
Model-Free Prediction

CMPS 4660/6660: Reinforcement Learning
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Agenda

• Monte Carlo Method

• TD(0)

• n-step TD

• TD(𝜆)
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Temporal-difference (TD)
learning



Model-free reinforcement learning

• Planning by dynamic programming

• Solve a known MDP

• Model-free prediction

• Estimate the value function of an unknown MDP

• Model-free control

• Optimize the value function of an unknown MDP
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Monte-Carlo Reinforcement Learning

• MC methods learn directly from episodes of experience
• Sample sequences of states, action, rewards from actual or simulated interaction 

with an environment

• Model-free: no knowledge of MDP transitions/rewards

• MC uses the simplest possible idea: value = mean return

• MC learns from complete episodes
• no bootstrapping

• only applies to episodic MDPs that always terminate
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Monte-Carlo Policy Evaluation

• Goal: learn 𝑣! from episodes of experience under a stationary policy 𝜋

𝑆", 𝐴" , 𝑅#, … , 𝑆$%#, 𝐴$%#,𝑅$ ~ 𝜋

• Recall that the return is the total discounted reward:

𝐺' ≐ 𝑅'(# + 𝛾𝑅'() +⋯+𝛾$%# 𝑅$
• Recall that the value function is the expected return:

𝑣! 𝑠 ≐ 𝔼! 𝐺' 𝑆' = 𝑠

• Monte-Carlo policy evaluation uses empirical mean return

• instead of expected return (which is unknown)
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First-Visit Monte-Carlo Policy Evaluation

• To evaluate state 𝑠

• The first time-step 𝑡 that state s is visited in an episode

• Increment counter 𝑁 𝑠 ← 𝑁 𝑠 + 1

• Increment total return 𝑆 𝑠 → 𝑆(𝑠) + 𝐺!
• Value is estimated by mean return 𝑉 𝑠 ← 𝑆(𝑠)/𝑁(𝑠)

• By law of large numbers, 𝑉 𝑠 → 𝑣" 𝑠 as 𝑁 𝑠 → ∞

• E 𝑉 𝑠 = 𝑣" 𝑠 :  𝑉 𝑠 is an unbiased estimate of 𝑣" 𝑠

• Var(𝑉 𝑠 ) = 𝜎/ 𝑁(𝑠): rate of convergence is 1/ 𝑁(𝑠)
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First-Visit Monte-Carlo Policy Evaluation
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Input: a policy 𝜋 to be evaluated

Initialize: 
𝑉 𝑠 ∈ ℝ, arbitrarily, for 𝑠 ∈ 𝒮
𝑅𝑒𝑡𝑢𝑟𝑛 𝑠 ← an empty list for for 𝑠 ∈ 𝒮

Loop forever (for each episode):
Generate an episode following 𝜋: 𝑆!, 𝐴! , 𝑅", … , 𝑆#$", 𝐴#$", 𝑅#
𝐺 ← 0
Loop for each step of episode, 𝑡 = 𝑇 − 1, 𝑇 − 2,… , 0:

𝐺 ← 𝛾𝐺 + 𝑅%&"
Unless 𝑆% appears in 𝑆!, 𝑆", … , 𝑆%$":

Append 𝐺 to 𝑅𝑒𝑡𝑢𝑟𝑛 𝑆%
𝑉 𝑆% ← average 𝑅𝑒𝑡𝑢𝑟𝑛 𝑆%



Every-Visit Monte-Carlo Policy Evaluation

• To evaluate state 𝑠

• Every time-step 𝑡 that state s is visited in an episode

• Increment counter 𝑁 𝑠 ← 𝑁 𝑠 + 1

• Increment total return 𝑆 𝑠 → 𝑆(𝑠) + 𝐺'
• Again 𝑉 𝑠 → 𝑣! 𝑠 as 𝑁 𝑠 → ∞

• See Singh and Sutton, “Reinforcement learning with replacing eligibility 
traces”, 1996
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Incremental Mean

