
Value Function Approximation

CMPS 4660/6660: Reinforcement Learning

1

Acknowledgement: slides adapted from David Silver's RL course

https://www.davidsilver.uk/teaching/

Agenda

• Introduction

• Incremental Methods

• Batch Methods

2

Large-Scale Reinforcement Learning

• Reinforcement learning can be used to solve large problems, e.g.
• Backgammon: 10!" states

• Computer Go: 10#$" states
• Helicopter: continuous state space

• How can we scale up the model-free methods for prediction and control?

3

Value Function Approximation

• So far we have represented value function by a lookup table (tabular setting)

• Every state 𝑠 has an entry 𝑉(𝑠)

• Or every state-action pair 𝑠, 𝑎 has an entry 𝑄(𝑠, 𝑎)

• Problems with large MDPs

• There are too many states and/or actions to store in memory

• It is too slow to learn the value of each state individually

4

Value Function Approximation

• Solution for large MDPs:
• Estimate value function with function approximation

*𝑣 𝑠,𝐰 ≈ 𝑣%(𝑠)
or *𝑞 𝑠, 𝑎,𝐰 ≈ 𝑞%(𝑠, 𝑎)

• Generalize from seen states to unseen states
• Update parameter 𝐰 using MC or TD learning

5

Types of Value Function Approximation

6

Which Function Approximator?

• There are many function approximators, e.g.

• Linear combinations of features

• Neural network

• Decision tree

• Nearest neighbor

• Fourier / wavelet bases

• ...

7

Nonlinear Value Function Approximation

• Use artificial neural networks

8

v̂(S,w)S

state Value

w
parameter

Which Function Approximator?

• We consider differentiable function approximators, e.g.

• Linear combinations of features

• Neural network

• Decision tree

• Nearest neighbor

• Fourier / wavelet bases

• ...

• Furthermore, we require a training method that is suitable for non-stationary,
non-iid data

9

Agenda

• Introduction

• Incremental Methods
• On-policy prediction with value function approximation
• On-policy control with value function approximation
• Off-policy methods with approximation

• Batch Methods

10

Gradient Descent

• Let 𝐽(𝐰) be a differentiable function of parameter vector 𝐰
• Define the gradient of 𝐽(𝐰) to be

• To find a local minimum of 𝐽 𝐰 , adjust 𝐰 in direction of negative
gradient

where 𝛼 is a step-size parameter

11

𝐰&'# = 𝐰& −
1
2𝛼∇𝐰 𝐽(𝐰&)

Gradient Descent

⇔𝐰&'# = argmin𝐰
#
!
𝐰− 𝐰& − 𝛼∇𝐰𝐽 𝐰& !

!

= argmin𝐰 𝛼 𝐰 −𝐰& , ∇𝐰𝐽 𝐰& , +
#
!
𝐰−𝐰& !

!

= argmin𝐰 𝛼[𝐽 𝐰& + 𝐰−𝐰& , ∇𝐰𝐽 𝐰&] + #
!
𝐰−𝐰& !

!

= argmin𝐰 𝛼 𝐰, ∇𝐰𝐽 𝐰& , +
#
!
𝐰−𝐰& !

!

12

𝐰&'# = 𝐰& −
1
2
𝛼∇𝐰 𝐽(𝐰&)

Value Function Approx. By Stochastic Gradient Descent

• Goal: find parameter vector 𝐰 minimizing mean-squared error between
approximate value function "𝑣 𝑠,𝐰 and true value function 𝑣!(𝑠)

• 𝜇 𝑠 ≥ 0,∑"∈𝒮 𝜇 𝑠 = 1

• Often 𝜇(𝑠) is chosen to be the fraction of time spent in 𝑠, i.e., 𝜇 is the stationary
distribution of states under policy 𝜋

13

𝐽(𝐰) = ∑"∈𝒮 𝜇 𝑠 [𝑣! 𝑠 − "𝑣 𝑠, 𝑤) %

Stationary distribution of states under policy 𝜋

14

• Recall that given an MDP 𝒮,𝒜, 𝑃, 𝑟, 𝛾 and a stationary policy, the state
sequence 𝑆&, 𝑆', … is a Markov chain 𝒮, 𝑃! , where

𝑃""!
! = ∑(∈𝒜(")𝜋 𝑎 𝑠 𝑃""! 𝑎

• Given a Markov chain 𝒮, 𝑃 , a probability distribution {𝜇 𝑠 : 𝑠 ∈ 𝒮} is called

• a limiting distribution if 𝜇)! = lim
*→,

𝑃))!
(*), ∀𝑠, 𝑠′

• a stationary distribution if 𝜇 ⋅ 𝑃 = 𝜇

• Theorem: If a finite state Markov chain is irreducible and aperiodic, it must have a limiting
distribution, which is also stationary and is unique (such a chain is called ergodic).

