Time and Global States

CMPS 4760/6760: Distributed Systems
Overview

- Physical clocks
- Logical clocks and vector clocks
- Global state
Time and Clock

- **Primary standard of time:** rotation of earth
 - 1 solar second = 1/86,400th of a solar day that the Earth takes to complete one revolution around its axis

- **De facto primary standard of time:** atomic clocks
 - 1 atomic second = 9,192,631,770 orbital transitions of Cesium-133 atom.
 - 86400 atomic sec = 1 solar day – approx. 3 ms (leap second correction each year)

- Coordinated Universal Time (UTC) does the adjustment for leap seconds ± number of hours in your time zone
Global Positioning System: GPS

A system of 32 satellites broadcast accurate spatial coordinates and atomic times

• Location and precise time computed by triangulation

• no leap sec. correction => 18 seconds ahead of UTC (as of 2017),

• Per the theory of relativity, an additional correction is needed. Locally compensated by the receivers.
Terminology

Drift rate \(\frac{d(C(t) - t)}{dt} \)

Clock skew \(\delta \)

Resynchronization interval \(R \)

Max drift rate \(\rho \) implies:

\[
(1 - \rho) \leq \frac{dC(t)}{dt} \leq (1 + \rho)
\]

Drift is unavoidable:

- Ordinary quartz-oscillators clocks: \(10^{-6} \)
- “High precision” quartz clocks: \(10^{-8} \)
- Atomic clocks: \(10^{-13} \)
Physical clock synchronization

Why accurate physical time is important?

• Accurate time keeping: air-traffic control systems

• Accurate timestamps: multi-version objects

• Some security mechanisms depend on the physical times of events, e.g. Kerberos
Physical clock synchronization

- **External Synchronization:** $|C_i(t) - S(t)| < \delta/2$
- **Internal Synchronization:** $|C_i(t) - C_j(t)| < \delta$
- **Challenges:** account for propagation delay, processing delay, and *faulty clocks*
- **Monotonicity:** $t' > t \Rightarrow C(t') > C(t)$
- **Unbounded clocks vs. bounded clocks**
 - Y2K bug
- **Hardware clock vs. Software clock**
 - $C(t) = \alpha H(t) + \beta$
External Synchronization: Cristian’s method

- Client **pulls data** from a **time server** every R unit of time, where $R < \delta/2\rho$ (why?)

- $C_i = T_s + RTT/2$
 - Client estimates round trip time $RTT = T_2 - T_1$
 - if the minimum transmission min is known, the accuracy is $\pm (RTT/2 - min)$

- Improve accuracy and fault tolerance
 - Query multiple times & take minimum RTT
 - Query multiple time servers
Internal Synchronization: Berkeley Algorithm

- The participants elect a master (leader)
- The master coordinates the synchronization

Step 1. Salves send their clock values to the master

Step 2. Master discards outliers and computes the average

Step 3. Master sends the needed adjustment to the slaves
Berkeley Algorithm

To maintain Monotonicity
- **Negative** correction => slowdown
- **Positive** correction => speedup

RTT adjustment as in Cristian’s method (not shown in the figure)
Internal synchronization with byzantine clocks

- Lamport and Melliar-Smith’s algorithm

Assume N clocks, at most f are faulty

Clock i runs the following algorithm:

Step 1. Read every clock in the system.
 - $c_i[j]$: clock i’s reading of clock j’s value

Step 2. if $|c_i[j] - c_i[i]| > \delta$, $c_i[j] = c_i[i]$

Step 3. Update the clock using the average of these values.

Synchronization is maintained if $N > 3f$
Lamport and Melliar-Smith’s algorithm

The maximum difference between the averages computed by two non-faulty nodes is \((3f\delta/N)\)

To keep the clocks synchronized,

\[
\frac{3f\delta}{N} < \delta \iff N > 3f
\]
Overview

- Physical clocks
- Logical clocks and vector clocks
- Global state
Model of a Distributed System

- A distributed program consists of a set of N processes, $\{P_1, P_2, \ldots, P_N\}$, and a set of unidirectional channels.
 - Message passing only, no shared memory, no global clock
 - Channel model: error free, arbitrary but finite delay, no assumptions on ordering
Model of a Distributed System

- A process is defined as a set of states, an initial condition (i.e., a subset of states), and a set of events
- **State of a process**: values of all the variables (including the program counter)
- **State of a channel**: sequence of messages set along the channel but not received
 - A process may record messages sent and received as part of its **local state**
Global State

- The set of global states = the cross product of local states and the states of channels.
- An initial global state is one in which all local states are initial and all the channels are empty.
Model of a Computation

- Each event corresponds to an action and may change the state of a process and the state of at most one channel incident on that process
 - Internal events only change the state of a process
 - External events: sends to/receives from other process

- A set of events \((e^1, e^2, \ldots)\) in a single process is called sequential, and their occurrences can be totally ordered in time using the clock at that process

- A run or a computation of a process \(P_i\) is defined as a sequence of local states and events: \(s_i^0 e_i^0 s_i^1 \ldots e_i^k s_i^k\)
Global State

- “time-based model”: a global state is a set of local states that occur **simultaneously**.