• Let 𝑋* *+" be an 𝑖. 𝑖. 𝑑. sequence of 
random variables with mean 𝜇 = 𝐸[𝑋"]

• Let 𝜃* be the empirical mean of 
𝑋#, 𝑋), … , 𝑋*

• 𝜃* can be computed incrementally
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Incremental Monte-Carlo Updates

• Update 𝑉 𝑠 after each episode 𝑆", 𝐴" , 𝑅#, … , 𝑆$%#, 𝐴$%#, 𝑅$
• For each state 𝑆' with return 𝐺':

𝑁 𝑆' ← 𝑁 𝑆' + 1

𝑉 𝑆' ← 𝑉 𝑆' + #
. /!

𝐺' − 𝑉 𝑆'

• Constant-𝛼 MC:  𝑉 𝑆' = 𝑉 𝑆' + 𝛼 𝐺' − 𝑉 𝑆'
• Useful in non-stationary problems to track a running mean, i.e. forget old episodes

• A special case of Widrow-Hoff learning rule (1960)

• MC with a general stepsize: 𝑉 𝑆' = 𝑉 𝑆' + 𝛼 𝑁 𝑆' 𝐺' − 𝑉 𝑆'
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Estimation of Mean

• Let 𝑋* *+" be an 𝑖. 𝑖. 𝑑. sequence of random variables with mean 𝜇 = 𝐸[𝑋"] and a 
bounded variance

• Consider	the	estimator:

• Theorem:	if		∑*+"𝛼* = ∞ and	∑*+"𝛼*) < ∞,	then	𝜃* → 𝜇 almost	surely,	that	is,		
Pr lim

*→1
𝜃* = 𝜇 = 1.

• A	common	example:	𝛼# =
$
#!
with	$

%
< 𝑎 ≤ 1

• For	constant	stepsize 𝛼 that	is	small	enough,	limsup
*→1

Pr 𝜃* − 𝜇 > 𝜖 ≤𝑏 𝜖 ⋅ 𝛼, 

with 𝑏 𝜖 < ∞. 
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𝜃*(# = 𝜃* + 𝛼*(𝑋*(# − 𝜃*)



Estimation of Mean as Stochastic Approximation

12

𝜃#&$ = 𝜃# + 𝛼#(𝑋#&$ − 𝜃#)

= 𝜃# + 𝛼#[𝜇 + (𝑋#&$ − 𝜇) − 𝜃#]

= 𝜃# + 𝛼# [𝜇 + 𝜔# − 𝜃#]

= 𝜃# + 𝛼#[𝜇 − 𝜃# +𝜔#]

= 𝜃# + 𝛼#[ℎ(𝜃#) + 𝜔#]

Want to find 𝜃∗ such that ℎ 𝜃∗ = 0 from noisy observations ℎ 𝜃* +𝜔*, 𝑛 ≥ 0

𝜔# ≐ 𝑋#&$ − 𝜇: i.i.d. & zero mean

ℎ 𝜃# ≐ 𝜇 − 𝜃#



Stochastic Approximation

• Stochastic Approximation Methods: a family of iterative stochastic 
optimization algorithms that attempt to find zeroes or extrema of 
functions which cannot be computed directly, but only estimated via 
noisy observations.

• The first and prototypical algorithms of this kind are: Robbins-Monro
(1951) and Kiefer-Wolfowitz (1952) algorithms
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Robbins-Monro Stochastic Approximation

• We have a function ℎ(𝜃) and want to find 𝜃∗ such that ℎ 𝜃∗ = 0

• But only have noisy observations 𝑌* = ℎ 𝜃* +𝜔*
• SA algorithm:

• The same framework applies to MC, TD, Q-learning, and other RL algorithms

• MC: ℎ 𝜃 ≐ 𝜇 − 𝜃

• TD(0): ℎ 𝜃 ≐ 𝑇"(𝜃) − 𝜃
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𝜃*(# = 𝜃* + 𝛼*𝑌*

= 𝜃* + 𝛼* ℎ 𝜃* +𝜔* , 𝑛 ≥ 0



Function Minimization via Stochastic Approximation

• Suppose we wish to minimize a (convex) function 𝑓 𝜃 . Define 

ℎ 𝜃 = −∇f 𝜃 = − 34
35 ,  we need to solve ℎ 𝜃 = 0.

