
Model-Free Prediction

CMPS 4660/6660: Reinforcement Learning

1

Acknowledgement: slides adapted from David Silver's RL course

https://www.davidsilver.uk/teaching/

Agenda

• Monte Carlo Method

• TD(0)

• n-step TD

• TD(𝜆)

2

Temporal-difference (TD)
learning

Model-free reinforcement learning

• Planning by dynamic programming

• Solve a known MDP

• Model-free prediction

• Estimate the value function of an unknown MDP

• Model-free control

• Optimize the value function of an unknown MDP

3

Monte-Carlo Reinforcement Learning

• MC methods learn directly from episodes of experience
• Sample sequences of states, action, rewards from actual or simulated interaction

with an environment

• Model-free: no knowledge of MDP transitions/rewards

• MC uses the simplest possible idea: value = mean return

• MC learns from complete episodes
• no bootstrapping

• only applies to episodic MDPs that always terminate

4

Monte-Carlo Policy Evaluation

• Goal: learn 𝑣! from episodes of experience under a stationary policy 𝜋

𝑆", 𝐴" , 𝑅#, … , 𝑆$%#, 𝐴$%#,𝑅$ ~ 𝜋

• Recall that the return is the total discounted reward:

𝐺' ≐ 𝑅'(# + 𝛾𝑅'() +⋯+𝛾$%# 𝑅$
• Recall that the value function is the expected return:

𝑣! 𝑠 ≐ 𝔼! 𝐺' 𝑆' = 𝑠

• Monte-Carlo policy evaluation uses empirical mean return

• instead of expected return (which is unknown)

5

First-Visit Monte-Carlo Policy Evaluation

• To evaluate state 𝑠

• The first time-step 𝑡 that state s is visited in an episode

• Increment counter 𝑁 𝑠 ← 𝑁 𝑠 + 1

• Increment total return 𝑆 𝑠 → 𝑆(𝑠) + 𝐺!
• Value is estimated by mean return 𝑉 𝑠 ← 𝑆(𝑠)/𝑁(𝑠)

• By law of large numbers, 𝑉 𝑠 → 𝑣" 𝑠 as 𝑁 𝑠 → ∞

• E 𝑉 𝑠 = 𝑣" 𝑠 : 𝑉 𝑠 is an unbiased estimate of 𝑣" 𝑠

• Var(𝑉 𝑠) = 𝜎/ 𝑁(𝑠): rate of convergence is 1/ 𝑁(𝑠)

6

First-Visit Monte-Carlo Policy Evaluation

7

Input: a policy 𝜋 to be evaluated

Initialize:
𝑉 𝑠 ∈ ℝ, arbitrarily, for 𝑠 ∈ 𝒮
𝑅𝑒𝑡𝑢𝑟𝑛 𝑠 ← an empty list for for 𝑠 ∈ 𝒮

Loop forever (for each episode):
Generate an episode following 𝜋: 𝑆!, 𝐴! , 𝑅", … , 𝑆#$", 𝐴#$", 𝑅#
𝐺 ← 0
Loop for each step of episode, 𝑡 = 𝑇 − 1, 𝑇 − 2,… , 0:

𝐺 ← 𝛾𝐺 + 𝑅%&"
Unless 𝑆% appears in 𝑆!, 𝑆", … , 𝑆%$":

Append 𝐺 to 𝑅𝑒𝑡𝑢𝑟𝑛 𝑆%
𝑉 𝑆% ← average 𝑅𝑒𝑡𝑢𝑟𝑛 𝑆%

Every-Visit Monte-Carlo Policy Evaluation

• To evaluate state 𝑠

• Every time-step 𝑡 that state s is visited in an episode

• Increment counter 𝑁 𝑠 ← 𝑁 𝑠 + 1

• Increment total return 𝑆 𝑠 → 𝑆(𝑠) + 𝐺'
• Again 𝑉 𝑠 → 𝑣! 𝑠 as 𝑁 𝑠 → ∞

• See Singh and Sutton, “Reinforcement learning with replacing eligibility
traces”, 1996

8

Incremental Mean

• Let 𝑋* *+" be an 𝑖. 𝑖. 𝑑. sequence of
random variables with mean 𝜇 = 𝐸[𝑋"]