- “happened-before model”: a global state is a set of local states that are all **concurrent** with each other.

There is nothing called **simultaneous** in the physical world.
Model of a Computation

- Questions:
 - How do we decide if an event happened before another event when the two events are on different processes?
 - How do we decide if two events are concurrent?
 - Can we do these without using physical clocks, since physical clocks are not be perfectly synchronized?
Causality

- The event of sending message must have happened before the event of receiving that message.
Happened Before Model

Notations:

- \(e < f \) iff \(e, f \) are two events in a single process \(P \), and \(e \) proceeds \(f \)
- \(e \preceq f \) iff \(e < f \lor e = f \)
- \(e \sim f \) iff \(e = \text{sending} \) a message, and \(f = \text{receipt} \) of that message

These definitions also apply to states.
The *happened-before* relation (→) is the smallest relation that satisfies

Rule 1. if \((e < f) \lor (e \sim f)\) then \(e \rightarrow f\).

Rule 2. \((e \rightarrow f) \land (f \rightarrow g) \Rightarrow e \rightarrow g\)

→ defines a partial order on \(E\) (the set of all events)

\(e\) and \(f\) are **concurrent** (denoted by \(e||f\)) if \(\neg(e \rightarrow f) \land \neg(f \rightarrow e)\)

Again, we can similarly define happened-before relation for **states**
Logical Clocks

- A logical clock LC is a map from E to \mathbb{N} with the constraint:

$$\forall e, f \in E, e \rightarrow f \Rightarrow LC(e) < LC(f)$$

- The constraint models:
 - sequential nature of execution at each process
 - Physical requirement that any message transmission requires a nonzero amount of time

Leslie B. Lamport
Lamport timestamps
Implementation

\[P_i:: \]

\[\text{var} \]

\[LC: \text{integer initially 0}; \]

\[\text{internal event}() : \]

\[LC = LC + 1; \]

\[\text{send event} (m) : \]

\[LC = LC + 1; \]

\[\text{piggybacks} \ LC \text{ on } m; \]

\[\text{receive event} (m, t) : \]

\[LC = \max(LC, t) + 1; \]
A total ordering on events

Let e and f be two events in processes i and j, respectively. We can define a total order \ll of events as:

$$ e \ll f \text{ iff either } LC(e) < LC(f) $$

or $LC(e) = LC(f)$ and $i < j$
Vector Clocks

- Logical clocks cannot detect causality
- A vector clock VC is a map from E to \mathbb{N}^n with the constraint:

 $$\forall e, f \in E, e \rightarrow f \iff VC(e) < VC(f)$$

- Given two vectors x and y of dimension n, we compare them as follows:

 $$x < y = (\forall k: 0 \leq k \leq n - 1: x[k] \leq y[k]) \land (\exists j: 0 \leq j \leq n - 1: x[j] < y[j])$$
 $$x \leq y = (x < y) \lor (x = y)$$
Implementation

\[P_i :: \]

\[
\begin{align*}
{\text{var}} & \quad {\text{var}} \\
VC & : \text{array}[1..N] \text{ of integer}; \text{initially } VC[j] = 0 \ \forall j;
\end{align*}
\]

{\text{internal event}} (\cdot):

\[
VC[i] = VC[i] + 1;
\]

{\text{send event}} (m):

\[
VC[i] = VC[i] + 1;
\]

\quad piggybacks \ VC \text{ on } m;\]

{\text{receive event}} (m, t):

\[
VC[i] = VC[i] + 1;
\]

\quad \forall j: \ VC[j] = \max(VC[j], t[j]);\]
Vector timestamps

\[(1,0,0)\quad (2,0,0)\]

\[(2,1,0)\quad (2,2,0)\]

\[(0,0,1)\quad (2,2,2)\]

\[p_1\quad p_2\quad p_3\]

\[a\quad b\quad c\quad d\quad e\quad f\]

\[m_1\quad m_2\]

Physical time
Properties

- Lemma: For any two events e and f in processes i and j, respectively:

\[e \leftrightarrow f \Rightarrow VC(e)[i] > VC(f)[i] \]

- Theorem: $\forall e, f \in E, e \rightarrow f \iff VC(e) < VC(f)$
Overview

- Physical clocks
- Logical clocks and vector clocks
- Global state
Detecting Global Properties

(a) Garbage collection

(b) Deadlock

(c) Termination
Global State

- **Current** global state is hard to get
 - No process has global knowledge

- **Past** global state is often sufficient
 - Failure recovery
 - Monitoring stable properties: has the token been lost?

