Value Function Approximation

CMPS 4660/6660: Reinforcement Learning

Acknowledgement: slides adapted from David Silver's RL course

https://www.davidsilver.uk/teaching/

Agenda

* Introduction
* Incremental Methods

e Batch Methods

Large-Scale Reinforcement Learning

* Reinforcement learning can be used to solve large problems, e.g.
« Backgammon: 1020 states
» Computer Go: 10179 states

* Helicopter: continuous state space

* How can we scale up the model-free methods for prediction and control?

Value Function Approximation

* So far we have represented value function by a lookup table (tabular setting)
e Every state s has an entry V (s)
* Or every state-action pair s, a has an entry Q(s,a)

* Problems with large MDPs
* There are too many states and/or actions to store in memory

* Itis too slow to learn the value of each state individually

Value Function Approximation

 Solution for large MDPs:
e Estimate value function with function approximation
D(s,w) = v.(s)
org(s,a,w) = qp(s,a)
* Generalize from seen states to unseen states

* Update parameter w using MC or TD learning

Types of Value Function Approximation

Which Function Approximator?

* There are many function approximators, e.g.

* Linear combinations of features

Neural network

Decision tree

Nearest neighbor

Fourier / wavelet bases

Nonlinear Value Function Approximation

* Use artificial neural networks

parameter

Value

(.S, w)

input layer

hidden layer 1 hidden layer 2

Which Function Approximator?

* We consider differentiable function approximators, e.g.
* Linear combinations of features
* Neural network
* Decision tree
* Nearest neighbor

e Fourier / wavelet bases

* Furthermore, we require a training method that is suitable for non-stationary,
non-iid data

Agenda

e Introduction

* Incremental Methods
* On-policy prediction with value function approximation
* On-policy control with value function approximation
e Off-policy methods with approximation

e Batch Methods

Gradient Descent

* Let J(w) be a differentiable function of parameter vector w

* Define the gradient of J(w) to be
/BJ(W)

8J(w)
OWp

 To find a local minimum of J(w), adjust w in direction of negative
gradient

1
Wit1 = We — E“Vw](wt) Aw = —§QVWJ(W)

where « is a step-size parameter

11

Gradient Descent

Wi = W — Eavw](wt)

2
2

& Wy, = argmin,, %”w — (w; — aVyJ(wy))

_ 1
= argminy, a{w — wg, Vi, J(w;),) + 5 Iw — wel|5

=largmin,, a[J(w;) + (w — w, V,,J(w;))] + % W — we||5

. 1
= argminy, a{w, Vy,J(w;),) + > lw — wel|5

12

Value Function Approx. By Stochastic Gradient Descent

* Goal: find parameter vector w minimizing mean-squared error between
approximate value function ¥(s, w) and true value function v, (s)

JW) = Yses u(s) [vg(s) — 0(s,w)]?
= Er [(va(S) = 0(S.w))?]

* u(s) =0, Xgesuls) =1

* Often u(s) is chosen to be the fraction of time spentin s, i.e., i is the stationary
distribution of states under policy

Stationary distribution of states under policy i

 Recall that given an MDP (S, A, P,r,y) and a stationary policy, the state
sequence Sy, S1, ... is a Markov chain (§, P™), where

P;:[g/ —_ Zaeﬂ(s) T[(CllS) Pss’(a)

* Given a Markov chain (S, P), a probability distribution {u(s): s € S} is called

* alimiting distribution if u . = lim Pg,), Vs,s'

n—->00

 astationary distributionifu-P =u

* Theorem: If a finite state Markov chain is irreducible and aperiodic, it must have a limiting
distribution, which is also stationary and is unique (such a chain is called ergodic).