• The basic iteration is 

• This is a “noisy” version of gradient descent algorithm. 
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𝜃*(# = 𝜃* + 𝛼* −∇f 𝜃 + 𝜔* , 𝑛 ≥ 0



Stochastic Approximation and ODE

• A common approach to prove the convergence of SA algorithms is to consider the 
ordinary differential equation (ODE):

6
6' 𝜃(𝑡) = ℎ 𝜃 𝑡 or  𝜃̇ = ℎ(𝜃)

• Under suitable conditions on ℎ 𝜃 , 𝜔* and diminishing 𝛼* , {𝜃*} asymptotically 
“track” a trajectory {𝜃 𝑡 } of the ODE and converge to a stationary point 𝜃∗: ℎ 𝜃∗ = 0
of the ODE

• References:
• https://webee.technion.ac.il/shimkin/LCS11/ch5_SA.pdf
• H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, Springer, 

1997. 
• V. Borkar, Stochastic Approximation: A Dynamic System Viewpoint, Hindustan, 2008 16
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Stochastic Approximation (constant stepsize)

• The Robbins-Monro algorithm:
𝜃*(# = 𝜃* + 𝛼* 𝑌* = 𝜃* + 𝛼*[ℎ 𝜃* +𝜔*]

• For constant stepsize 𝛼* = 𝛼, {𝜃*} is a Markov chain. If it is stable, one can 
only hope 𝜃* has a stationary distribution that assigns a high probability to a 
neighborhood of 𝜃. 

• What can be expected? For all 𝜖 > 0, 

limsup
*→1

Pr | 𝜃* − 𝜃∗ | > 𝜖 ≤ 𝛼 ⋅ b(𝜖) , with b 𝜖 < ∞

• constant stepsize is more appropriate for nonstationary environment 
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Improvements of Monte Carlo Method

• Quasi-Monte Carlo method
• uses non-i.i.d. sequence

• rate of convergence close to #
*

• may have issues for high dimensional random vectors

• Importance Sampling 

• estimates expected values under one distribution given samples from another
• reduces variance
• explained later 
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Agenda

• Monte Carlo Method

• TD(0)

• n-step TD

• TD(𝜆)
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Temporal-Difference Learning

• TD methods learn directly from episodes of experience

• TD is model-free: no knowledge of MDP transitions / rewards

• TD learns from incomplete episodes, by bootstrapping

• TD updates a guess towards a guess
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Expressions of Value Function 

• Conditional expectation of return: 

𝑣7 𝑠 = 𝔼7 𝐺' 𝑆' = 𝑠

• Bellman Equation:

𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑣7 𝑆'(# 𝑆' = 𝑠

𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑅'() + 𝛾) 𝑣7 𝑆'() 𝑆' = 𝑠

𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑅'() + 𝛾) 𝑅'(8+ 𝛾8 𝑣7 𝑆'(8 𝑆' = 𝑠

…
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MC and TD
• Goal: learn 𝑣! from episodes of experience under policy 𝜋
• Incremental every-visit Monte-Carlo

• Update value 𝑉 𝑆! toward actual return 𝐺!

𝑉 𝑆! ← 𝑉 𝑆! + 𝛼 𝐺! − 𝑉 𝑆!

• Simplest temporal-difference learning algorithm: TD(0)
• Update value 𝑉 𝑆! toward estimated return 𝑅!&$ + 𝛾𝑉 𝑆!&$

𝑉 𝑆! ← 𝑉 𝑆! + 𝛼 𝑅!&$ + 𝛾𝑉 𝑆!&$ − 𝑉 𝑆!

• 𝑅!&$ + 𝛾𝑉 𝑆!&$ is called the TD target
• 𝛿! = 𝑅!&$ + 𝛾𝑉 𝑆!&$ − 𝑉 𝑆! is called the TD error
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Tabular TD(0) for estimating 𝑣!