• Let 𝜃* be the empirical mean of
𝑋#, 𝑋), … , 𝑋*

• 𝜃* can be computed incrementally

9

𝜃*(# =
1

𝑛 + 1
D
,-#

*(#

𝑋,

=
1

𝑛 + 1
𝑋*(# +D

,-#

*

𝑋,

=
1

𝑛 + 1
𝑋*(# + 𝑛𝜃*

= 𝜃* +
1

𝑛 + 1
𝑋*(# − 𝜃*

Incremental Monte-Carlo Updates

• Update 𝑉 𝑠 after each episode 𝑆", 𝐴" , 𝑅#, … , 𝑆$%#, 𝐴$%#, 𝑅$
• For each state 𝑆' with return 𝐺':

𝑁 𝑆' ← 𝑁 𝑆' + 1

𝑉 𝑆' ← 𝑉 𝑆' + #
. /!

𝐺' − 𝑉 𝑆'

• Constant-𝛼 MC: 𝑉 𝑆' = 𝑉 𝑆' + 𝛼 𝐺' − 𝑉 𝑆'
• Useful in non-stationary problems to track a running mean, i.e. forget old episodes

• A special case of Widrow-Hoff learning rule (1960)

• MC with a general stepsize: 𝑉 𝑆' = 𝑉 𝑆' + 𝛼 𝑁 𝑆' 𝐺' − 𝑉 𝑆'
10

Estimation of Mean

• Let 𝑋* *+" be an 𝑖. 𝑖. 𝑑. sequence of random variables with mean 𝜇 = 𝐸[𝑋"] and a
bounded variance

• Consider	the	estimator:

• Theorem:	if		∑*+"𝛼* = ∞ and	∑*+"𝛼*) < ∞,	then	𝜃* → 𝜇 almost	surely,	that	is,		
Pr lim

*→1
𝜃* = 𝜇 = 1.

• A	common	example:	𝛼# =
$
#!
with	$

%
< 𝑎 ≤ 1

• For	constant	stepsize 𝛼 that	is	small	enough,	limsup
*→1

Pr 𝜃* − 𝜇 > 𝜖 ≤𝑏 𝜖 ⋅ 𝛼,

with 𝑏 𝜖 < ∞.

11

𝜃*(# = 𝜃* + 𝛼*(𝑋*(# − 𝜃*)

Estimation of Mean as Stochastic Approximation

12

𝜃#&$ = 𝜃# + 𝛼#(𝑋#&$ − 𝜃#)

= 𝜃# + 𝛼#[𝜇 + (𝑋#&$ − 𝜇) − 𝜃#]

= 𝜃# + 𝛼# [𝜇 + 𝜔# − 𝜃#]

= 𝜃# + 𝛼#[𝜇 − 𝜃# +𝜔#]

= 𝜃# + 𝛼#[ℎ(𝜃#) + 𝜔#]

Want to find 𝜃∗ such that ℎ 𝜃∗ = 0 from noisy observations ℎ 𝜃* +𝜔*, 𝑛 ≥ 0

𝜔# ≐ 𝑋#&$ − 𝜇: i.i.d. & zero mean

ℎ 𝜃# ≐ 𝜇 − 𝜃#

Stochastic Approximation

• Stochastic Approximation Methods: a family of iterative stochastic
optimization algorithms that attempt to find zeroes or extrema of
functions which cannot be computed directly, but only estimated via
noisy observations.

• The first and prototypical algorithms of this kind are: Robbins-Monro
(1951) and Kiefer-Wolfowitz (1952) algorithms

13

Robbins-Monro Stochastic Approximation

• We have a function ℎ(𝜃) and want to find 𝜃∗ such that ℎ 𝜃∗ = 0

• But only have noisy observations 𝑌* = ℎ 𝜃* +𝜔*
• SA algorithm:

• The same framework applies to MC, TD, Q-learning, and other RL algorithms

• MC: ℎ 𝜃 ≐ 𝜇 − 𝜃

• TD(0): ℎ 𝜃 ≐ 𝑇"(𝜃) − 𝜃

14

𝜃*(# = 𝜃* + 𝛼*𝑌*

= 𝜃* + 𝛼* ℎ 𝜃* +𝜔* , 𝑛 ≥ 0

Function Minimization via Stochastic Approximation

• Suppose we wish to minimize a (convex) function 𝑓 𝜃 . Define

ℎ 𝜃 = −∇f 𝜃 = − 34
35 , we need to solve ℎ 𝜃 = 0.