Value Function Approx. By Stochastic Gradient Descent

Goal: find parameter vector w minimizing

J(w) =Ex [(va(S) — O(S,w))z]

Gradient descent finds a local minimum

Aw = —2aVyJ(w) = aEr [(va(S) — 0(S, W) Vo (S, w)]

Stochastic gradient descent samples the gradient

Aw = (v (S) — 0(S,w))Vw (S, w)

Expected update is equal to full gradient update

15

Feature Vectors

* Represent state by a n dimensional feature vector

x1(S5)

* Typically, d < |S]|

* For example:
e Distance of robot from landmarks
 Trends in the stock market

* Piece and pawn configurations in chess

Linear Value Function Approximation

Represent value function by a linear combination of features

d
0(S,w) =x(5)"w=> x(S)w;
j=1

Objective function Is quaaratic In parameters w

J(w) = Ex | (va($) = x(S)Tw)?]

Stochastic gradient descent converges on global optimum

Update rule is particularly simple
Vuw?(S,w) =x(9)
Aw = a(vy(S) — 7(S,w))x(S)

Update = step-size X prediction error X feature value

17

Linear Value Function Approximation

d
0(S,w) =x(S)"'w = ij(S)wj
Jj=1

X1(81) X2(51) ... Xg (51)

— x(s1) —
X = (— X(s,) —) = | x1(s2) Xz(Sg) W Xq(s) | =% - X

9(51,W)
b(w) = D(s,,wW) | = Xw

Table Lookup Features

* Table lookup is a special case of linear value function approximation

* Using table lookup features, where d = |S|

Incremental Prediction Algorithms

* Have assumed true value function v (s) given by supervisor
e Butin RL there is no supervisor, only rewards

* In practice, we substitute a target for v;(s)
* For MC, the target is the return G;

AW — O(Gt - O(St, W))VWO(St. W)

* For TD(0), the target is the TD target Rey1 + YV (St41, W)

AW _ (_l"(Rt_+_1 T 7 O(St_l,]_. W) — V(St, W))vw\?(st W)

* For TD(A), the target is the return G Aw = a(G) — 0(S;, w)) VW (Se, w)

20

Monte-Carlo with Value Function Approximation

Return G, is an unbiased, noisy sample of true value v,;(S;)

Can therefore apply supervised learning to “training data”:
(51, G1), (52, G2), ..., (ST, GT)
For example, using linear Monte-Carlo policy evaluation

Aw = oGy — V(S¢,w))Vw (S, w)
= oGy — V(S¢, w))x(St)

Monte-Carlo evaluation converges to (using a decreasing «)
 a global optimum using linear function approximation

* alocal optimum when using non-linear value function approximation

Gradient Monte Carlo Algorithm for Estimating v =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function ¥ : § x R — R

Algorithm parameter: step size a > 0

Initialize value-function weights w € R arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,51,A1,...,Rp, St using 7
Loop for each step of episode, t =0,1,...,7T — 1:
W <— W + Oé[Gt — @(St,W)] V’l}(st,W)

22

TD Learning with Value Function Approximation

* The TD-target Ry 1 + YU(S¢+1, W) is a biased sample of true value v;(5;)

* Can still apply supervised learning to “training data”:

(51, Ro + vV(S2,wW)), (S2, Rz + vV (S3,wW)), ..., (ST_1, RT)
* For example, using linear TD(0)
Aw = (R +~v0(S",w) — V(S,w))Vy (S, w)
= adx(S)

* A semi-gradient method: w in (S, w) is ignored when taking the gradient

23

TD Learning with Value Function Approximation

* TD(0) converges to wrp such that /(wyp) < min /(w) (w.p.1) when
A"\

(1-y)?
* linear function approximation is adopted

* the Markov chain (S, P™) is ergodic

* step size follows the Robbins-Monro’s conditions

See Tsitsiklis and van Roy, “An Analysis of Temporal-Difference Learning with Function
Approximation”, 1997

24

Convergence of Linear TD(0)

* Update at time t:
Wiil = W¢ + a(RH_l + 'yw;rxt_H - W;rxt)xt where X¢ = X(S¢)
= w, + a(Rt+1xt — X (x4 — '7'Xt+1)TWt),
* Once the system reaches steady state at time t:
Elwiyi|we] = we + a(b — Awy),

b =E[R;,1x] € R? and A =]E[xt (xt - ')'xt+1)T] e R? x R4

* If the system converges, it must converge to wp where
b — AWTD =0
= b =Awpp

= wrp = A" 'b. TD fixed point

25

Convergence of Linear TD(0)

