
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Happened Before Model 

The happened-before relation (→) is the smallest relation that satisfies 

Rule 1. if (𝑒 ≺ 𝑓) ∨ (𝑒 ↝ 𝑓) then 𝑒 → 𝑓.

Rule 2. 𝑒 → 𝑓 ∧ 𝑓 → 𝑔 ⇒ 𝑒 → 𝑔

→ defines a partial order on 𝐸 (the set of all events) – why?

𝑒 and 𝑓 are concurrent (denoted by 𝑒||𝑓) if ¬ 𝑒 → 𝑓 ∧ ¬ 𝑓 → 𝑒

Again, we can similarly define happened-before relation for states
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Overview

§ Physical clocks

§ States and events

§ Logical clocks and vector clocks

§ Global states and snapshot algorithm
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Logical Clocks

§ A logical clock 𝐿𝐶 is a map from 𝐸 to ℕ with the constraint:

∀ 𝑒, 𝑓 ∈ 𝐸, 𝑒 → 𝑓 ⇒ 𝐿𝐶 𝑒 < 𝐿𝐶(𝑓)

§ The constraint models:

• sequential nature of execution at each process

• Physical requirement that any message transmission requires a nonzero 
amount of time   
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Lamport 6mestamps  
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Implementation
𝑷𝒊:: 
var

𝐿𝐶: integer initially 0;

internal event (): 
𝐿𝐶 = 𝐿𝐶 + 1;

send event (𝑚): 
𝐿𝐶 = 𝐿𝐶 + 1;
piggybacks 𝐿𝐶 on 𝑚;

receive event (𝑚, 𝑡): 
𝐿𝐶 = max(𝐿𝐶, 𝑡) + 1;
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A total ordering on events

§ Let 𝑒 and 𝑓 be two events at processes 𝑖 and 𝑗, respectively. We 
can define a total order ≪ of events as:

𝑒 ≪ 𝑓 iff either 𝐿𝐶 𝑒 < 𝐿𝐶 𝑓

or 𝐿𝐶 𝑒 = 𝐿𝐶 𝑓 and 𝑖 < 𝑗
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Logical Clocks and Causality

§ Logical clocks cannot detect causality (why?)

• ∃ 𝑒, 𝑓 ∈ 𝐸, 𝐿𝐶 𝑒 < 𝐿𝐶 𝑓 ∧ (𝑒 ↛ 𝑓)
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Vector Clocks

§ A vector clock 𝑉𝐶 is a map from 𝐸 to ℕ! with the constraint:

∀ 𝑒, 𝑓 ∈ 𝐸, 𝑒 → 𝑓 ⇔ 𝑉𝐶 𝑒 < 𝑉𝐶(𝑓)

§ Given two vectors 𝑥 and 𝑦 of dimension 𝑁, we compare them as follows:

𝑥 < 𝑦 ∶= ∀𝑘: 0 ≤ 𝑘 ≤ 𝑁 − 1: 𝑥 𝑘 ≤ 𝑦 𝑘 ∧ ∃𝑗: 0 ≤ 𝑗 ≤ 𝑁 − 1: 𝑥 𝑗 < 𝑦 𝑗

E.g., (2,1,0)	<	(2,1,1)

𝑥 ≤ 𝑦 ∶= 𝑥 < 𝑦 ∨ (𝑥 = 𝑦)
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Vector timestamps
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Implementation
𝑷𝒊:: 
var

𝑉𝐶: array[1. . 𝑁] of integer; initially 𝑉𝐶 𝑗 = 0 ∀𝑗;

internal event (): 
𝑉𝐶[𝑖] = 𝑉𝐶[𝑖] + 1;

send event (𝑚): 
𝑉𝐶[𝑖] = 𝑉𝐶[𝑖] + 1;

piggybacks 𝑉𝐶 on 𝑚;

receive event (𝑚, 𝑡): 
𝑉𝐶[𝑖] = 𝑉𝐶[𝑖] + 1;

∀𝑗: 𝑉𝐶 𝑗 = max 𝑉𝐶 𝑗 , 𝑡 𝑗 ;
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Properties

