## **Policy Gradient Methods**

CMPS 4660/6660: Reinforcement Learning

Acknowledgement: slides adapted from David Silver's RL course

# Agenda

- Introduction
- Finite Difference Policy Gradient
- Monte-Carlo Policy Gradient
- Actor-Critic Policy Gradient



## Policy-Based Reinforcement Learning

So far we have approximated the value or action-value function using parameters,

$$\hat{v}_w(s) \approx v_\pi(s)$$
  
or  $\hat{q}_w(s, a) \approx q_\pi(s, a)$ 

- A policy was generated directly from the value function
  - E.g., using  $\epsilon$ -greedy
- Alternatively, we can directly parameterize the policy

$$\pi_{\theta}(a|s) = \Pr(A_t = a|S_t = s, \theta)$$

We will focus again on model-free reinforcement learning

## Value-Based and Policy-Based RL

- Value Based
  - Learnt Value Function
  - Implicit policy (e.g.  $\epsilon$ -greedy)
- Policy Based
  - No Value Function
  - Learnt Policy
- Actor-Critic
  - Learnt Value Function
  - Learnt Policy



## Advantages of Policy-Based RL

#### Advantages

- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies
- A good way of injecting prior knowledge about the policy into RL

#### Disadvantages:

- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and has high variance

## Example: Rock-Paper-Scissors

- Two-player game of rock-paper-scissors
  - Scissors beats paper
  - Rock beats scissors
  - Paper beats rock
- Consider policies for iterated rock-paper-scissors
  - A deterministic policy is easily exploited
  - A uniform random policy is optimal (i.e. Nash equilibrium)



## Example: Aliased Gridworld (1)

- The agent cannot differentiate the grey states
- Consider features of the following form (for all N, E, S, W)

$$x(s, a) = 1$$
(wall to N and S,  $a=E$ )

Compare value-based RL, using an approximate value function

$$\hat{q}_w(s, a) = f(\mathbf{x}(s, a), w)$$

To policy-based RL, using a parametrized policy

$$\pi_{\theta}(a|s) = g(\mathbf{x}(s,a), \theta)$$



## Example: Aliased Gridworld (2)

- Under aliasing, an optimal deterministic policy will either
  - move W in both grey states (shown by red arrows)
  - move E in both grey states
- Either way, it can get stuck and never reach the money
- Value-based RL learns a near-deterministic policy
  - e.g. greedy or  $\epsilon$ -greedy
- So it will traverse the corridor for a long time



## Example: Aliased Gridworld (3)

An optimal stochastic policy will randomly move E or W in grey states

```
\pi_{\theta} (move E | wall to N and S) = 0.5 \pi_{\theta} (move W | wall to N and S) = 0.5
```

- It will reach the goal state in a few steps with high probability
- Policy-based RL can learn the optimal stochastic policy



# Agenda

- Introduction
- Finite Difference Policy Gradient
- Monte-Carlo Policy Gradient
- Actor-Critic Policy Gradient



## Policy Objective Functions

- Goal: given policy  $\pi_{\theta}(a|s)$  with parameters  $\theta$ , find best  $\theta$
- But how do we measure the quality of a policy  $\pi_{\theta}$ ?
- In episodic environments we can use the start value

$$J_1(\theta) = v_{\pi_{\theta}}(s_0)$$

• In continuing environments we can use the average value

$$J_{avV}(\theta) = \sum_{s \in \mathcal{S}} \mu_{\pi_{\theta}}(s) v_{\pi_{\theta}}(s)$$

- $\mu_{\pi_{\theta}}(\cdot)$  is the stationary distribution of states under  $\pi_{\theta}$
- Or the average-reward per time-step

$$J_{avR}(\theta) = \sum_{s} \mu_{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(a|s) R(s,a)$$

• For continuous state and actions spaces, replace summations by integrals and interpret  $\pi_{\theta}(\cdot \mid s)$  as a density function