• The basic iteration is

• This is a “noisy” version of gradient descent algorithm.

15

𝜃*(# = 𝜃* + 𝛼* −∇f 𝜃 + 𝜔* , 𝑛 ≥ 0

Stochastic Approximation and ODE

• A common approach to prove the convergence of SA algorithms is to consider the
ordinary differential equation (ODE):

6
6' 𝜃(𝑡) = ℎ 𝜃 𝑡 or 𝜃̇ = ℎ(𝜃)

• Under suitable conditions on ℎ 𝜃 , 𝜔* and diminishing 𝛼* , {𝜃*} asymptotically
“track” a trajectory {𝜃 𝑡 } of the ODE and converge to a stationary point 𝜃∗: ℎ 𝜃∗ = 0
of the ODE

• References:
• https://webee.technion.ac.il/shimkin/LCS11/ch5_SA.pdf
• H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, Springer,

1997.
• V. Borkar, Stochastic Approximation: A Dynamic System Viewpoint, Hindustan, 2008 16

https://webee.technion.ac.il/shimkin/LCS11/ch5_SA.pdf

Stochastic Approximation (constant stepsize)

• The Robbins-Monro algorithm:
𝜃*(# = 𝜃* + 𝛼* 𝑌* = 𝜃* + 𝛼*[ℎ 𝜃* +𝜔*]

• For constant stepsize 𝛼* = 𝛼, {𝜃*} is a Markov chain. If it is stable, one can
only hope 𝜃* has a stationary distribution that assigns a high probability to a
neighborhood of 𝜃.

• What can be expected? For all 𝜖 > 0,

limsup
*→1

Pr | 𝜃* − 𝜃∗ | > 𝜖 ≤ 𝛼 ⋅ b(𝜖) , with b 𝜖 < ∞

• constant stepsize is more appropriate for nonstationary environment

17

Improvements of Monte Carlo Method

• Quasi-Monte Carlo method
• uses non-i.i.d. sequence

• rate of convergence close to #
*

• may have issues for high dimensional random vectors

• Importance Sampling

• estimates expected values under one distribution given samples from another
• reduces variance
• explained later

18

Agenda

• Monte Carlo Method

• TD(0)

• n-step TD

• TD(𝜆)

19

Temporal-Difference Learning

• TD methods learn directly from episodes of experience

• TD is model-free: no knowledge of MDP transitions / rewards

• TD learns from incomplete episodes, by bootstrapping

• TD updates a guess towards a guess

20

Expressions of Value Function

• Conditional expectation of return:

𝑣7 𝑠 = 𝔼7 𝐺' 𝑆' = 𝑠

• Bellman Equation:

𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑣7 𝑆'(# 𝑆' = 𝑠

𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑅'() + 𝛾) 𝑣7 𝑆'() 𝑆' = 𝑠

𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑅'() + 𝛾) 𝑅'(8+ 𝛾8 𝑣7 𝑆'(8 𝑆' = 𝑠

…

21

MC and TD
• Goal: learn 𝑣! from episodes of experience under policy 𝜋
• Incremental every-visit Monte-Carlo

• Update value 𝑉 𝑆! toward actual return 𝐺!

𝑉 𝑆! ← 𝑉 𝑆! + 𝛼 𝐺! − 𝑉 𝑆!

• Simplest temporal-difference learning algorithm: TD(0)
• Update value 𝑉 𝑆! toward estimated return 𝑅!&$ + 𝛾𝑉 𝑆!&$

𝑉 𝑆! ← 𝑉 𝑆! + 𝛼 𝑅!&$ + 𝛾𝑉 𝑆!&$ − 𝑉 𝑆!

• 𝑅!&$ + 𝛾𝑉 𝑆!&$ is called the TD target
• 𝛿! = 𝑅!&$ + 𝛾𝑉 𝑆!&$ − 𝑉 𝑆! is called the TD error

22

Tabular TD(0) for estimating 𝑣!