∀ 𝑒, 𝑓 ∈ 𝐸, 𝑒 → 𝑓 ⇔ 𝑉𝐶 𝑒 < 𝑉𝐶(𝑓)

Theorem: For any two events 𝑒 and 𝑓 occurred at two processes 𝑖 and 𝑗
respectively, we have

𝑒 → 𝑓 ⇔ ∀𝑘 ≠ 𝑗: 𝑉𝐶 𝑒 𝑘 ≤ 𝑉𝐶 𝑓 𝑘 ∧ (𝑉𝐶 𝑒 𝑗 < 𝑉𝐶 𝑓 𝑗 )
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§ Physical clocks

§ States and events

§ Logical clocks and vector clocks

§ Global states and snapshot algorithm
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Detecting Global Properties
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Global State

§ Current global state is hard to get

• No process has global knowledge

§ Past global state is often sufficient

• Failure recovery

• Monitoring stable properties
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Global State Predicates

§ A global state predicate that maps from the set of global states of 
processes in the system to {True, False}

§ A property is called stable if once it is true it stays true forever

• E.g., Is the object garbage? Is the system deadlocked? Or Is the system 
terminated?
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Global Snapshot
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Global State

§ “time-based model”:  a global state is a set of local states that occur 
simultaneously. 

§ “happened-before model”: a global state is a set of local states that 
are all concurrent with each other. 
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Local States

§ A distributed system ℘ of 𝑁 processes, {𝑃$, 𝑃&, …𝑃*}, connected by unidirectional 
channels. 

§ Event ordering on a single process

• 𝑒 →! 𝑒#:  event 𝑒 occurs before 𝑒′ at 𝑃!
• history(𝑃!) = ℎ! =< 𝑒!+, 𝑒!$, 𝑒!&, … >

• ℎ!, =< 𝑒!+, 𝑒!$, 𝑒!&, … , 𝑒!, >
• 𝑠!, - the state of process 𝑃! immediately before the 𝑘th event occurs, so that 
𝑠!+ is the initial state of 𝑃!
• processes record the sending or receipt of all messages as part of their state
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Cuts

§ A cut of the system’s execution is a subset of its global history that is a union 
of prefixes of process histories:

𝐶 = ℎ$
-! ∪ ℎ&

-" ∪⋯∪ ℎ*
-#

§ 𝑒!
-$ - the last event processed by 𝑃! in the cut 𝐶

§ The set of events 𝑒!
-$: 𝑖 = 1,2, … ,𝑁 is called the frontier of the cut 

§ A cut defines a global state 𝑆 = (𝑠$, 𝑠&, … , 𝑠*) where 𝑠! is the state of 𝑃!
immediately after event 𝑒!

-$
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Cuts
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m1 m2
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e1
0

Consistent cutInconsistent cut

e 1
1

e 1
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e 2
0

e 2
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e 2
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A cut 𝐶 is consistent, if for each event it contains, it also contains all the events that 
happened-before that event:  ∀𝑒 ∈ 𝐶, 𝑓 → 𝑒 ⇒ 𝑓 ∈ 𝐶

A consistent global state (or a snapshot) is one that corresponds to a consistent cut



Runs and Linearizations

§ A run is a total ordering of all the events in a global history that is consistent with 
each local history’s ordering

§ A linearization (or a consistent run) is a total ordering of all the events in a global 
history that is consistent with the happened-before relation

§ A state 𝑆′ is reachable from a state 𝑆 if there is a linearization that passes through 
𝑆 and then 𝑆’
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Safety and Liveness

§ Safety – ``something bad does no occur’’

• A system is safe with respect to an undesirable property 𝛼 if the 𝛼 evaluates to 

False for all states 𝑆 reachable from the original state 𝑆0

§ Liveness – ``something good will eventually occur’’

• For any linearization 𝐿 starting in the state 𝑆0, a desirable property 𝛽 evaluates to 
True for some state 𝑆1 reachable from 𝑆0
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Chandy and Lamport’s snapshot algorithm