## Policy Optimization

- Policy based reinforcement learning is an optimization problem
- Find  $\theta$  that maximizes  $J(\theta)$
- Some approaches do not use gradient
  - Hill climbing
  - Simplex / amoeba / Nelder Mead
  - Genetic algorithms
- Greater efficiency often possible using gradient
  - Gradient descent
  - Conjugate gradient
  - Quasi-newton
- We focus on gradient descent, many extensions possible
- And on methods that exploit sequential structure

## Policy Gradient

- Let  $J(\theta)$  be any policy objective function
- Policy gradient algorithms search for a local maximum in  $J(\theta)$  by ascending the gradient of the policy, w.r.t. parameters

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} J(\theta_t)$$
  $\Delta \theta = \alpha \nabla_{\theta} J(\theta)$ 

• where  $\nabla_{\theta} J(\theta)$  is the policy gradient

$$\nabla_{\theta} J(\theta) = \begin{pmatrix} \frac{\partial J(\theta)}{\partial \theta_{1}} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_{d'}} \end{pmatrix}$$

• and  $\alpha$  is a step-size parameter





## Computing Gradients By Finite Differences

- To evaluate policy gradient of  $\pi_{\theta}(a|s)$
- For each dimension  $k \in \{1, ..., d'\}$ 
  - Estimate kth partial derivative of objective function w.r.t.  $\theta$
  - By perturbing heta by small amount  $\epsilon$  in kth dimension

$$\frac{\partial J(\theta)}{\partial \theta_k} \approx \frac{J(\theta + \epsilon u_k) - J(\theta)}{\epsilon}$$

where  $u_k$  is unit vector with 1 in kth dimension and 0 otherwise

- Uses d' evaluations to compute policy gradient in d' dimensions
- Simple, noisy, inefficient but sometimes effective
- Works for arbitrary policies, even if policy is not differentiable

# Agenda

- Introduction
- Finite Difference Policy Gradient
- Monte-Carlo Policy Gradient
- Actor-Critic Policy Gradient



#### Score Function

- We now compute the policy gradient *analytically*
- Assume policy  $\pi_{\theta}$  is differentiable whenever it is non-zero
- and we know the gradient  $\nabla_{\theta}\pi_{\theta}(a|s)$
- Likelihood ratios exploit the following identity

$$\nabla_{\theta} \pi_{\theta}(a|s) = \pi_{\theta}(a|s) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)}$$
$$= \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s)$$

• The score function is  $\nabla_{\theta} \log \pi_{\theta}(a|s)$ 

### One-Step MDPs

- Consider a simple class of one-step MDPs
  - Starting in state  $s \sim \mu(s)$
  - Terminating after one time-step with reward R(s, a)
- Use likelihood ratios to compute the policy gradient

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[R(s, a)]$$

$$= \sum_{s \in \mathcal{S}} \mu(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) R(s, a)$$

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{S}} \mu(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi_{\theta}(a|s) R(s, a)$$

$$= \sum_{s \in \mathcal{S}} \mu(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)} R(s, a)$$

$$= \sum_{s \in \mathcal{S}} \mu(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s) R(s, a)$$

## Policy Gradient Theorem

- The policy gradient theorem generalizes the likelihood ratio approach to multi-step MDPs
- Replaces instantaneous reward R with long-term value  $q_{\pi}(s,a)$
- Policy gradient theorem applies to start state objective, average reward and average value objective (with different constants)

#### Theorem

For any differentiable policy  $\pi_{\theta}$ , the policy gradient is

$$\nabla_{\theta} J_1(\theta) = \sum_{s \in \mathcal{S}} d_{\pi}(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi_{\theta}(a|s) q_{\pi}(s,a)$$

where 
$$d_{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} \Pr(s_{t} = s | s_{0}, \pi)$$

## Policy Gradient Theorem

- The policy gradient theorem generalizes the likelihood ratio approach to multi-step MDPs
- Replaces instantaneous reward R with long-term value  $q_{\pi}(s,a)$
- Policy gradient theorem applies to start state objective, average reward and average value objective (with different constants)