Value Function Approx. By Stochastic Gradient Descent

• Goal: find parameter vector 𝐰 minimizing

• Gradient descent finds a local minimum

• Stochastic gradient descent samples the gradient

• Expected update is equal to full gradient update

15

Feature Vectors

• Represent state by a 𝑛 dimensional feature vector

• Typically, 𝑑 ≤ |𝒮|

• For example:
• Distance of robot from landmarks
• Trends in the stock market
• Piece and pawn configurations in chess

16

x!

Linear Value Function Approximation

• Represent value function by a linear combination of features

• Objective function is quadratic in parameters 𝐰

• Stochastic gradient descent converges on global optimum

• Update rule is particularly simple

• Update = step-size × prediction error × feature value 17

𝑑

Linear Value Function Approximation

18

*𝑣 𝐰 =
*𝑣 𝑠#, 𝐰
*𝑣(𝑠!,𝐰)
⋮

X =
− x 𝑠# −
− x 𝑠! −

⋮

= X𝐰

=
x# 𝑠# x! 𝑠# … x/ 𝑠#
x# 𝑠! x! 𝑠! … x/ 𝑠!

⋮
=

| |
x# … x/
| |

𝑑

Table Lookup Features

• Table lookup is a special case of linear value function approximation

• Using table lookup features, where 𝑑 = |𝒮|

• Parameter vector 𝐰 gives value of each individual state

19

T

𝑠!

𝑠! 𝐰!

Incremental Prediction Algorithms

• Have assumed true value function 𝑣!(𝑠) given by supervisor

• But in RL there is no supervisor, only rewards

• In practice, we substitute a target for 𝑣!(𝑠)
• For MC, the target is the return 𝐺&

• For TD(0), the target is the TD target

• For TD(𝜆), the target is the return 𝐺&0

20

Monte-Carlo with Value Function Approximation

• Return 𝐺- is an unbiased, noisy sample of true value 𝑣!(𝑆-)

• Can therefore apply supervised learning to “training data”:

• For example, using linear Monte-Carlo policy evaluation

• Monte-Carlo evaluation converges to (using a decreasing 𝛼)
• a global optimum using linear function approximation
• a local optimum when using non-linear value function approximation

21

22

TD Learning with Value Function Approximation

• The TD-target 𝑅-.' + 𝛾 "𝑣(𝑆-.', 𝐰) is a biased sample of true value 𝑣!(𝑆-)

• Can still apply supervised learning to “training data”:

• For example, using linear TD(0)

• A semi-gradient method: 𝐰 in "𝑣(𝑆′, 𝐰) is ignored when taking the gradient

23

TD Learning with Value Function Approximation

• TD(0) converges to 𝐰/0 such that 𝐽 𝐰/0 ≤ '
'12 "min𝐰 𝐽(𝐰) (w.p.1) when

• linear function approximation is adopted
• the Markov chain 𝒮, 𝑃% is ergodic
• step size follows the Robbins-Monro’s conditions

24

See Tsitsiklis and van Roy, “An Analysis of Temporal-Difference Learning with Function
Approximation”, 1997

Convergence of Linear TD(0)

• Update at time 𝑡:

25

• Once the system reaches steady state at time 𝑡:

• If the system converges, it must converge to 𝐰12 where

TD fixed point

where

Convergence of Linear TD(0)

26

• Once the system reaches steady state at time 𝑡:

𝔼 𝐰-.' 𝐰- = 𝐰- + 𝛼(𝐛 − 𝐀𝐰-)

⇔𝔼 𝐰-.' 𝐰- = (𝐈 − 𝛼𝐀)𝐰-+𝛼𝐛

⇒ 𝐰- converges if 𝐀 is positive definite and 𝛼 is small enough

TD Fixed Point

• Recall

• Assume that x', x', … , x4 are linearly independent

• Define Π as the projection of 𝑣 on {X𝐰:𝐰 ∈ ℝ𝒅}

• Then 𝑣& ≐ X𝐰𝐓𝐃 is a fixed point of Π𝑇! ⋅ , i.e., Π𝑇! 𝑣& = 𝑣&

27

X =
− x 𝑠# −
− x 𝑠! −

⋮
=

| |
x# … x/
| |

Π𝑣 = argmin89∈{;𝐰:𝐰∈ℝ𝒅}∑"∈𝒮 𝜇 𝑠 [𝑣 𝑠 − 𝑣̅(𝑠)]%

Projected Bellman Operator

Least-Squares TD (LSTD)

28

• Recall TD fixed point:

• Least-squares TD computing estimates of A and b, and then directly computing
the TD fixed point

• Most data efficient form of linear TD(0)

• 𝑂 𝑑% computational and memory complexity per time step

TD(𝜆) with Value Function Approximation

• The 𝜆-return 𝐺&0 is also a biased sample of true value 𝑣%(𝑆&)

• Can again apply supervised learning to “training data”:

• Forward view linear TD(𝜆)

• Backward view linear TD(𝜆)

• Forward view and backward view linear TD(𝜆) (with offline updates) are equivalent
29

How to Design Features?