§ Assumptions
• Neither channels nor processes fail
• Channels are unidirectional and FIFO-ordered (First in First out)
• The graph of processes and channels is strongly connected (there is a path 

between any two processes)
• Any process may initiate a global snapshot at any time
• The processes may continue their execution and send and receive normal 

messages while the snapshot takes place 
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Chandy and Lamport’s snapshot algorithm

§ Informal description

• Each process is either white or red. All processes are initially white

• After recording the local state, a process turns red

§ Two difficulties

• Need to ensure that the recorded local states are mutually concurrent

• Need to capture the state of channels 
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Classification of Messages

48

𝑃
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Chandy and Lamport’s snapshot algorithm

§ Informal description
• Each process is either white or red. All processes are initially white
• After recording the local state, a process turns red
• Once a process turns red, it is required to send a special message called a 
marker along all its outgoing channels before it sends out any normal 
message, and start recording messages from all incoming channels

• Once 𝑃! receives a marker from 𝑃"
• it is required to turn red if it has not already done so

• it stops recording messages from 𝑃"
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Chandy and Lamport’s snapshot algorithm
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𝑷𝒊:: 

var
𝑐𝑜𝑙𝑜𝑟: {𝑤ℎ𝑖𝑡𝑒, 𝑟𝑒𝑑} initially 𝑤ℎ𝑖𝑡𝑒;
// assume 𝑘 incoming channels
𝑐ℎ𝑎𝑛: array[1. . 𝑘] queues of messages initially 𝑛𝑢𝑙𝑙;
𝑐𝑙𝑜𝑠𝑒𝑑: array[1. . 𝑘] of boolean initially 𝑓𝑎𝑙𝑠𝑒;

𝑡𝑢𝑟𝑛_𝑟𝑒𝑑() enabled if (𝑐𝑜𝑙𝑜𝑟 == 𝑤ℎ𝑖𝑡𝑒):
save_local_state; 
𝑐𝑜𝑙𝑜𝑟 = 𝑟𝑒𝑑;
send (𝑚𝑎𝑟𝑘𝑒𝑟) to all neighbors;

Upon 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑚𝑎𝑟𝑘𝑒𝑟) on channel 𝑗
if(𝑐𝑜𝑙𝑜𝑟 == 𝑤ℎ𝑖𝑡𝑒) 𝑡𝑢𝑟𝑛_𝑟𝑒𝑑();
𝑐𝑙𝑜𝑠𝑒𝑑[𝑗] = 𝑡𝑟𝑢𝑒;

Upon 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑝𝑟𝑜𝑔_𝑚𝑒𝑠𝑠𝑎𝑔𝑒) on channel 𝑗
if(𝑐𝑜𝑙𝑜𝑟 == 𝑟𝑒𝑑 ∧ ¬𝑐𝑙𝑜𝑠𝑒𝑑[𝑗])
𝑐ℎ𝑎𝑛[𝑗] = 𝑎𝑝𝑝𝑒𝑛𝑑(𝑐ℎ𝑎𝑛[𝑗],

𝑝𝑟𝑜𝑔_𝑚𝑒𝑠𝑠𝑎𝑔𝑒)



Chandy and Lamport’s snapshot algorithm

§ The algorithm terminates when 
• All processes have received a Marker 
• To record their own state 

• All processes have received a Marker on all the (N-1) incoming channels at 
each 
• To record the state of all channels 

§ Then, (if needed), a central server collects all these partial state pieces to obtain 
the full global snapshot
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Example 1

P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K

Message
Instruction or Step
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P1 is Initiator: 
• Record local state S1,
• Send out markers
• Turn on recording on channels C21, C31

P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K



S1, Record C21, C31

• First Marker!
• Record own state as S3
• Mark C13 state as empty 
• Turn on recording on other incoming C23
• Send out Markers

P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K



S1, Record C21, C31

• S3
• C13 = < >
• Record C23

P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K



S1, Record C21, C31

• S3
• C13 = < >
• Record C23

Duplicate Marker!
State of channel C31 = < >

P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K



P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K

S1, Record C21, C31

• S3
• C13 = < >
• Record C23

C31 = < >

• First Marker!
• Record own state as S2
• Mark C32 state as empty 
• Turn on recording on C12
• Send out Markers