#### Theorem

For any differentiable policy  $\pi_{\theta}$ , the policy gradient is

$$\begin{split} \nabla_{\theta} J_{1}(\theta) &= \sum_{s \in \mathcal{S}} d_{\pi}(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \, \pi_{\theta}(a|s) \, q_{\pi}(s,a) \\ \text{where } d_{\pi}(s) &= \sum_{t=0}^{\infty} \gamma^{t} \, \text{Pr}(s_{t} = s|s_{0},\pi) \\ \text{Thus for } \gamma &= 1, \nabla_{\theta} J_{1}(\theta) \propto \sum_{s \in \mathcal{S}} \mu_{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s) \, q_{\pi}(s,a) \\ &= \mathbb{E}_{s \sim \mu_{\pi}, a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \, q_{\pi}(s,a)] \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \, q_{\pi}(s,a)] \end{split}$$

# Proof of Policy Gradient Theorem for $J_1$ and $\gamma=1$

$$\begin{split} \nabla_{\theta} v_{\pi}(s) &= \nabla_{\theta} [ \sum_{a} \pi_{\theta}(a|s) q_{\pi}(s,a) ] \\ &= \sum_{a} [ \nabla_{\theta} \pi_{\theta}(a|s) q_{\pi}(s,a) + \pi_{\theta}(a|s) \nabla_{\theta} q_{\pi}(s,a) ] \qquad \text{(product rule of calculus)} \\ &= \sum_{a} [ \nabla_{\theta} \pi_{\theta}(a|s) q_{\pi}(s,a) + \pi_{\theta}(a|s) \nabla_{\theta} \sum_{s',r} p(s',r|s,a) \left( r + v_{\pi}(s') \right) ] \\ &= \sum_{a} [ \nabla_{\theta} \pi_{\theta}(a|s) q_{\pi}(s,a) + \pi_{\theta}(a|s) \sum_{s'} p(s'|s,a) \nabla_{\theta} v_{\pi}(s') ] \\ &= \sum_{a} [ \nabla_{\theta} \pi_{\theta}(a|s) q_{\pi}(s,a) + \pi_{\theta}(a|s) \sum_{s'} p(s'|s,a) \quad \text{(unrolling)} \\ &= \sum_{a'} [ \nabla_{\theta} \pi_{\theta}(a'|s') q_{\pi}(s',a') + \pi_{\theta}(a'|s') \sum_{s''} p(s''|s',a') \nabla_{\theta} v_{\pi}(s'') ] \\ &= \sum_{x \in \mathcal{S}} \sum_{t=0}^{\infty} \Pr(s_{t} = x|s_{0} = s, \pi_{\theta}) \sum_{a} [ \nabla_{\theta} \pi_{\theta}(a|x) q_{\pi}(x,a) ] \end{split}$$

#### Proof of Policy Gradient Theorem for $J_1$ and $\gamma=1$ (cont.)

•  $\sum_{s'} d_{\pi}(s') = \sum_{s'} \sum_{t=0}^{\infty} \Pr(s_t = s' | s_0, \pi_{\theta})$ : the average length of an episode

$$\nabla_{\theta} J_{1}(\theta) = \nabla_{\theta} v_{\pi}(s_{0})$$

$$= \sum_{s} \sum_{t=0}^{\infty} \Pr(s_{t} = s | s_{0}, \pi_{\theta}) \sum_{a} [\nabla_{\theta} \pi_{\theta}(a | s) q_{\pi}(s, a)]$$

$$= \sum_{s} d_{\pi}(s) \sum_{a} [\nabla_{\theta} \pi_{\theta}(a | s) q_{\pi}(s, a)]$$

$$= \sum_{s'} d_{\pi}(s') \sum_{s} \frac{d_{\pi}(s)}{\sum_{s'} d_{\pi}(s')} \sum_{a} [\nabla_{\theta} \pi_{\theta}(a | s) q_{\pi}(s, a)]$$

$$= \sum_{s'} d_{\pi}(s') \sum_{s} \mu_{\pi}(s) \sum_{a} [\nabla_{\theta} \pi_{\theta}(a | s) q_{\pi}(s, a)]$$

$$\propto \sum_{s} \mu_{\pi}(s) \sum_{a} [\nabla_{\theta} \pi_{\theta}(a | s) q_{\pi}(s, a)]$$