• Use prior domain knowledge to design features for RL
• Graphic objects: shape, color, size

• Mobile Robot: location, battery level, sensing reading

• Linear value function approximation

• i.e., pole-balancing:
• High angular velocity can be good or bad depending on angle
• Linear value function could not represent this if angle and

angular velocity are two different features
• One should design features to combine state dimensions

30

v̂(S,w) = x(S)Tw =
nX

j=1

xj(S)wj

𝑑

Feature Construction for Linear Methods

• Polynomials

• Fourier Basis

• Coarse Coding

• Tile Coding

• Radial Basis Functions

• …

31

Polynomials

• Let 𝑠' and 𝑠% be the two dimensions of state 𝑠
• Is 𝐱 𝑠 = 𝑠#, 𝑠! 3 a good feature representation?

• Design a feature vector 𝐱 𝑠 = 1, 𝑠', 𝑠%, 𝑠'𝑠% ?

• Allow the value to be non-zero if 𝑠# and 𝑠! are zero
• Consider the interaction between dimensions

32

Coarse Coding

• A set of binary features

• Given a state, which binary features
are present indicate within which
circles the state lies

• Generalization from state 𝑠 to state 𝑠′
depends on the number of their
features whose receptive fields (i.e.,
circles) overlap
• generalization determined by size,

shape, and density

33

Tile Coding

• a form of coarse coding for multi-dimensional continuous spaces

34

1 feature (with 16 values) 4 features (each with 16 values)

Agenda

• Introduction

• Incremental Methods
• On-policy prediction with value function approximation
• On-policy control with value function approximation
• Off-policy methods with approximation

• Batch Methods

35

Control with Value Function Approximation

• Policy evaluation Approximate policy evaluation,

• Policy improvement 𝜖-greedy policy improvement

36

Action-Value Function Approximation

• Approximate the action-value function

"𝑞 𝑠, 𝑎,𝐰 ≈ 𝑞!(𝑠, 𝑎)

• Minimize mean-squared error between approximate action-value function "𝑞 𝑠, 𝑎,𝐰
and true value function 𝑞!(𝑠, 𝑎)

• Is minimizing mean-squared error the right performance objective for policy optimization?

• Use stochastic gradient descent to find a local minimum

37

Linear Action-Value Function Approximation

• Represent state and action by a feature vector

• Represent action-value function by linear combination of features

• Stochastic gradient descent update

38

𝑑

x!

Incremental Control Algorithms

• Like prediction, we must substitute a target for 𝑞!(𝑆, 𝐴)

• For MC, the target is the return 𝐺-

• For TD(0), the target is the TD target 𝑅-.' + 𝛾"𝑞 𝑆-.', 𝐴-.'

• For forward-view TD(𝜆), the target is the action-value 𝜆-return

• For backward-view TD(𝜆), the target is the action-value 𝜆-return

39

40

Mountain Car Example

41

• Continuous states (𝑥-, ̇𝑥-)
• Three actions:

• full throttle forward (+1),
• full throttle reverse (−1),
• zero throttle (0)

• Reward is -1 per unit time
until reaching the goal

Linear Sarsa(𝜆) with Tile Coding in Mountain Car

42

• 8 tilings

• Initially, 𝒒 = 𝟎

• 𝜖 = 0

Agenda

• Introduction

• Incremental Methods
• On-policy prediction with value function approximation
• On-policy control with value function approximation
• Off-policy methods with approximation

• Batch Methods

43

Semi-Gradient Methods with Importance Sampling

• 𝜋: target policy, 𝜇: behavior policy

• per-step importance sampling ratio: 𝜌- =
!(@$|B$)
C(@$|B$)

• Off-policy TD(0) update:

44

The Deadly Triad

• The danger of instability and divergence arises whenever we
combine all of the following:

• Function approximation

• Bootstrapping

• Off-policy training

• Instability arises even in the simpler prediction case, such as off-
policy TD(0)

45

Convergence of Prediction Algorithms

46

Gradient Temporal-Difference Learning

• TD does not follow the gradient of any objective function

• This is why TD can diverge when off-policy or using non-linear function approximation

• Gradient TD follows true gradient of projected Bellman error

47

PBE 𝐰 = Π ̅𝛿 𝐰 4
̅𝛿 𝐰 = 𝑇% *𝑣 𝐰 − *𝑣 𝐰

Convergence of Control Algorithms

48

Agenda

• Introduction

• Incremental Methods

• Batch Methods

49

Batch Reinforcement Learning

• Gradient descent is simple and appealing

• But it is not sample efficient

• Batch methods seek to find the best fitting value function

• Given the agent's experience (“training data")

50

Least Squares Prediction

• Given value function approximation "𝑣 𝑠,𝐰 ≈ 𝑣!(𝑠)

• And experience D consisting of state, value pairs

• Which parameters w give the best fitting value "𝑣 𝑠,𝐰 ?