* Once the system reaches steady state at time ¢:
E[Weyq|we] = we + a(b — Awy)
—]E[Wt_|_1lwt] — (I — aA)Wt+ab

= W, converges if A is positive definite and « is small enough

TD Fixed Point

e Recall
— X(51) —

* Assume that X4, X4, ..., X4 are linearly independent

« Define II as the projection of v on {Xw: w € R%}

[Iv = argminﬁe{xw:wegd} ZSES ,LL(S) [U(S) B 17(S)]Z

* Then vy = Xwrgp is a fixed point of [IT™ ("), i.e., [IT™ (vy) = v,

Projected Bellman Operator

27

Least-Squares TD (LSTD)

Recall TD fixed point: wrp = A~ !b,
A = IE[xt(xt — ')fxt+1)T] and b =E[R;11x].

Least-squares TD computing estimates of A and b, and then directly computing
the TD fixed point

t—1 t—1
—~ . T o~ . . A—lA
Ay = E Xk (Xp — YXg4+1) +el and by = E Riy1xk, Wi = A; by.
k=0 k=0

Most data efficient form of linear TD(0)

0(d?) computational and memory complexity per time step

28

TD(A) with Value Function Approximation

The A-return G,f1 is also a biased sample of true value v, (S;)

Can again apply supervised learning to “training data”:

<51, G{\>. <52. G;>, <5T_1. G%_1>

Forward view linear TD() Aw = a(G;* — 0(S, w))Vw0(St, w)

Backward view linear TD(A) ¢ = Rex1 + v0(Sex1, W) — 0(Se, w)

e Forward view and backward view linear TD(A) (with offline updates) are equivalent

29

How to Design Features?

e Use prior domain knowledge to design features for RL
* Graphic objects: shape, color, size

* Mobile Robot: location, battery level, sensing reading

 Linear value function approximation

d
9(S,w) = x(5)Tw = ij(S)wj

i.e., pole-balancing:

High angular velocity can be good or bad depending on angle

Linear value function could not represent this if angle and

angular velocity are two different features

One should design features to combine state dimensions

Feature Construction for Linear Methods

* Polynomials

* Fourier Basis
* Coarse Coding
* Tile Coding

e Radial Basis Functions

Polynomials

* Let s; and s, be the two dimensions of state s

* Isx(s) = (s1,5,)" agood feature representation?
* Design a feature vector x(s) = (1, 54,53, 5152)"

* Allow the value to be non-zero if s; and s, are zero

e Consider the interaction between dimensions

Suppose each state s corresponds to k£ numbers, s, so, ..., sg, with each s; € R.
For this k-dimensional state space, each order-n polynomial-basis feature x; can be
written as

zi(s) = TI5_ 57 (9.17)
where each ¢; ; is an integer in the set {0,1,...,n} for an integer n > 0. These
features make up the order-n polynomial basis for dimension k, which contains
(n + 1)* different features.

32

Coarse Coding

* A set of binary features

* Given a state, which binary features
are present indicate within which
circles the state lies

* Generalization from state s to state s
depends on the number of their
features whose receptive fields (i.e.,
circles) overlap

* generalization determined by size,
shape, and density

33

Tile Coding

e a form of coarse coding for multi-dimensional continuous spaces

- — liling 1 —

Tiling 2 NN
Tiling 3 "
. e ,
Continuous frhne 4 T Four active
2D state o tiles/features
s T :_ N overlap the point
pac N L ~ and are used to
\ Point in /:/ 1T represent it
state space | :
to be N N T LA LA B
represented
1 feature (with 16 values) 4 features (each with 16 values)