## Softmax Policy

- We will use a softmax policy as a running example
- Weight actions using linear combination of features  $\phi(s, a)^T \theta$
- Probability of action is proportional to exponentiated weight

$$\pi_{\theta}(a|s) = \frac{e^{\phi(s,a)^{\mathsf{T}}\theta}}{\sum_{b} e^{\phi(s,b)^{\mathsf{T}}\theta}}$$

• The score function is

$$\nabla_{\theta} \log \pi_{\theta}(a|s) = \phi(s,a) - \sum_{b} \pi_{\theta}(b|s)\phi(s,b)$$

## Gaussian Policy

- In continuous action spaces, a Gaussian policy is natural
- Mean is a linear combination of state features  $v(s) = \phi(s)^T \theta$
- Variance may be fixed  $\sigma^2$ , or can also parametrized
- Policy is Gaussian,  $a \sim N(v(s), \sigma^2)$
- The score function is

$$\nabla_{\theta} \log \pi_{\theta}(a|s) = \frac{(a - \nu(s))\phi(s)}{\sigma^2}$$

where  $\pi_{\theta}(\cdot | s)$  is interpreted as a density function

## Monte-Carlo Policy Gradient (REINFORCE)

- Update parameters by stochastic gradient ascent
- Using policy gradient theorem
- Using return  $G_t$  as an unbiased sample of  $q_{\pi}(s_t, a_t)$

$$\theta_{t+1} = \theta_t + \alpha \nabla_\theta \log \pi_\theta(a_t|s_t) G_t$$

#### REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for $\pi_*$

Input: a differentiable policy parameterization  $\pi(a|s,\theta)$ 

Algorithm parameter: step size  $\alpha > 0$ 

Initialize policy parameter  $\theta \in \mathbb{R}^{d'}$  (e.g., to 0)

Loop forever (for each episode):

Generate an episode  $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ , following  $\pi(\cdot|\cdot, \theta)$ 

Loop for each step of the episode t = 0, 1, ..., T - 1:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \theta)$$

$$(G_t)$$

# Agenda

- Introduction
- Finite Difference Policy Gradient
- Monte-Carlo Policy Gradient
- Actor-Critic Policy Gradient



## Reducing Variance Using a Critic

- Monte-Carlo policy gradient still has high variance
- We use a critic to estimate the action-value function

$$\hat{q}_w(s,a) \approx q_\pi(s,a)$$

- Actor-critic algorithms maintain two sets of parameters
  - Critic Updates action-value function parameters w
  - Actor Updates policy parameters, in direction suggested by critic
- Actor-critic algorithms follow an approximate policy gradient

$$\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \, \hat{q}_{w}(s, a)]$$
$$\theta_{t+1} = \theta_{t} + \alpha \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \, \hat{q}_{w}(s_{t}, a_{t})$$

## Estimating the Action-Value Function

- The critic is solving a familiar problem: policy evaluation
- How good is policy for current parameters w?
- This problem was explored before, e.g.
  - Monte-Carlo policy evaluation
  - Temporal-Difference learning
  - TD(λ)
- Could also use e.g. least-squares policy evaluation

#### Action-Value Actor-Critic

Simple actor-critic algorithm based on action-value critic

#### **function** QAC

```
Initialize \theta, w, S
```

Sample  $A \sim \pi_{\theta}(\cdot | S)$ 

for each step do

Take action A, observe R, S'

Sample  $A' \sim \pi_{\theta}(\cdot | S')$ 

$$\theta \leftarrow \theta + \alpha_{\theta} \nabla_{\theta} \log \pi_{\theta}(A|S) \, \hat{q}_{w}(S,A)$$

$$\delta \leftarrow R + \gamma \hat{q}_w(S', A') - \hat{q}_w(S, A)$$

$$w \leftarrow w + \alpha_w \delta \nabla_w \hat{q}_w(S, A)$$

$$A \leftarrow A', S \leftarrow S'$$

end for

end function

On-policy, similar to Sarsa(0)