Input: 𝜋 (policy to be evaluated), 𝛼 ∈ (0,1] (step size)

Initialize 𝑉(𝑠) for 𝑠 ∈ 𝒮&, arbitrarily except 𝑉 𝑠∗ = 0

Loop for each episode:
Initizlize 𝑆
Loop for each step of epsiode:

Choose 𝐴 ∼ 𝜋(⋅ |𝑆)
Take action 𝐴, observe 𝑅, 𝑆’
𝑉 𝑆 ← 𝑉 𝑆 + 𝛼 𝑅 + 𝛾𝑉 𝑆( − 𝑉 𝑆
𝑆 ← 𝑆′

until 𝑆 is terminal
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MC vs. TD

• TD can learn before knowing the final outcome
• TD can learn online after every step

• MC must wait until end of episode before return is known

• TD can learn without the final outcome
• TD can learn from incomplete sequences

• MC can only learn from complete sequences

• TD works in continuing (non-terminating) environments

• MC only works for episodic (terminating) environments
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Driving Home Example

State Elapsed Time
(minutes)

Predicted
Time to Go

Predicted
Total Time

25

leaving office, friday at 6 0 30 30

reach car, raining 5 35 40

exiting highway 20 15 35

2ndary road, behind truck 30 10 40

entering home street 40 3 43

arrive home 43 0 43



Driving Home Example: MC vs. TD
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TD(0) as Stochastic Approximation

Rewrite 𝑉 𝑆! ← 𝑉 𝑆! + 𝛼[𝑅!&$ + 𝛾𝑉! 𝑆!&$ − 𝑉! 𝑠 ] as

𝑉#&$ 𝑠 = 𝑉# 𝑠 + 𝛼#(𝑠) [𝑅#&$ + 𝛾𝑉# 𝑆#&$ − 𝑉# 𝑠 ] 𝛼# 𝑠 = 0 if 𝑠 ≠ 𝑆#

= 𝑉# 𝑠 + 𝛼#(𝑠)[𝑍 𝑠, 𝑉# − 𝑉# 𝑠 ] where 𝑍 𝑠, 𝑉# ≐ 𝑅#&$ + 𝛾𝑉# 𝑆#&$ for 𝑆# = 𝑠

= 𝑉# 𝑠 + 𝛼#(𝑠) [E" 𝑍(𝑠, 𝑉# ) − 𝑉# 𝑠 + 𝑍 𝑠, 𝑉# − E" 𝑍(𝑠, 𝑉# )]

= 𝑉#(𝑠) + 𝛼#(𝑠) ℎ 𝑠, 𝑉# +𝜔# 𝑠
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TD(0) as Stochastic Approximation

Rewrite 𝑉 𝑆! ← 𝑉 𝑆! + 𝛼[𝑅!&$ + 𝛾𝑉 𝑆!&$ − 𝑉 𝑆! ] as

𝑉*(# 𝑠 = 𝑉*(𝑠) + 𝛼*(𝑠) ℎ 𝑠, 𝑉* +𝜔* 𝑠

where ℎ 𝑠, 𝑉# ≐ E" 𝑍(𝑠, 𝑉# ) − 𝑉# 𝑠

= E"[𝑅#&$ + 𝛾𝑉# 𝑆#&$ ] − 𝑉# 𝑠

= (𝑇"𝑉#)(𝑠) − 𝑉# 𝑠

𝜔# 𝑠 = 𝑍 𝑠, 𝑉# − E" 𝑍(𝑠, 𝑉# ): zero mean but depend on 𝑉#
TD(0) is an example of asynchronous SA 

Theorem:	If		∑*+"𝛼*(𝑠) = ∞ and	∑*+"𝛼*)(𝑠) < ∞ for all 𝑠, 𝑉* converge to the 
unique solution of 𝐻 𝑉 ≐ 𝑇!𝑉 − 𝑉 = 0