34

Agenda

e Introduction

* Incremental Methods
* On-policy prediction with value function approximation
* On-policy control with value function approximation
e Off-policy methods with approximation

e Batch Methods

Control with Value Function Approximation

Starting w Oy =

* Policy evaluation Approximate policy evaluation, §(-,-,w) = g

* Policy improvement e-greedy policy improvement

36

Action-Value Function Approximation

* Approximate the action-value function

q(s,a,w) = qr(s,a)

* Minimize mean-squared error between approximate action-value function (s, a, w)
and true value function g (s, a)

J(w) = Ex [((S. A) — 4(S. A, w))?]
* |s minimizing mean-squared error the right performance objective for policy optimization?
* Use stochastic gradient descent to find a local minimum

V(W) = (G(5.A) = 4(S. A, W) Vud(S A w)
Aw = a(qx(S, A) — 4(S, A, w))Vwd(S, A w)

Linear Action-Value Function Approximation

* Represent state and action by a feature vector

x1(S, A)
xX(5,A) = :
Xd(S, A)

* Represent action-value function by linear combination of features

d
G(S.Aw) =x(S,A)Tw=> x(S,A)w;
j=1

» Stochastic gradient descent update

Vwi(S, A,w) = x(S, A)
Aw = a(qr(S,A) — §(S, A, w))x(S, A)

38

Incremental Control Algorithms

Like prediction, we must substitute a target for q;(S,A)
For MC, the target is the return G;

Aw = oGy — §(S¢, Ae,w))Vwq(Se, Ar,w)
For TD(0), the target is the TD target Ry 11 + ¥G(S¢41, A¢s1)

AW = a(Riy1 +7G(Sii1, A1 W) — G(St, Ae, W)V G(St. Ae, W)
For forward-view TD(A), the target is the action-value A-return

Aw = a(q;" — G(St, A, W)V W d(St, A, W)
For backward-view TD(A), the target is the action-value A-return

Ot = Ret1 +7G(Se+1, Ae+1, W) — G(St, Ae, W)

Et = YAEi—1 + VWwG(S:, Ar,w)
AW = Qitht

39

Episodic Semi-gradient Sarsa for Estimating ¢ = gq.

Input: a differentiable action-value function parameterization §: 8 x A x R? - R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A + initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
W+ W+ a[R —§(S,A,w)|V§(S,A,w)
Go to next episode
Choose A" as a function of ¢(S5’, -, w) (e.g., e-greedy)
W W+ a[R +vq(S", A", w) — q(S, A, W)]VQ(S, A, w)
S+ 5
A+ A

40

Mountain Car Example

* Continuous states (x;, X;)

* Three actions:
 full throttle forward (+1),
 full throttle reverse (-1),
e zero throttle (0)

* Reward is -1 per unit time
until reaching the goal

xri11 = bound .’Lt + :i:-t+1]

Tiy1 = bound lt + 0.001A4; — 0.0025 cos(3:1:t)],

41

Linear Sarsa(A) with Tile Coding in Mountain Car

MOUNTAIN CAR Goal

: /| e 8 tilings

* Initially, g = 0

cee=20

Vi _ Vi
Episode 104 - /" |Episode 9000,
’ D , I| / - I:‘,-"'Jf
a6 g

TN
T,
‘ALUJE:)I? ’lf

- N

.

Agenda

e Introduction

* Incremental Methods
* On-policy prediction with value function approximation
* On-policy control with value function approximation
e Off-policy methods with approximation

e Batch Methods

Semi-Gradient Methods with Importance Sampling

* 1T: target policy, u: behavior policy

T(At|St)

e per-step importance sampling ratio: =
P b Imp Ping Pe p(At|St)

e Off-policy TD(0) update:

0t = Rep1 + ’)"‘il‘(St+1-,Wt.) — 'i’(St,\Vt),

Wis1 = Wi + a'thtV'ii(St,xvt),

44

The Deadly Triad

* The danger of instability and divergence arises whenever we
combine all of the following:

* Function approximation
* Bootstrapping

e Off-policy training

* |nstability arises even in the simpler prediction case, such as off-
policy TD(0)