## Bias in Actor-Critic Algorithms

- Approximating the policy gradient introduces bias
- A biased policy gradient may not find the right solution
  - e.g. if  $\hat{q}_w(s, a)$  uses aliased features, can we solve gridworld example?
- Luckily, if we choose value function approximation carefully
- Then we can avoid introducing any bias
- i.e. We can still follow the *exact* policy gradient

## Compatible Function Approximation

#### Theorem (Compatible Function Approximation Theorem)

If the following two conditions are satisfied:

Value function approximator is compatible to the policy

$$\nabla_w \hat{q}_w(s, a) = \nabla_\theta \log \pi_\theta(a|s)^\mathsf{T} \text{ or } \hat{q}_w(s, a) = \nabla_\theta \log \pi_\theta(a|s)^\mathsf{T} w$$

i.e., value function approximators are linear in "features" of the stochastic policy

## Compatible Function Approximation

#### Theorem (Compatible Function Approximation Theorem)

If the following two conditions are satisfied:

Value function approximator is compatible to the policy

$$\nabla_w \hat{q}_w(s, a) = \nabla_\theta \log \pi_\theta(a|s)^\top \text{ or } \hat{q}_w(s, a) = \nabla_\theta \log \pi_\theta(a|s)^\top w$$

i.e., value function approximators are linear in "features" of the stochastic policy

Value function parameters w minimize the mean-squared error

$$\epsilon^2(w) = \mathbb{E}_{\pi_{\theta}} \left[ \left( q_{\pi}(s, a) - \hat{q}_w(s, a) \right)^2 \right]$$

Then the policy gradient is exact,  $\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \, \hat{q}_w(s,a)]$ 

### Proof of Compatible Function Approximation Theorem

• If w is chosen to minimize mean-squared error, gradient of  $\epsilon$  w.r.t. w must be zero

$$\nabla_w \epsilon^2(w) = 0$$

$$\mathbb{E}_{\pi_{\theta}}[(q_{\pi}(s,a) - \hat{q}_{w}(s,a))\nabla_{w}\hat{q}_{w}(s,a)] = 0$$

$$\mathbb{E}_{\pi_{\theta}}[(q_{\pi}(s, a) - \hat{q}_{w}(s, a))\nabla_{\theta} \log \pi_{\theta}(a|s)] = 0$$

$$\mathbb{E}_{\pi_{\theta}}[q_{\pi}(s, a)\nabla_{\theta}\log \pi_{\theta}(a|s)] = \mathbb{E}_{\pi_{\theta}}[\hat{q}_{w}(s, a)\nabla_{\theta}\log \pi_{\theta}(a|s)]$$

So  $\hat{q}_w(s, a)$  can be substituted directly into the policy gradient,

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \, \hat{q}_{w}(s,a)]$$

## Reducing Variance Using a Baseline

- We subtract a baseline function B(s) from the policy gradient
- This can reduce variance, without changing expectation

$$\mathbb{E}_{\pi_{\theta}} \big[ \nabla_{\theta} \log \pi_{\theta}(a|s) \left[ \hat{q}_{w}(s,a) - B(s) \right] \big] = \mathbb{E}_{\pi_{\theta}} \big[ \nabla_{\theta} \log \pi_{\theta}(a|s) \, \hat{q}_{w}(s,a) \big]$$

because 
$$\mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(a|s) B(s)] = \sum_{s \in \mathcal{S}} \mu(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi_{\theta}(a|s) B(s)$$

$$= \sum_{s \in \mathcal{S}} \mu(s) B(s) \nabla_{\theta} \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s)$$

$$= 0$$

## Reducing Variance Using a Baseline (cont.)

- A good baseline is the state value function  $B(s) = v_{\pi}(s)$
- So we can rewrite the policy gradient using the advantage function

$$A_{\pi}(s, a) = q_{\pi}(s, a) - v_{\pi}(s)$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) A_{\pi}(s, a)]$$

- The advantage function can significantly reduce variance of policy gradient
  - E.g., when all actions have high values, a high baseline can be used to differentiate the actions