- A property is called stable if once it is true it stays true forever
Global Snapshot
Global State

- “time-based model”: a global state is a set of local states that occur simultaneously.

- “happened-before model”: a global state is a set of local states that are all concurrent with each other.
Cuts

Physical time

Inconsistent cut

Consistent cut

e_1^0 e_1^1 e_1^2 e_1^3

p_1

m_1

p_2

m_2
Consistent Cuts

- A cut (global state, global snapshot) = a vector of local states containing exactly one state from each process

- A consistent cut (consistent global state) is a cut where all the states are mutually concurrent (in terms of the happened-before relation).

- A linearization (or a consistent run) of a distributed system is a sequence (total ordering) of consistent global states where
 1. the sequence is consistent with the happened-before relation
 2. two adjacent states differ in the state of exactly one process
Chandy and Lamport’s snapshot algorithm

- Assumptions
 - Neither channels nor processes fail
 - Channels are unidirectional and FIFO-ordered (First in First out)
 - The graph of processes and channels is strongly connected (there is a path between any two processes)
 - Any process may initiate a global snapshot at any time
 - The process may continue their execution and send and receive normal messages while the snapshot takes place
Chandy and Lamport’s snapshot algorithm

- **Informal description**
 - Each process is either *white* or *red*. All processes are initially *white*.
 - After recording the local state, a process turns *red*.

- **Two difficulties**
 - Need to ensure that the recorded local states are *mutually concurrent*.
 - Need to capture the *state of the channels*.
Classification of Messages

\[P \]

\[Q \]

\(\text{ww} \)

\(\text{rw} \)

\(\text{wr} \)

\(\text{rr} \)
Informal description

- Each process is either white or red. All processes are initially white.
- After recording the local state, a process turns red.
- Once a process turns red, it is required to send a special message called a *marker* along all its outgoing channels before it sends out any message and start recording messages from all incoming channels.
- Once P_i receives a marker from P_j:
 - it is required to turn red if it has not already done so.
 - it stops recording messages from P_j.
Chandy and Lamport’s snapshot algorithm

\(P_i :: \)

```
var
  color: \{white, red\} initially white;
// assume \( k \) incoming channels
  chan: array[1..k] queues of messages initially null;
  closed: array[1..k] of boolean initially false;

  turn_red() enabled if (color == white):
    save_local_state;
    color = red;
    send (marker) to all neighbors;
```

Upon `receive(marker)` on channel \(j \)
```
  if(color == white) turn_red();
  closed[j] = true;
```

Upon `receive(prog_message)` on channel \(j \)
```
  if(color == red \&\& \neg closed[j])
    chan[j] = append(chan[j],
                      prog_message)
```
Example: Communicating State Machines

\[
\begin{array}{c}
\text{send } M \\
\text{up} \\
\text{send } M' \\
\text{receive } M' \\
\text{down} \\
\text{receive } M' \\
\text{STATE MACHINE } i \\
\text{send } M \\
\text{up} \\
\text{send } M' \\
\text{receive } M \\
\text{down} \\
\text{receive } M \\
\text{STATE MACHINE } j
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{Global state} & \text{Process } i & \text{Process } j \\
\hline
S_0 & \text{down} & \emptyset & \text{down} & \emptyset \\
S_1 & \text{up} & M & \text{down} & \emptyset \\
S_2 & \text{up} & M & \text{up} & M' \\
S_3 & \text{down} & M & \text{up} & \emptyset \\
\hline
\end{array}
\]
Something unusual

- Let machine i start Chandy-Lamport snapshot before it has sent M along $c1$.
- Also, let machine j receive the marker after it sends out M' along $c2$.
- Observe that the snapshot state is

 down \emptyset up M'

- This state was never reached during the computation!
Understanding snapshot
Understanding snapshot

The *observed state* is a *feasible state* that is reachable from the *initial configuration*. It may not actually be visited during a specific execution.

The *final state* of the original computation is *always reachable* from the *observed state*.
Properties

- **Lemma (Monotonicity of color)** $\forall s, t: s \rightarrow t \Rightarrow s.color \leq t.color$

 - Assume white < red

- **Theorem (Safety):** The Chandy–Lamport algorithm records a consistent global state.

 - $\forall s, t: s.color = \text{red} \land t.color = \text{red} \Rightarrow rstate(s)||rstate(t)$, where $rstate(s) = \max\{s'|s' \leq s, s'.color = \text{white}\}$

 - If both s and t (of P_i and P_j, respectively) are red and the channel from P_i to P_j is closed at t, then P_j records precisely those messages that are sent before the recorded state in P_i and are received after the recorded state in P_j

- **Theorem (Liveness):** Eventually all processes turn red and all channels are closed

 - Formally, $\exists s: s.color = \text{red} \Rightarrow \forall j: (\exists t \in P_j: t.color = \text{red} \land t.closed[k] = \text{true} \ \forall \ k)$