• For the conditions on 𝛼 to hold, each state should be visited “relatively often” 
28

a martingale difference sequence



Bias/Variance Trade-Off

• Return 𝐺' ≐ 𝑅'(# + 𝛾𝑅'() + 𝛾2𝑅'(8 +⋯+ 𝛾$%'%#𝑅$ is unbiased
estimate of 𝑣! 𝑆'
• True TD target 𝑅'(# + 𝛾 𝑣7 𝑆'(# is unbiased estimate of 𝑣! 𝑆'
• TD target 𝑅'(# + 𝛾 𝑉 𝑆'(# is biased estimate of 𝑣! 𝑆'
• TD target is much lower variance than the return:

• Return depends on many random actions, transitions, rewards

• TD target depends on one random action, transition, reward
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MC vs. TD (2)

• MC has high variance, zero bias

• Good convergence properties

• (even with function approximation)

• Not very sensitive to initial value

• Very simple to understand and use

30

TD has low variance, some bias

Usually more efficient than MC

TD(0) converges to 𝑣! 𝑠

(but not always with function 
approximation)

More sensitive to initial value



Random Walk Example
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Random Walk Example

32Values learned after various no. of episodes in TD(0)



Batch MC and TD

• MC and TD converge: 𝑉 𝑠 → 𝑣!(𝑠) as experience → ∞

• But what about batch solution for finite experience?

𝑠"#, 𝑎"#, 𝑟##, … , 𝑆$"
#

⋮

𝑠"9, 𝑎"9, 𝑟#9, … , 𝑆$#
9

• e.g.,  repeatedly sample episode 𝑘 ∈ 1,… , 𝐾

• Apply MC or TD(0) to episode k
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AB Example

Two states 𝐴, 𝐵; no discounting; 8 episodes of experience

What is 𝑉(𝐴), 𝑉(𝐵)?

34

𝐴, 0, 𝐵, 0
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 0



AB Example

Two states 𝐴, 𝐵; no discounting; 8 episodes of experience

What is 𝑉(𝐴), 𝑉(𝐵)?

35

𝐴, 0, 𝐵, 0
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 0

𝑉(𝐵) = 0.75



Batch MC

• MC converges to solution with minimum mean-squared error

• Best fit to the observed returns

• In the AB example, 𝑉(𝐴) = 0
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Batch TD(0)

• TD(0) converges to solution of max likelihood Markov model
• Solution to the MDP 𝒮,𝒜, �𝑃, 𝑟̂, 𝛾 that best fits the data

• Called certainty-equivalence estimate
• In the AB example, 𝑉(𝐴) = 0.75
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MC vs. TD (3)

• TD exploits Markov property

• Usually more efficient in Markov environments

• MC does not exploit Markov property

• Usually more efficient in non-Markov environments
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Monte-Carlo Backup

𝑉 𝑆! ← 𝑉 𝑆! + 𝛼 𝐺! − 𝑉 𝑆!

39



TD(0) Backup

𝑉 𝑆! ← 𝑉 𝑆! + 𝛼 𝑅!"# + 𝛾𝑉 𝑆!"# − 𝑉 𝑆
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Dynamic Programming Backup
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𝑉 𝑆! ← E$ 𝑅!"# + 𝛾𝑉 𝑆!"#



Bootstrapping and Sampling

• Bootstrapping: update involves an estimate

• MC does not bootstrap

• DP bootstraps

• TD bootstraps

• Sampling: update samples an expectation

• MC samples

• DP does not sample

• TD samples
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Unified View of Reinforcement Learning
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Agenda

• Monte Carlo Method

• TD(0)

• n-step TD

• TD(𝜆)
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Expressions of Value Function 

• Conditional expectation of return: 

𝑣7 𝑠 = 𝔼7 𝐺' 𝑆' = 𝑠

• Bellman Equation:

𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑣7 𝑆'(# 𝑆' = 𝑠
𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑅'() + 𝛾) 𝑣7 𝑆'() 𝑆' = 𝑠
𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑅'() + 𝛾) 𝑅'(8+ 𝛾8 𝑣7 𝑆'(8 𝑆' = 𝑠