Convergence of Prediction Algorithms

On/Off-Policy Algorithm Table Lookup Linear Non-Linear

: MC v v v
On-Policy TD(0) / / X
TD(\) v v X

. MC v v v
Off-Policy TD(0) / X X
TD(\) v X X

46

Gradient Temporal-Difference Learning

* TD does not follow the gradient of any objective function
* This is why TD can diverge when off-policy or using non-linear function approximation

* Gradient TD follows true gradient of projected Bellman error

§(w) = T™9(w) — 0(w) PBE (w) = [[ns(w)||,

On/Off-Policy ~ Algorithm Table Lookup Linear Non-Linear

: MC v v v
On-Policy ™ / / X
Gradient TD v v v

: MC v v v
Off-Policy ™ / X X
Gradient TD v v v

47

Convergence of Control Algorithms

Algorithm Table Lookup Linear Non-Linear
Monte-Carlo Control v (V) X
Sarsa v (V) X
Q-learning v X X
Gradient Q-learning v v X

(V') = chatters around near-optimal value function

48

Agenda

* Introduction
* Incremental Methods

e Batch Methods

Batch Reinforcement Learning

Gradient descent is simple and appealing

But it is not sample efficient

Batch methods seek to find the best fitting value function

Given the agent's experience (“training data")

Least Squares Prediction

Given value function approximation ¥(s, w) = v.(s)

And experience D consisting of (state, value) pairs

D = {(s1,v{),{(s2,V3), ..., (ST, VT)}

Which parameters w give the best fitting value ¥(s, w)?

Least squares algorithms find parameter vector w minimizing sum-squared error

between ¥(s¢, w) and target values v,
T

LS(w) = 3 (vF = 0(se,w))?

t=1
=Ep [(v" — 0(s, w))2]

51

Stochastic Gradient Descent with Experience Replay

Given experience consisting of (state, value) pairs

Repeat: Sample state, value from experience

(s,v™) ~D
Apply stochastic gradient descent update
Aw = a(v™ — V(s,w))VwV(s, w)

Converges to least squares solution

w”™ = argmin LS(w)
w

52

Experience Replay in Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

* Take action a; according to e-greedy policy

* Store transition (S¢, Ag, 441, S¢+1) in replay memory D

e Sample random mini-batch of transitions (s, a,r,s") from D
 Compute Q-learning targets w.r.t. old, fixed parameters w™

* Optimize MSE between Q-network and Q-learning targets

‘Ci (Wi) — IIZs,a,r,s’w’D,-

2
(r +7 max Q(s",a; w7) — Q(s, 3; Wi))]

* Using variant of stochastic gradient descent

DQN in Atarl

End-to-end learning of values Q (s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Compute Q-values for all possible actions in a given state

with only a single forward pass through the network.

Reward is change in score for that step (why?) 32 % fileers 256 hidden units Fully-connected linear

output layer

saw

Ty

A~

w

T

|6 8x8 filters
4xB84x84

Stack of 4 previous Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectifled linear units of rectified linear units

Network architecture and hyperparameters fixed across all games

Algorithm 1: deep Q-learning with experi
Initialize replay memory D tc
Initialize action-value functiolrG-withrrahdom weights 6
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s, ={x; } and |preprocessed sequence ¢, =@(s;)

For t=1,T do * Mnih, et al., “Human-level

With probability & select a random action a, control through deep
otherwise select a; =argmax_ Q(¢(s;),a; 0)

Execute action a, in emulator and observe reward r, and image x, ; ,
Set ¢ 41 =5¢,a¢,%¢ 41 and preprocess ¢r+l =¢(5t+1) Nature, 2015

E::Jmﬂmn_(.ﬁ,_a‘_n_&,ll ,)inD
ple random minibatch of transitions (¢j,aj,q,¢j+l) from D

