Number Theory and Cryptography

CMPS/MATH 2170: Discrete Mathematics



Outline

* Divisibility and Modular Arithmetic (4.1)
* Primes and GCD (4.3)
* Solving Congruences (4.4)

* Cryptography (4.6)



Division

Definition: Leta,b € Z with a # 0. we say a divides b if b/a € Z
* equivalently, b = ka for some k € Z
* we use a | b to denote a divides b (or b 1s divisible by a)

* if a | b, we say that a 1s a factor or divisor of b

Ex. 1: Determine whether
a. 3|7
b. 3|12

Ex. 2: How many positive integers not exceeding n are divisible by 3? |n/3]



Division (cont.)

Theorem: Leta,b,c € Z and a # 0. Then

(i) Ifa
(i) Ifa
(iii) If a

banda|c,thena| (b + c)
b,then a | bc
bandb|c(b+#0),thena|c



Prime Numbers

Definition: An integer p > 1 is called prime 1f the only positive factors of p
are 1 and p

s pisprime © Va€Z " a|p—> a=1ora=p

Definition: An integer > 1 that 1s not prime 1s called composite

* 1 1s neither prime nor composite



The Fundamental Theorem of Arithmetic

Theorem: Every positive integer > 1 can be written uniquely as a prime or as the
product of two or more primes written in a non-decreasing order

* “prime factorization of an integer”

.,  prime factorization is hard
Ex: 100 = 2-2-5-5=27-5 for large numbers

641 = 641
999 = 3-3-3-37 =33.37

Proof of the fundamental theorem:
1. existence: strong induction

2. uniqueness: to be proved



Applications of the Fundamental Theorem

Theorem: A composite n has a prime divisor < /n.
Corollary: An integer p > 1 1s a prime 1f 1t 1s not divisible by any prime < /p.
Ex: Show that 101 1s prime

Theorem: There are infinitely many primes

* A proof given by Euclid in The Elements



Two Great Open Problems on Primes

* Goldbach’s conjecture (1742): every even number n > 2 1s the sum of two primes
* Every even number n > 2 is the sum of at most 6 primes (1995)
* Every even number n > 2 is the sum of a prime and a number that is either prime or
the product of two primes (1+2, 1966)
* Twin prime conjecture (before 1849): there are infinitely many twin primes
* Twin prime pairs: (3, 5), (5,7), (11, 13), (17, 19), (29, 31), ...
* There are infinitely many pairs of prime numbers that differ by 246 or less (2014)



Greatest Common Divisors

Definition: Let a, b € Z, not both zero. The largest integer d such thatd | a and d | b is
called the greatest common divisor of a and b, denoted by d = gcd(a, b)

Ex: gcd(24,36) = 12
gcd(17,22) = 1
ecd(120,500) = ged(23-3-5,22-53) =22.5 =20

min(a,,b;)  min(az,bz)  min(ay,by)

. b, b b,
ged(py™ - 2 P DLt DRt v DR") =Dy D, Pn

* Is there a more efficient way to find ged?



Least Common Multiples

Leta,b € Z, a,b # 0. The smallest positive integer that is divisible by both a and b is
called the least common multiple of a and b, denoted by Icm(a, b)

Ex: lem(24,36) = lem(23 - 3,2%-3%) = 23-32 =72

lem(p{™ - P52 -+ pa™, Pyt - P2 o ppt) = pyo Gt pnax(@aba) g maxanbn)

Theorem: For any positive integers a and b, ab = gcd(a, b) - lcm(a, b)



The Division Algorithm

Theorem: Let a € Z and d € Z*. Then there are unique q,r € Z, with
0 < r < d, such that
a=dq+r

divisor quotient  remainder

Ex:a=101,d = 2
a=-11,d =3
qg=adivd = |a/d]
r=amodd=a—dla/d] d|lae© amodd=0



The Division Algorithm
Theorem: Let a € Z and d € Z*. Then there are unique q,r € Z, with 0 <

r <d,suchthata =dqg +r

1. Existence (5.2 Example 5): use the well-ordering property: “Every
nonempty subset of N has a least element”

2. Uniqueness (exercise)



The Euclidean Algorithm

A useful fact about the division algorithm:

Theorem: Let a = bq + r, where a, b, q,r € Z. Then gcd(a, b) = gcd(b, r)

A more efficient way to find gcd:
Euclidean Algorithm: find gcd(a, b) by successively applying the division algorithm



The Euclidean Algorithm

Ex: Find gcd(287,91) using the Euclidean Algorithm
287 =91-3+14  8cd(287,91) = ged(91,14)
91 = 14-6+(7)  8cd(91,14) = ged(14,7)

= gcd(287,91) = gcd(91,14) =gcd(14,7) =7



GCDs as Linear Combinations

Bezout’s Theorem: Let a, b € Z*. There exist s,t € Z such that

gcd(a,b) = sa + tb

Ex: Find s,t € Z such that gcd(54,15) =s-54 +t- 15
54=3:-15+9 9 =54 —3-15
15=1-9+6 6 =15 —-1-9

9 =1-6+3) 3=9-1-6

k t.t t. .
gcd(54,15) = ged(15,9) Backward substitution gives

3=9-1-6
= gcd(9,6) =9 —1-(15-1-9)
=ng(6,3) =2-9 —-1-15
=2-(54—-3-15)—1-15
=3 =2-54 —7-15



Applications of Bezout’s Theorem

Lemma: Ifa,b,c € Z* such that gcd(a,b) = 1and a | bc, thena | ¢

* We say that a and b are relatively prime if gcd(a, b) = 1

Corollary: If p is a prime and p | a,a, ... a,, where each a; 1s an integer, then p | a;
for some {.

The Fundamental Theorem of Arithmetic: Every positive integer > 1 can be written
uniquely as a prime or as the product of two or more primes where the primer
factors are written 1n non-decreasing order

Proof: 1. existence: strong induction

2. uniqueness: using the above corollary



Wrap Up

6.

Divisibility: a | b © b = ka for some integer k
Primes

* the Fundamental theorem of Arithmetic

* A composite n has a prime divisor < \/n
* there are infinite many primes

Greatest common divisor and least common multiple

Division algorithm: a =dqg +7r, 0 <r <d

» gcd(a,d) = ged(d, 1)

Euclidean algorithm: find gcd by successively applying the division algorithm

Bezout’s Theorem: gcd(a, b) = sa + tb
e If gcd(a,b) =1anda | bc, thena|c



Congruences

Definition: Let a, b € Z,m € Z*, we say a is congruent to b modulo m if m | (a — b)

* If a 1s congruent to b modulo m, we write a = b (mod m)

* Examples
¢« 17=5(mod6)? 14 =2 (mod12)
*11=8(mod2)? 23=11(mod 12)

*a=b(mod m) ©®m|(a—>b)
S a—b=kmforsomek €7

S a=km+ b forsome k € 7



Congruences (cont.)

Theorem: Leta,b,c,d € Z, m € Z*
* a =b (modm) & (amodm) = (b modm)

* Ifa = b (mod m) and b = ¢ (mod m), then a = ¢ (mod m)

* Ifa=b (modm) and c = d (mod m), thena + ¢ = b + d (mod m) and
ac = bd (mod m)

Theorem: Leta € Z,m € Z*. There is a unique a, € {0,1, ..., m — 1} such that
a = ag (mod m).



Arithmetic Modulo m

7. ={0,1,..,m—1)

Addition modulo m: a+,,b=(a+b)modm
Multiplication modulo m: a -, b = (a-b) mod m
Ex: 6 +129, 7 11 3

ca+,b=c=>a+b=c(modm)

*amb=c=>a-b=c(modm)



Properties of Z,,

Forany a, b, c € Z,,

* Closure: a+m,b€Zny
a-,mb€Zy
* Associativity: (a+, b))+, c=a+, (b+,)

(@ mb) mc=apy,bpmc)

* Commutativity: a+,b=b+,a

amb=>b-,a



Properties of Z,,

Forany a,b,c € Z,,
e Distributivity: a,,b+,c)=a-,b+,,a,cC
(a+,b) mc=a-y,c+mb-,c

* Identity elements: a+,0=0+,,a=a

an, 1=1-,a=a

* Additive inverse: For every a € Z,,, there1s b € Z,,,, suchthata +,, b =0
0+,,0=0
a+,(m—a)=0 fora=+0



Properties of Z,,

* Fora € Z,, ,b € Z,, 1s a multiplicative inverse of aifa -,,, b = 1,
* does 2 have a multiplicative inverse in Z,?  No

* does 2 have a multiplicative inverse modulo Zz? Yes 2-3 =1 (mod 5)
e Theorem: a has a multiplicative inverse in Z,, if and only if gcd(a, m) = 1.