Input: 𝜋 (policy to be evaluated), 𝛼 ∈ (0,1] (step size)

Initialize 𝑉(𝑠) for 𝑠 ∈ 𝒮&, arbitrarily except 𝑉 𝑠∗ = 0

Loop for each episode:
Initizlize 𝑆
Loop for each step of epsiode:

Choose 𝐴 ∼ 𝜋(⋅ |𝑆)
Take action 𝐴, observe 𝑅, 𝑆’
𝑉 𝑆 ← 𝑉 𝑆 + 𝛼 𝑅 + 𝛾𝑉 𝑆(− 𝑉 𝑆
𝑆 ← 𝑆′

until 𝑆 is terminal

23

MC vs. TD

• TD can learn before knowing the final outcome
• TD can learn online after every step

• MC must wait until end of episode before return is known

• TD can learn without the final outcome
• TD can learn from incomplete sequences

• MC can only learn from complete sequences

• TD works in continuing (non-terminating) environments

• MC only works for episodic (terminating) environments

24

Driving Home Example

State Elapsed Time
(minutes)

Predicted
Time to Go

Predicted
Total Time

25

leaving office, friday at 6 0 30 30

reach car, raining 5 35 40

exiting highway 20 15 35

2ndary road, behind truck 30 10 40

entering home street 40 3 43

arrive home 43 0 43

Driving Home Example: MC vs. TD

26

TD(0) as Stochastic Approximation

Rewrite 𝑉 𝑆! ← 𝑉 𝑆! + 𝛼[𝑅!&$ + 𝛾𝑉! 𝑆!&$ − 𝑉! 𝑠] as

𝑉#&$ 𝑠 = 𝑉# 𝑠 + 𝛼#(𝑠) [𝑅#&$ + 𝛾𝑉# 𝑆#&$ − 𝑉# 𝑠] 𝛼# 𝑠 = 0 if 𝑠 ≠ 𝑆#

= 𝑉# 𝑠 + 𝛼#(𝑠)[𝑍 𝑠, 𝑉# − 𝑉# 𝑠] where 𝑍 𝑠, 𝑉# ≐ 𝑅#&$ + 𝛾𝑉# 𝑆#&$ for 𝑆# = 𝑠

= 𝑉# 𝑠 + 𝛼#(𝑠) [E" 𝑍(𝑠, 𝑉#) − 𝑉# 𝑠 + 𝑍 𝑠, 𝑉# − E" 𝑍(𝑠, 𝑉#)]

= 𝑉#(𝑠) + 𝛼#(𝑠) ℎ 𝑠, 𝑉# +𝜔# 𝑠

27

TD(0) as Stochastic Approximation

Rewrite 𝑉 𝑆! ← 𝑉 𝑆! + 𝛼[𝑅!&$ + 𝛾𝑉 𝑆!&$ − 𝑉 𝑆!] as

𝑉*(# 𝑠 = 𝑉*(𝑠) + 𝛼*(𝑠) ℎ 𝑠, 𝑉* +𝜔* 𝑠

where ℎ 𝑠, 𝑉# ≐ E" 𝑍(𝑠, 𝑉#) − 𝑉# 𝑠

= E"[𝑅#&$ + 𝛾𝑉# 𝑆#&$] − 𝑉# 𝑠

= (𝑇"𝑉#)(𝑠) − 𝑉# 𝑠

𝜔# 𝑠 = 𝑍 𝑠, 𝑉# − E" 𝑍(𝑠, 𝑉#): zero mean but depend on 𝑉#
TD(0) is an example of asynchronous SA

Theorem:	If		∑*+"𝛼*(𝑠) = ∞ and	∑*+"𝛼*)(𝑠) < ∞ for all 𝑠, 𝑉* converge to the
unique solution of 𝐻 𝑉 ≐ 𝑇!𝑉 − 𝑉 = 0