1 if episode terminates at step j+ 1
Sety;= rj+7y maxy 0 ¢j+l,a’; 6") otherwise

reinforcement learning”,

2
Perform a gradient descent step on (}y — Q(d)}-,aj; 9)) with respect to the
———————

network parameters 0
Every C steps reset Q=0
Fj‘ or

End For

55

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

DQN Results in Atari

%005'Y 0000 009 00S 0O 00E 00 OO 0
| | | | | | | |
0| abuenay s wnzajuop
W af3ang
M0 wi[e
w| augisoly
wif | sploiisy
wenfl| Uep-0eq S
sl Bupog
=] yung apgnog
ssef | 1sanbeag
| ainwep
| vy
| Epwy
HIWE| uoxrez
| pry oy
BB 150H yueg
— | epadyue)
—B | puewwo) jeddoy)
Il 10\ JO prezp
8 | auo7 ojneg
rn XUelsy
OHTH
| 1eq
rl fayooH 80)
— 8| uwoq pue di
B | (qisq Buysi4
i 8| onpu3
— | 10114 o]
i | fewaay
EE | sorsep ny-buny
| WeyyEn]
RN | oDl weag
—J | siapenu) soedg
A | uog
C E
—J e puog sawer
—— I 2| ooefuey
R | Jauuny peoy
—Y | sy
— Ry
e | ouse s aurey
—— R | yoepy uowa(
—— | eydon
—— R iy | sequi Azex)
——) sy

— s gy
—

JoES| Jeaul| 1538

[oAGI-UBWNY MOJog
BNOGE 10 oAB|-UBWNY Jy

Jouung Jeig
Joyeaig
Buxog
[Equi 08piA

56

DQN score-random play score
human score-random play score

Normalized performance of DQN = 100X

How much does DQN help?

Replay Replay | No replay | No replay

Fixed-Q | Q-learning Fixed-Q | Q-learning

Breakout 316.81 240.73 10.16 3.17
Enduro 1006.3 831.25 141.89 29.1
River Raid 7446.62 4102.81 2867.66 1453.02
Seaquest 2894 .4 822.55 1003 275.81
Space Invaders | 1088.94 826.33 373.22 301.99

57

Double DQN

* Double Q-learning target

YtDOUkaE Rit1 + YQ(St+1, argmax Q(Si+1,a; 6;); 6;)

DQN Double DQN

Median 03.5% 114.7%

* Double DQN target
Q & Mean 241.1% 330.3%
Y}DOUbk'DQN = Ryt 1+7YQ(St+1,argmax Q(Si+1,a; 6¢),0;) Normalized performance up to 5

minutes of play on 49 Atari games

e van Hasselt, et al., “Deep Reinforcement Learning with Double
Q-learning”, AAAI, 2016

58

https://arxiv.org/pdf/1509.06461.pdf

DQN with Prioritized Experience Replay

An RL agent can learn more effectively from some transitions than from others.
* Transitions may be more or less surprising, redundant, or task-relevant

* Some transitions may not be immediately useful, but might become so when the agent
competence increases

TD-error prioritization: transitions with higher TD-error §; are replayed more frequently

1
rank(i)

* p; - priority of transition i: (a) p; = |8;]; (b) p; = |6;| + € (c) p; =

Stochastic Prioritization

a

Di
Zk plccx

* Probability of sampling transition i: P(i) =

Annealing the Bias

B
* Q-learning update with weighted importance-sampling with weight w; = (% - %)
* Linearly anneal § from f, to 1: the unbiased nature of the updates is most important near
convergence at the end of training

Algorithm 1 Double DQN with proportional prioritization

1: Input: minibatch k, step-size 7, replay period K and size NV, exponents o and /3, budget 7.