…
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n-Step Return

• Consider the following n-step returns for 𝑛 = 1, 2, … ,∞:

𝑛 = 1 (TD(0)) 𝐺'
# = 𝑅'(# + 𝛾𝑉(𝑆'(#)

𝑛 = 2 𝐺'
) = 𝑅'(# + 𝛾𝑅'() + 𝛾)𝑉(𝑆'())

⋮ ⋮

𝑛 = ∞ (MC) 𝐺'
1 = 𝑅'(# + 𝛾𝑅'() +⋯+ 𝛾$%'%#𝑅$

• 𝐺'
($%'%#) = 𝐺'

($%') = ⋯ = 𝐺'
(1)

• n-step temporal-difference learning

𝑉 𝑆' = 𝑉 𝑆' + 𝛼 𝐺'
* − 𝑉 𝑆'
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n-step TD
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Large Random Walk Example

48

Performance of n-step TD methods as a function of 𝛼, for various values of 
n, on a 19-state random walk task (Example 7.1 in SB).



Agenda

• Monte Carlo Method

• TD(0)

• n-step TD

• TD(𝜆)
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Averaging 𝑛-Step Returns

• We can average 𝑛-step returns over different 𝑛

• e.g. average the 2-step and 4-step returns

• Combines information from two different time-steps

• Can we efficiently combine information from all time-steps?
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𝜆-return

51

• The 𝜆-return 𝐺'> combines all 𝑛-step 

return 𝐺'
(*)

• Using weight 1 − 𝜆 𝜆*%#

𝐺'> ≐ 1 − 𝜆 ∑*-#1 𝜆*%#𝐺'
(*)

• Forward-view TD(𝜆)

𝑉 𝑆' = 𝑉 𝑆' + 𝛼 𝐺'> − 𝑉 𝑆'



TD(𝜆) weighting function

𝐺'> = (1 − 𝜆)D
*-#

1

𝜆*%#𝐺'
(*)

52

= 1 − 𝜆 D
*-#

$%'%#

𝜆*%#𝐺'
(*) + 𝜆$%'%#𝐺'

𝐺'> = 𝐺' when 𝜆 = 1

⇒ 𝐺'> = 𝐺'
(#) when 𝜆 = 0



Forward-View TD(𝜆) on Large Random Walk
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Forward View TD(𝜆) 

• Update value function towards the 𝜆-return

• Forward-view looks into the future to compute 𝐺'>

• Like MC, can only be computed from complete episodes
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Backward View TD(𝜆) 

• Forward view provides theory

• Backward view provides mechanism

• Update online, every step, from incomplete sequences
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Eligibility Traces

• Frequency heuristic: assign credit to most frequent states

• Recency heuristic: assign credit to most recent states

• Eligibility traces combine both heuristics

56

𝐸*$ 𝑠 = 0

𝐸! 𝑠 = 𝛾𝜆𝐸!*$ 𝑠 + 𝟏(𝑆! = 𝑠)



Backward View TD(𝜆) 
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• Keep an eligibility trace for every state 𝑠

• Update value 𝑉(𝑠) for every state 𝑠

• In proportion to TD-error 𝛿' and eligibility trace 𝐸'(𝑠)

𝛿' = 𝑅'(# + 𝛾𝑉 𝑆'(# − 𝑉 𝑆'
𝑉 𝑠 = 𝑉 𝑠 + 𝛼𝛿'𝐸' 𝑠 , ∀𝑠 ∈ 𝒮



Tabular TD(𝜆) for estimating 𝑣!
Input: 𝜋: policy to be evaluated, 𝛼: step size, 𝜆 ∈ [0,1]: trace decay rate

Initialize 𝑉(𝑠) for 𝑠 ∈ 𝒮&, arbitrarily except 𝑉 𝑠∗ = 0

Loop for each episode:
Initizlize 𝑆, 𝐸 𝑠 = 0, ∀𝑠
Loop for each step of epsiode:

Choose 𝐴 ∼ 𝜋(⋅ |𝑆)
Take action 𝐴, observe 𝑅, 𝑆’
𝐸 𝑠 ← 𝛾𝜆𝐸 𝑠 + 𝟏 𝑆 = 𝑠 , ∀𝑠
𝛿 = 𝑅 + 𝛾𝑉 𝑆′ − 𝑉 𝑆
𝑉 𝑠 ← 𝑉 𝑠 + 𝛼𝛿𝐸 𝑠 , ∀𝑠
𝑆 ← 𝑆′

until 𝑆 is terminal 58



TD(𝜆) and TD(0) 

• When 𝜆 = 0, only current state is updated

𝐸' 𝑠 = 𝟏 𝑆' = 𝑠

𝑉 𝑠 = 𝑉 𝑠 + 𝛼𝛿'𝐸' 𝑠

• This is exactly equivalent to TD(0) update 

𝑉 𝑆' = 𝑉 𝑆' + 𝛼𝛿'
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Offline Equivalence of Forward and Backward TD

Offline updates

• Updates are accumulated within episode

• but applied in batch at the end of episode
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Theorem
𝑇ℎ𝑒 sum of offline updates is identical for forward-view and 
backward-view 𝑇𝐷(𝜆)

i
!+,

-*$

𝛼𝛿!𝐸!(𝑠) = i
!+,

-*$

𝛼(𝐺!. − 𝑉 𝑆! 𝟏(𝑆! = 𝑠) , ∀𝑠 ∈ 𝒮



TD(1) and MC

• TD(1) is roughly equivalent to every-visit Monte-Carlo

• When 𝜆 = 1, credit is deferred until end of episode

• Consider episodic environments with offline updates

• Error is accumulated online, step-by-step

• If value function is only updated offline at the end of episode

• Then total update is exactly the same as MC
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TD(1) and MC

• Consider an episode where 𝑠 is visited once at time-step 𝑘,

• TD(1) eligibility trace discounts time since visit,

𝐸' 𝑠 = 𝛾𝐸'%# 𝑠 + 𝟏(𝑆' = 𝑠)

= �0 if 𝑡 < 𝑘
𝛾'%: if 𝑡 ≥ 𝑘

• TD(1) updates accumulate error online

∑'-"$%#𝛼𝛿'𝐸' 𝑠 = 𝛼∑'-:$%#𝛾'%:𝛿'
= 𝛼 𝛿: + 𝛾𝛿:(# +⋯+ 𝛾$%#%:𝛿$%#
= 𝛼 𝐺: − 𝑉 𝑆:

62



Telescoping in TD(1)

𝛿' + 𝛾𝛿'(# +⋯+ 𝛾$%#%'𝛿$%#
= 𝑅'(# + 𝛾𝑉 𝑆'(# − 𝑉 𝑆'
+𝛾𝑅'() + 𝛾)𝑉 𝑆'() − 𝛾𝑉(𝑆'(#)

+𝛾)𝑅'(8 + 𝛾8𝑉 𝑆'(8 − 𝛾)𝑉(𝑆'())

⋮

+𝛾$%#%'𝑅$ + 𝛾$%'𝑉 𝑆$ − 𝛾$%'%#𝑉(𝑆$%#)

= 𝑅'(# + 𝛾𝑅'() +⋯+ 𝛾$%#%'𝑅$ − 𝑉(𝑆')

= 𝐺' − 𝑉 𝑆'
When 𝜆 = 1, sum of TD errors telescopes into MC error
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Online Equivalence of Forward and Backward TD

Online updates

• TD(𝜆) updates are applied online at each step within episode

• Forward and backward-view TD(𝜆) are slightly different

• NEW: Exact online TD(𝜆) achieves perfect equivalence

• By using a slightly different form of eligibility trace

• Sutton and von Seijen, ICML 2014
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Some evidence for TD

• Psychology recognizes two fundamental learning 
processes, analogous to prediction and control

• The details of the TD(λ) algorithm match key features 
of biological learning
• Dopamine = TD error is the most important 

interaction ever between AI and neuroscience

• Read SB 15.6
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