* Corollary: Every non-zero element has a multiplicative inverse in Z,, when p is

prime



Additive Inverse and Multiplicative Inverse

e Fora,b € Z,
* b is an additive inverse of a modulo m € Z* ifa + b = 0 (mod m)

* b is an multiplicative inverse of a modulo m € Z* ifa - b = 1 (mod m)

* Theorem: a € Z and a # 0 has a multiplicative inverse modulo m € Z* if and only if

gcd(a, m) = 1. Furthermore, an inverse, when it exists, is unique modulo m.



Find Multiplicative Inverses

Ex I: Find a multiplicative inverse of 3 modulo 7
3x=1=8=15(mod7) = x =5 (mod 7)
Ex 2: Find a multiplicative inverse of 5 modulo 3

5x=1=4=7=10((mod 3) = x =2 (mod 3)

Use Bezout’s Theorem to find an inverse of a modulo m, where gcd(a,m) = 1
e find s,t € Zsuchthat sa+tm =1

* s 1s a multiplicative inverse of a modulo m

Ex 3: Find an inverse of 101 modulo 4620 (4.4 Example 2)



Solving Linear Congruences

Problem: Givena,b € Z, m € Z™, find x € Z such that

ax = b (mod m)
Let us first assume gcd(a,m) = 1.
Ex: Find the solution of 3x = 4 (mod 7)

3x =4=11= 18 (mod 7) We know 3 -5 =1 (mod 7)
Then 3x =4 (mod 7)

= 5:-3x =54 (mod7)
= x=20=6 (mod?7)

= x = 6 (mod 7)



Solving Linear Congruences

Problem: Givena,b € Z, m € Z™, find all x € Z such that
ax = b (mod m)
Q: What if gcd(a,m) =d > 17

A: For the linear congruence to have a solution, we must have d | b

a b

= We only need to solve a’x = b’ (mod m') where o’ = -, b'=-,andm’ = %

Ex: Find the solution of 15x = 6 (mod 9)



Modular Exponentiation and Fermat’s Little Theorem

Ex: Find 27 mod 7

Fermat’s Little Theorem: If p 1s prime, then for every integer a we have

aP = a (mod p)
Further, if a 1s not divisible by p, then
aP~1 =1 (mod p)

»See 4.4 Exercise 19 for a proof sketch

Ex: Find 7%%% mod 11

Pierre de Fermat

To compute a™ mod p where p is prime and p t a

e Firstwriten = q(p—1)+rwhere0 <r<p-1
e Then a™ = q4®P~-D+7

= (aP~1)4a"

= 19a" (mod p)

= a" (mod p)




Fast Modular Exponentiation

Ex: Find 33 mod 645
36 = 2°+ 22

32" mod 645 =9

32° mod 645 = 92 mod 645 = 81

32 mod 645 = 812 mod 645 = 6561 mod 645 = 111

32" mod 645 = 1112 mod 645 = 12,321 mod 645 = 66

32° mod 645 = 662 mod 645 = 4356 mod 645 = 486

336 mod 645 = 32° - 32° mod 645 = 486 - 81 mod 645 = 21



Outline

* Divisibility and Modular Arithmetic (4.1)
* Primes and GCD (4.3)

* Solving Congruences (4.4)

* Cryptography (4.6)



Introduction to Cryptography

* Classical Cryptography

* Shift Cipher
* Affine Cipher

* Public Key Cryptography
* RSA



Symmetric Key Cryptography

. T

Bob




Symmetric Key Cryptography

Bob Alice
m m
¢ = ey (m) : m = di (c)
encryption decryption
Eve

* Bob and Alice need to share the secret key k

* Need to make sure m = dj (e, (m))