• Least squares algorithms find parameter vector 𝐰 minimizing sum-squared error
between "𝑣 𝑠-, 𝐰 and target values 𝑣-!,

51

Stochastic Gradient Descent with Experience Replay

Given experience consisting of state, value pairs

Repeat:

Converges to least squares solution

52

Experience Replay in Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

• Take action 𝑎- according to 𝜖-greedy policy

• Store transition (𝑠-, 𝑎-, 𝑟-.', 𝑠-.') in replay memory 𝒟
• Sample random mini-batch of transitions (𝑠, 𝑎, 𝑟, 𝑠D) from 𝒟
• Compute Q-learning targets w.r.t. old, fixed parameters 𝑤1

• Optimize MSE between Q-network and Q-learning targets

• Using variant of stochastic gradient descent
53

DQN in Atari
• End-to-end learning of values 𝑄(𝑠, 𝑎) from pixels 𝑠

• Input state 𝑠 is stack of raw pixels from last 4 frames

• Output is 𝑄(𝑠, 𝑎) for 18 joystick/button positions
• Compute Q-values for all possible actions in a given state

with only a single forward pass through the network.

• Reward is change in score for that step (why?)

54

55

• Mnih, et al., “Human-level
control through deep
reinforcement learning”,
Nature, 2015

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

DQN Results in Atari

56
Normalized performance of DQN = 100× DQN score−random play score

human score−random play score

How much does DQN help?

57

Double DQN

• Double Q-learning target

• Double DQN target

• van Hasselt, et al., “Deep Reinforcement Learning with Double
Q-learning”, AAAI, 2016

58

Normalized performance up to 5
minutes of play on 49 Atari games

https://arxiv.org/pdf/1509.06461.pdf

DQN with Prioritized Experience Replay
• An RL agent can learn more effectively from some transitions than from others.

• Transitions may be more or less surprising, redundant, or task-relevant
• Some transitions may not be immediately useful, but might become so when the agent

competence increases

• TD-error prioritization: transitions with higher TD-error 𝛿5 are replayed more frequently

• 𝑝" - priority of transition 𝑖: (a) 𝑝" = 𝛿" ;（b）𝑝" = 𝛿" + 𝜖;（c）𝑝" =
#

$%&'(")

• Stochastic Prioritization

• Probability of sampling transition 𝑖: 𝑃 𝑖 = *!
"

∑# *#
"

• Annealing the Bias

• Q-learning update with weighted importance-sampling with weight 𝑤" =
#
,
⋅ #
- "

.

• Linearly anneal 𝛽 from 𝛽/ to 1: the unbiased nature of the updates is most important near
convergence at the end of training

59

60

Least Squares Prediction

• And experience 𝒟 consisting of state, value pairs

• Least squares algorithms find parameter vector 𝐰 minimizing

• Experience replay finds least squares solution, but it may take many iterations

• Using linear value function approximation "𝑣 𝑠,𝐰 = 𝐱 𝑠 /𝐰

• We can solve the least squares solution directly

61

Linear Least Squares Prediction (2)

• At minimum of 𝐿𝑆(𝐰), the expected update must be zero

• For 𝑁 features, direct solution time is 𝑂 𝑁I

• Incremental solution time is 𝑂(𝑁%) using Shermann-Morrison

62

Linear Least Squares Prediction Algorithms

• We do not know true values 𝑣-!

• In practice, our “training data” must use noisy or biased samples of 𝑣

• In each case solve directly for fixed point of MC / TD / TD(𝜆)

63

Linear Least Squares Prediction Algorithms (2)

64

Least Squares Policy Iteration

• Policy evaluation Policy evaluation by least squares Q-learning

• Policy improvement Greedy policy improvement

65

Least Squares Action-Value Function Approximation

• Approximate action-value function 𝑞! 𝑠, 𝑎

• using linear combinations of features 𝐱 𝑠, 𝑎

"𝑞 𝑠, 𝑎,𝐰 = 𝐱 𝑠, 𝑎 /𝐰 ≈ 𝑞!(𝑠, 𝑎)

• Minimize least squares error between "𝑞 𝑠, 𝑎,𝐰 and 𝑞!(𝑠, 𝑎)

• from experience generated using policy 𝜋

• consisting of (state,acaon), value pairs

66

Least Squares Q-Learning

• Consider the following linear Q-learning update

• LSTDQ algorithm: solve for total update = zero

67

Least Squares Policy Iteration (LSPI)

68