## Estimating the Advantage Function (1)

- So the critic should really estimate the advantage function
- For example, by estimating both  $v_{\pi}(s)$  and  $q_{\pi}(s,a)$
- Using two function approximators and two parameter vectors,

$$\hat{v}_{w}(s) \approx v_{\pi}(s)$$

$$\hat{q}_{w'}(s, a) \approx q_{\pi}(s, a)$$

$$\hat{A}(s, a) = \hat{q}_{w'}(s, a) - \hat{v}_{w}(s)$$

And updating both value functions by e.g. TD learning

## Estimating the Advantage Function (2)

• For the true value function  $v_{\pi}(s)$ , the TD error

$$\delta_{\pi} = R(s, a) + \gamma v_{\pi}(s') - v_{\pi}(s)$$

• is an unbiased estimate of the advantage function

$$\mathbb{E}_{\pi}(\delta_{\pi} | s, a) = \mathbb{E}_{\pi}[R(s, a) + \gamma v_{\pi}(s') | s, a] - v_{\pi}(s)$$
$$= q_{\pi}(s, a) - v_{\pi}(s)$$
$$= A_{\pi}(s, a)$$

So we can use the TD error to compute the policy gradient

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \big[ \nabla_{\theta} \log \pi_{\theta}(a|s) \delta_{\pi_{\theta}} \big]$$

- In practice we can use an approximate TD error  $\delta_w = R(s,a) + \gamma \hat{v}_w(s') \hat{v}_w(s)$
- This approach only requires one set of critic parameters w

## TD Actor-Critic (episodic)

```
One-step Actor-Critic (episodic), for estimating \pi_{\theta} \approx \pi_*
Input: a differentiable policy parameterization \pi(a|s,\theta)
Input: a differentiable state-value function parameterization \hat{v}(s, \mathbf{w})
Parameters: step sizes \alpha^{\theta} > 0, \alpha^{\mathbf{w}} > 0
Initialize policy parameter \theta \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^d (e.g., to 0)
Loop forever (for each episode):
    Initialize S (first state of episode)
    I \leftarrow 1
    Loop while S is not terminal (for each time step):
        A \sim \pi(\cdot|S,\theta)
         Take action A, observe S', R
        \delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w}) (if S' is terminal, then \hat{v}(S', \mathbf{w}) \doteq 0)
        \mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S, \mathbf{w})
        \theta \leftarrow \theta + \alpha^{\theta} I \delta \nabla \ln \pi(A|S,\theta)
        I \leftarrow \gamma I
         S \leftarrow S'
```

## $TD(\lambda)$ Actor-Critic (episodic)

```
Actor-Critic with Eligibility Traces (episodic), for estimating \pi_{\theta} \approx \pi_*
Input: a differentiable policy parameterization \pi(a|s,\theta)
Input: a differentiable state-value function parameterization \hat{v}(s, \mathbf{w})
Parameters: trace-decay rates \lambda^{\theta} \in [0,1], \lambda^{\mathbf{w}} \in [0,1]; step sizes \alpha^{\theta} > 0, \alpha^{\mathbf{w}} > 0
Initialize policy parameter \theta \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^{d} (e.g., to 0)
Loop forever (for each episode):
    Initialize S (first state of episode)
    \mathbf{z}^{\boldsymbol{\theta}} \leftarrow \mathbf{0} \ (d'-component eligibility trace vector)
    \mathbf{z}^{\mathbf{w}} \leftarrow \mathbf{0} (d-component eligibility trace vector)
    I \leftarrow 1
     Loop while S is not terminal (for each time step):
          A \sim \pi(\cdot|S,\theta)
          Take action A, observe S', R
          \delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w}) (if S' is terminal, then \hat{v}(S', \mathbf{w}) \doteq 0)
          \mathbf{z}^{\mathbf{w}} \leftarrow \gamma \lambda^{\mathbf{w}} \mathbf{z}^{\mathbf{w}} + \nabla \hat{v}(S, \mathbf{w})
          \mathbf{z}^{\boldsymbol{\theta}} \leftarrow \gamma \lambda^{\boldsymbol{\theta}} \mathbf{z}^{\boldsymbol{\theta}} + I \nabla \ln \pi(A|S, \boldsymbol{\theta})
          \mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \mathbf{z}^{\mathbf{w}}
          \theta \leftarrow \theta + \alpha^{\theta} \delta \mathbf{z}^{\theta}
          I \leftarrow \gamma I
          S \leftarrow S'
```