2: Initialize replay memory H =0, A =0,p, =1

3: Observe Sy and choose Ag ~ my(Sp)

4: fort =1to T do

5: Observe S, Ri, V¢

6: Store transition (S;_1, A;_1, Ry, 7, S:) in H with maximal priority p;, = max;-; p;
7: if t=0 mod K then

8 for j = 1to k do

9: Sample transition j ~ P(j) = p$/>_; p{

10: Compute importance-sampling weight w; = (IV - P(j))—’B / max; w;

11: Compute TD-error §; = R; + 7; Quarget (S, arg max, Q(S;,a)) — Q(S;j—1,A;—1)
12: Update transition priority p; < |d;|

13: Accumulate weight-change A < A +w; - ;- VgQ(S;-1,4;-1)

14: end for

15: Update weights @ < 6 + 7 - A, reset A = 0

16: From time to time copy weights into target network fyaree; +— 0

17: endif

18: Choose action A ~ mg(.St)
19: end for

60

Least Squares Prediction

* And experience D consisting of (state, value) pairs

D = {(s1,v{),{(s2, V3), ..., (ST, VT)}

Least squares algorithms find parameter vector w minimizing
T

LS(w) = (vf — 0(se, w))?

t=1

Experience replay finds least squares solution, but it may take many iterations

Using linear value function approximation #(s, w) = x(s)Tw

We can solve the least squares solution directly

Linear Least Squares Prediction (2)

* At minimum of LS(w), the expected update must be zero

E'D [AW] =0
) x(s)(vi —x(s;) 'w) =0

T T

Z X(ss)vy = Z x(s¢)x(s¢) "w
T 17
W = (Z x(st)x(st)T> Z X(s¢)V

t=1

* For N features, direct solution time is O(N)

* Incremental solution time is O (N#) using Shermann-Morrison

Linear Least Squares Prediction Algorithms

* We do not know true values vf*

* |In practice, our “training data” must use noisy or biased samples of v

LSMC Least Squares Monte-Carlo uses return

v = Gy

LSTD Least Squares Temporal-Difference uses TD target
v = Rep1 + 9V (Ser1,wW)

LSTD(A) Least Squares TD(\) uses A-return
VARSN

* In each case solve directly for fixed point of MC / TD / TD(A)

63

Linear Least Squares Prediction Algorithms (2)

.
LSMC 0="> a(Gt— (S, w))x(S¢)

t=1

T -1 7
w = (Zx(st)x(stf) > x(5:)G:

t=1 t=1
T

LSTD 0= a(Res1+70(Ser1.w) — 0(St.w))x(S:)

t=1

T LT
W= (E X(S¢)(x(5¢) — ’7X(5t+1))T) Z x(5¢) kK

t=1 t=1
T

STD(\) 0=> adk
t=1

T LT
W = (Z Ee(x(S¢) — “/x(5t+1))T) 2_; E:Rt 11

t=1

Least Squares Policy Iteration

Starting w Oy =

* Policy evaluation Policy evaluation by least squares Q-learning

* Policy improvement Greedy policy improvement

65

Least Squares Action-Value Function Approximation

 Approximate action-value function g, (s, a)
* using linear combinations of features x(s, a)
4(s,a,w) = x(s,a)"'w = qr(s,a)
* Minimize least squares error between §(s,a, w) and g, (s, a)

* from experience generated using policy

consisting of ((state,action), value) pairs

D = {{(s1, 1), v]). (52, 22). V), -, (57, 27), V) }

Least Squares Q-Learning

* Consider the following linear Q-learning update

0 = Rt+1 -+ '7"&(5t+le ‘W(St—*—l)ﬂ W) o a(sta Ata W)
AW — CY(SX(St,At)

e LSTDQ algorithm: solve for total update = zero
T

0= Z (Ret1 +7G4(Se1, 7(Se1), W) — (St Ae, W))X(Se, Ae)

t=1
T

T -1
W= (Zx(st.Atxx(st.At) —'>X(5t+1-7r(5t+1)))T) > X(Se. Ad)Res

t=1 t=1

67

Least Squares Policy Iteration (LSPI)

function LSPI-TD(D, 7o)
!« 7o
repeat
T 7
Q «+ LSTDQ(m, D)
for all s € S do

m'(s) « argmax Q(s, a)
acA
end for

until (7 = 7’)
return
end function

68