• For the conditions on 𝛼 to hold, each state should be visited “relatively often”
28

a martingale difference sequence

Bias/Variance Trade-Off

• Return 𝐺' ≐ 𝑅'(# + 𝛾𝑅'() + 𝛾2𝑅'(8 +⋯+ 𝛾$%'%#𝑅$ is unbiased
estimate of 𝑣! 𝑆'
• True TD target 𝑅'(# + 𝛾 𝑣7 𝑆'(# is unbiased estimate of 𝑣! 𝑆'
• TD target 𝑅'(# + 𝛾 𝑉 𝑆'(# is biased estimate of 𝑣! 𝑆'
• TD target is much lower variance than the return:

• Return depends on many random actions, transitions, rewards

• TD target depends on one random action, transition, reward

29

MC vs. TD (2)

• MC has high variance, zero bias

• Good convergence properties

• (even with function approximation)

• Not very sensitive to initial value

• Very simple to understand and use

30

TD has low variance, some bias

Usually more efficient than MC

TD(0) converges to 𝑣! 𝑠

(but not always with function
approximation)

More sensitive to initial value

Random Walk Example

31

Random Walk Example

32Values learned after various no. of episodes in TD(0)

Batch MC and TD

• MC and TD converge: 𝑉 𝑠 → 𝑣!(𝑠) as experience → ∞

• But what about batch solution for finite experience?

𝑠"#, 𝑎"#, 𝑟##, … , 𝑆$"
#

⋮

𝑠"9, 𝑎"9, 𝑟#9, … , 𝑆$#
9

• e.g., repeatedly sample episode 𝑘 ∈ 1,… , 𝐾

• Apply MC or TD(0) to episode k

33

AB Example

Two states 𝐴, 𝐵; no discounting; 8 episodes of experience

What is 𝑉(𝐴), 𝑉(𝐵)?

34

𝐴, 0, 𝐵, 0
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 0

AB Example

Two states 𝐴, 𝐵; no discounting; 8 episodes of experience

What is 𝑉(𝐴), 𝑉(𝐵)?

35

𝐴, 0, 𝐵, 0
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 1
𝐵, 0

𝑉(𝐵) = 0.75

Batch MC

• MC converges to solution with minimum mean-squared error

• Best fit to the observed returns

• In the AB example, 𝑉(𝐴) = 0

36

D
:-#

9

D
'-"

$$%#

𝐺': − 𝑉 𝑠':
)

Batch TD(0)

• TD(0) converges to solution of max likelihood Markov model
• Solution to the MDP 𝒮,𝒜, �𝑃, 𝑟̂, 𝛾 that best fits the data

• Called certainty-equivalence estimate
• In the AB example, 𝑉(𝐴) = 0.75

37

�𝑃;;% 𝑎 =
1

𝑁(𝑠, 𝑎)
D
:-#

9

D
'-"

$$%#

𝟏(𝑠':, 𝑎':, 𝑠'(#: = 𝑠, 𝑎, 𝑠′)

𝑟̂(𝑠, 𝑎) =
1

𝑁(𝑠, 𝑎)
D
:-#

9

D
'-"

$$%#

𝟏 𝑠':, 𝑎': = 𝑠, 𝑎 𝑟'(#:

MC vs. TD (3)

• TD exploits Markov property

• Usually more efficient in Markov environments

• MC does not exploit Markov property

• Usually more efficient in non-Markov environments

38

Monte-Carlo Backup

𝑉 𝑆! ← 𝑉 𝑆! + 𝛼 𝐺! − 𝑉 𝑆!

39

TD(0) Backup

𝑉 𝑆! ← 𝑉 𝑆! + 𝛼 𝑅!"# + 𝛾𝑉 𝑆!"# − 𝑉 𝑆

40

Dynamic Programming Backup

41

𝑉 𝑆! ← E$ 𝑅!"# + 𝛾𝑉 𝑆!"#

Bootstrapping and Sampling

• Bootstrapping: update involves an estimate

• MC does not bootstrap

• DP bootstraps

• TD bootstraps

• Sampling: update samples an expectation

• MC samples

• DP does not sample

• TD samples

42

Unified View of Reinforcement Learning

43

Agenda

• Monte Carlo Method

• TD(0)

• n-step TD

• TD(𝜆)

44

Expressions of Value Function

• Conditional expectation of return:

𝑣7 𝑠 = 𝔼7 𝐺' 𝑆' = 𝑠

• Bellman Equation:

𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑣7 𝑆'(# 𝑆' = 𝑠
𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑅'() + 𝛾) 𝑣7 𝑆'() 𝑆' = 𝑠
𝑣7 𝑠 = 𝔼7 𝑅'(# + 𝛾 𝑅'() + 𝛾) 𝑅'(8+ 𝛾8 𝑣7 𝑆'(8 𝑆' = 𝑠

…

45

n-Step Return

• Consider the following n-step returns for 𝑛 = 1, 2, … ,∞:

𝑛 = 1 (TD(0)) 𝐺'
= 𝑅'(# + 𝛾𝑉(𝑆'(#)

𝑛 = 2 𝐺'
) = 𝑅'(# + 𝛾𝑅'() + 𝛾)𝑉(𝑆'())

⋮ ⋮

𝑛 = ∞ (MC) 𝐺'
1 = 𝑅'(# + 𝛾𝑅'() +⋯+ 𝛾$%'%#𝑅$

• 𝐺'
($%'%#) = 𝐺'

($%') = ⋯ = 𝐺'
(1)

• n-step temporal-difference learning

𝑉 𝑆' = 𝑉 𝑆' + 𝛼 𝐺'
* − 𝑉 𝑆'

46

n-step TD

47

Large Random Walk Example

48

Performance of n-step TD methods as a function of 𝛼, for various values of
n, on a 19-state random walk task (Example 7.1 in SB).

Agenda

• Monte Carlo Method

• TD(0)

• n-step TD

• TD(𝜆)

49

Averaging 𝑛-Step Returns

• We can average 𝑛-step returns over different 𝑛

• e.g. average the 2-step and 4-step returns

• Combines information from two different time-steps

• Can we efficiently combine information from all time-steps?

50

𝜆-return

51

• The 𝜆-return 𝐺'> combines all 𝑛-step

return 𝐺'
(*)

• Using weight 1 − 𝜆 𝜆*%#

𝐺'> ≐ 1 − 𝜆 ∑*-#1 𝜆*%#𝐺'
(*)

• Forward-view TD(𝜆)

𝑉 𝑆' = 𝑉 𝑆' + 𝛼 𝐺'> − 𝑉 𝑆'

TD(𝜆) weighting function

𝐺'> = (1 − 𝜆)D
*-#

1

𝜆*%#𝐺'
(*)

52

= 1 − 𝜆 D
*-#

$%'%#

𝜆*%#𝐺'
(*) + 𝜆$%'%#𝐺'

𝐺'> = 𝐺' when 𝜆 = 1

⇒ 𝐺'> = 𝐺'
(#) when 𝜆 = 0

Forward-View TD(𝜆) on Large Random Walk

53

Forward View TD(𝜆)

• Update value function towards the 𝜆-return

• Forward-view looks into the future to compute 𝐺'>

• Like MC, can only be computed from complete episodes

54

Backward View TD(𝜆)

• Forward view provides theory

• Backward view provides mechanism

• Update online, every step, from incomplete sequences

55

Eligibility Traces

• Frequency heuristic: assign credit to most frequent states

• Recency heuristic: assign credit to most recent states

• Eligibility traces combine both heuristics

56

𝐸*$ 𝑠 = 0

𝐸! 𝑠 = 𝛾𝜆𝐸!*$ 𝑠 + 𝟏(𝑆! = 𝑠)

Backward View TD(𝜆)

57

• Keep an eligibility trace for every state 𝑠

• Update value 𝑉(𝑠) for every state 𝑠

• In proportion to TD-error 𝛿' and eligibility trace 𝐸'(𝑠)

𝛿' = 𝑅'(# + 𝛾𝑉 𝑆'(# − 𝑉 𝑆'
𝑉 𝑠 = 𝑉 𝑠 + 𝛼𝛿'𝐸' 𝑠 , ∀𝑠 ∈ 𝒮

Tabular TD(𝜆) for estimating 𝑣!
Input: 𝜋: policy to be evaluated, 𝛼: step size, 𝜆 ∈ [0,1]: trace decay rate

Initialize 𝑉(𝑠) for 𝑠 ∈ 𝒮&, arbitrarily except 𝑉 𝑠∗ = 0

Loop for each episode:
Initizlize 𝑆, 𝐸 𝑠 = 0, ∀𝑠
Loop for each step of epsiode:

Choose 𝐴 ∼ 𝜋(⋅ |𝑆)
Take action 𝐴, observe 𝑅, 𝑆’
𝐸 𝑠 ← 𝛾𝜆𝐸 𝑠 + 𝟏 𝑆 = 𝑠 , ∀𝑠
𝛿 = 𝑅 + 𝛾𝑉 𝑆′ − 𝑉 𝑆
𝑉 𝑠 ← 𝑉 𝑠 + 𝛼𝛿𝐸 𝑠 , ∀𝑠
𝑆 ← 𝑆′

until 𝑆 is terminal 58

TD(𝜆) and TD(0)

• When 𝜆 = 0, only current state is updated

𝐸' 𝑠 = 𝟏 𝑆' = 𝑠

𝑉 𝑠 = 𝑉 𝑠 + 𝛼𝛿'𝐸' 𝑠

• This is exactly equivalent to TD(0) update

𝑉 𝑆' = 𝑉 𝑆' + 𝛼𝛿'

59

Offline Equivalence of Forward and Backward TD

Offline updates

• Updates are accumulated within episode

• but applied in batch at the end of episode

60

Theorem
𝑇ℎ𝑒 sum of offline updates is identical for forward-view and
backward-view 𝑇𝐷(𝜆)

i
!+,

-*$

𝛼𝛿!𝐸!(𝑠) = i
!+,

-*$

𝛼(𝐺!. − 𝑉 𝑆! 𝟏(𝑆! = 𝑠) , ∀𝑠 ∈ 𝒮

TD(1) and MC

• TD(1) is roughly equivalent to every-visit Monte-Carlo

• When 𝜆 = 1, credit is deferred until end of episode

• Consider episodic environments with offline updates

• Error is accumulated online, step-by-step

• If value function is only updated offline at the end of episode

• Then total update is exactly the same as MC

61

TD(1) and MC

• Consider an episode where 𝑠 is visited once at time-step 𝑘,

• TD(1) eligibility trace discounts time since visit,

𝐸' 𝑠 = 𝛾𝐸'%# 𝑠 + 𝟏(𝑆' = 𝑠)

= �0 if 𝑡 < 𝑘
𝛾'%: if 𝑡 ≥ 𝑘

• TD(1) updates accumulate error online

∑'-"$%#𝛼𝛿'𝐸' 𝑠 = 𝛼∑'-:$%#𝛾'%:𝛿'
= 𝛼 𝛿: + 𝛾𝛿:(# +⋯+ 𝛾$%#%:𝛿$%#
= 𝛼 𝐺: − 𝑉 𝑆:

62

Telescoping in TD(1)

𝛿' + 𝛾𝛿'(# +⋯+ 𝛾$%#%'𝛿$%#
= 𝑅'(# + 𝛾𝑉 𝑆'(# − 𝑉 𝑆'
+𝛾𝑅'() + 𝛾)𝑉 𝑆'() − 𝛾𝑉(𝑆'(#)

+𝛾)𝑅'(8 + 𝛾8𝑉 𝑆'(8 − 𝛾)𝑉(𝑆'())

⋮

+𝛾$%#%'𝑅$ + 𝛾$%'𝑉 𝑆$ − 𝛾$%'%#𝑉(𝑆$%#)

= 𝑅'(# + 𝛾𝑅'() +⋯+ 𝛾$%#%'𝑅$ − 𝑉(𝑆')

= 𝐺' − 𝑉 𝑆'
When 𝜆 = 1, sum of TD errors telescopes into MC error

63

Online Equivalence of Forward and Backward TD

Online updates

• TD(𝜆) updates are applied online at each step within episode

• Forward and backward-view TD(𝜆) are slightly different

• NEW: Exact online TD(𝜆) achieves perfect equivalence

• By using a slightly different form of eligibility trace

• Sutton and von Seijen, ICML 2014

64

Some evidence for TD

• Psychology recognizes two fundamental learning
processes, analogous to prediction and control

• The details of the TD(λ) algorithm match key features
of biological learning
• Dopamine = TD error is the most important

interaction ever between AI and neuroscience

• Read SB 15.6

65