P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K

S1, Record C21, C31

• S3
• C13 = < >
• Record C23

C31 = < >

• S2
• C32 = < >
• Record C12



P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K

S1, Record C21, C31

• S3
• C13 = < >
• Record C23

C31 = < >

• S2
• C32 = < >
• Record C12

• Duplicate! 
• C12 = < >



P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K

S1, Record C21, C31

• S3
• C13 = < >
• Record C23

C31 = < >

• S2
• C32 = < >
• Record C12

C12 = < >

• Duplicate! 
• C21 = <message HàD >



P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K

S1, Record C21, C31

• S3
• C13 = < >
• Record C23

C31 = < >

• S2
• C32 = < >
• Record C12

C12 = < >

C21 = <message HàD >

• Duplicate!
• C23 = < >



P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K

S1

• S3
• C13 = < >

C31 = < >

• S2
• C32 = < > C12 = < >

C21 = <message HàD >

• C23 = < >

Algorithm has Terminated



P2

Time
P1

P3

A      B                                  C                   D        E                          

F             G                          H

I                                 J                                         K

S1

S3 C13 = < >

C31 = < >

S2   C32 = < >
C12 = < >

C21 = <message HàD >

C23 = < >

Collect the Global Snapshot Pieces



Example 2

§ Two processes trade in 
‘widgets’

§ Process 𝑝$ sends orders for 
widgets over 𝑐& to 𝑝&, 
enclosing payment at the 
rate of $10 per widget

§ Some time later, process 𝑝&
sends widgets along channel 
𝑐$ to 𝑝$
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An Execution of the System
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An Execution of the System

66

The snapshot state is 𝑝$: $1000,0 , 𝑝&: $50,1995 , 𝑐1: bive widgets , 𝑐&:

§ this state differs from all the global states through which the system actually passed



Termination

§ Theorem: The Chandy–Lamport algorithm ensures that eventually all processes turn red
and all channels are closed 

§ Proof sketch: 

• We assume that a process that has received a marker message records its state within a finite time 
and sends marker messages over each outgoing channel within a finite time. 

• If there is a path of communication channels and processes from a process 𝑝% to a process 𝑝&, then 
𝑝& will record its state a finite time after 𝑝% recorded its state and close its incoming channel from 
𝑝%. It will then send a marker to 𝑝% (if 𝑝% is an outgoing neighbor of 𝑝&) so that 𝑝% will close its 
incoming channel from 𝑝& within a finite time.

• Since the graph of processes and channels to be strongly connected, all processes will have 
recorded their states and the states of incoming channels a finite time after some process initially 
records its state.
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Correctness

§ Theorem: The Chandy–Lamport algorithm records a consistent cut/global state 
and all the WR messages

§ Proof sketch (of the first part):
• Let 𝑒! and 𝑒" be events occurring at 𝑝! and 𝑝", respectively, such that 𝑒! → 𝑒". We assert that 

if 𝑒" is in the cut, then 𝑒! is in the cut
• That is, if 𝑒" occurred before 𝑝" recorded its state, then 𝑒! must have occurred before 𝑝!

recorded its state. This is obvious if 𝑖 = 𝑗. Assume 𝑖 ≠ 𝑗.
• Assume 𝑝! recorded its state before 𝑒! occurred (proof by contradiction)
• Consider the sequence of 𝐻 messages 𝑚#, 𝑚$, … ,𝑚%, giving rise to 𝑒! → 𝑒". 
• By FIFO ordering of channels and the marker sending and receiving rules, a marker message 

would have reached 𝑝" ahead of each of 𝑚#, 𝑚$, … ,𝑚%, so that 𝑝" would have recorded its 
state before 𝑒", a contradiction. 
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Understanding snapshot

§ The snapshot state is a consistent global state that is reachable
from the iniWal state. It may not actually be visited during a 
specific execuWon 

§ The final state of the original computaWon is always reachable
from the snapshot state

§ Proof in the textbook
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Reachability

§ If a stable predicate is True in the state 𝑆%./0 then we may conclude that the predicate 
is True in the state 𝑆(!./1

§ If the predicate evaluates to False for 𝑆%./0 , then it must also be False for 𝑆!.!2
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