Shift Cipher

* Caesar Cipher: shift each letter three letters forward 1n the alphabet
* Plain: ABCDEF . .TUVWXYZ
* Cipher: de fg hi .wxy z ab c
 Ex: TULANE — wxodgh

* Mathematically, encode letters as numbers in Z,, = {0,1, ..., 25}
* ABCDEF .UV WXY Z
e 01 2 345 ..20 21 22 23 24 25

. Encryption: C = ey (m) = (m + k) mod 26 m. plaintext, C: ciphertext, k: key
* Decryption: m = d(¢) = (¢ — k) mod 26 m, ¢,k € Zze

* Do we have m = d (e, (m))?



Affine Cipher

* Encryption: ¢ = (a - m + b) mod 26

* (a,b) is the key where a, b € Z,, and gcd(a, 26) = 1

«Ex: a=7b=23 m=10 (K", whatisc? c¢=21 (V")
* Decryption: m = a(c — b) mod 26

* a4 € Zy, aa =1 (mod 26)

* Do we have m = dj (e, (m))?



Public Key Cryptography

Anyone can send a secret (encrypted) message to the
recerver, without any prior contact, using publicly
available 1nfo.

Albert R. Meyer March 13, 2013



Public Key Cryptography

* Invented by Diffie & Hellman in 1976

* They shared the 2015 Turing Award

* Why Public Key Cryptography?

* Key distribution

* Digital signature



Public Key Cryptography

Bob Alice
m m
¢ = ey, (M) : m=dy, ., ()
encryption decryption
Eve

* Alice has a key pair k = (kpub, kpn-v), Bob only knows k,,,j,

* Need to make sure m = dkpriv (ekpub (m))



The RSA Cryptosystem

* One of the first practical public key cryptosystems

* Invented by Ronald Rivest, Adi Shamir, and Lenoard Adleman in 1976

* They shared the 2002 Turing Award

* Based on the difficulty of factoring large numbers into primes



The RSA Cryptosystem

Message Encoding:

1. Each letter 1s encoded into a two-digit number
A B C¢C ..1 |J K L..O P Q R S T U V W X Y Z
00 01 02 ..08 09 10 11 ..14 15 16 17 18 19 20 21 22 23 24 25

2. A message 1s divided into N letter blocks such that the maximum 2N digits does not
exceed n

Ex: n = 2537, a message is divided into 2 letter blocks (2525 < 2537<252525)
* Message STOP is translated into two blocks 1819 1415

Plain and cipher texts are numbers in Z,, = {0,1, ...,n — 1}.



The RSA Cryptosystem

Key generation (by Alice):

1. Select two large primes p,q, » # q

2 n=p-q

3. Select a small odd integer e that 1s relatively prime to (p — 1)(qg — 1)
4. Compute d suchthatde =1 (mod (p —1)(q — 1))

5. kpup = (n,e) is the public key

6. kyriy = (n,d) is the private key

Ex: p=43 q=59 n=p-q=2537 e=13 d =361
kpup = (2537,13), kypripy, = (2537,361)



RSA Encryption and Decryption

To encrypt a plaintext m use the public key (n, e)
c =m®modn
To decrypt a ciphertext ¢ use the private key (n, d)

m = c?modn

Ex: Encrypt the message STOP with the public key (2537, 13)
* Message STOP is translated into two blocks 1819 1415
« Compute 181913 mod 2537, 14153 mod 2537 using fast modular exponentiation

Do we have m = dy(ex(m))? Need to show (m€)% = m (mod pq) (Section 4.6)

Security of RSA: It 1s hard to guess d given (n, e) (hard to factor n = pq for large p and q)



Public Key Cryptography

Bob Alice
| [
¢ = ey, (M) s m=dy, (O
encryption I decryption
Eve

* Alice has a key pair k = (kpub, kpn-v), Bob only knows k,,,j,

* Need to make sure m = dkpriv (ekpub (m))



Digital Signature

Bob Alice
[ m
m=eg,, () s = dy,, (m)
verification | signing
Eve

* Alice has a key pair k = (kpubJ kpriv)

* Need to make sure m = €kt (dkpriv (m))