## Summary of Policy Gradient Algorithms

The policy gradient has many equivalent forms

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) G_{t}]$$

$$= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \hat{q}_{w}(s, a)]$$

$$= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \hat{A}(s, a)]$$

$$= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \delta_{w}]$$

$$= \mathbb{E}_{\pi_{\theta}} [\mathbf{z}^{\theta} \delta_{w}]$$

REINFORCE
Q Actor-Critic
Advantage Actor-Critic
TD Actor-Critic

 $TD(\lambda)$  Actor-Critic

- Each leads a stochastic gradient ascent algorithm
- Critic uses policy evaluation (e.g. MC or TD learning) to estimate  $\hat{q}_w(s,a)$ ,  $\hat{A}(s,a)$ , or  $\delta_w$

## Off-Policy Actor-Critic

- $\pi$ : target policy,  $\beta$ : behavior policy
- Policy objective function

$$J(\theta) = \sum_{s} \mu_{\beta}(s) v_{\pi_{\theta}}(s)$$
$$= \sum_{s} \mu_{\beta}(s) \sum_{a} \pi_{\theta}(a|s) q_{\pi}(s,a)$$

Off-policy policy-gradient

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \approx \sum_{s} \mu_{\beta}(s) \sum_{a} \nabla_{\boldsymbol{\theta}} \pi_{\theta}(a|s) q_{\pi}(s,a)$$

$$= \sum_{s} \mu_{\beta}(s) \sum_{a} \beta(a|s) \frac{\pi_{\theta}(a|s)}{\beta(a|s)} \frac{\nabla_{\boldsymbol{\theta}} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)} q_{\pi}(s,a)$$

$$= \mathbb{E}_{\boldsymbol{\beta}} \left[ \frac{\pi_{\theta}(a|s)}{\beta(a|s)} \nabla_{\boldsymbol{\theta}} \log \pi_{\theta}(a|s) q_{\pi}(s,a) \right]$$

• Both the actor and the critic use an importance sampling ratio  $\frac{\pi_{\theta}(a|s)}{\beta(a|s)}$  to adjust

## Deterministic Policy Gradient

- Deterministic policy  $\pi_{\theta} : \mathcal{S} \to \mathcal{A}$
- Policy objective function

$$J(\theta) = \sum_{s} p_1(s) v_{\pi_{\theta}}(s)$$
$$= \sum_{s} p_1(s) q_{\pi}(s, \pi_{\theta}(s))$$

• Deterministic policy-gradient

$$\nabla_{\theta} J(\theta) \propto \sum_{s} \mu_{\pi_{\theta}}(s) \nabla_{\theta} \pi_{\theta}(s) \nabla_{a} q_{\pi}(s, a)|_{a=\pi_{\theta}(s)}$$

## Deterministic Policy Gradient (cont.)

On-Policy Deterministic Actor-Critic

$$\delta_{t} \leftarrow R_{t} + \gamma \hat{q}_{w}(s_{t+1}, a_{t+1}) - \hat{q}_{w}(s_{t}, a_{t})$$

$$w_{t+1} \leftarrow w_{t} + \alpha_{w} \delta_{t} \nabla_{w} \hat{q}_{w}(s_{t}, a_{t})$$

$$\theta_{t+1} \leftarrow \theta_{t} + \alpha_{\theta} \nabla_{\theta} \pi_{\theta}(s) \nabla_{a} \hat{q}_{w}(s, a)|_{a = \pi_{\theta}(s)}$$



• Off-Policy Deterministic Actor-Critic (with trajectories generated by  $\beta(a|s)$ )

$$\delta_{t} \leftarrow R_{t} + \gamma \hat{q}_{w}(s_{t+1}, \pi_{\theta}(s_{t+1})) - \hat{q}_{w}(s_{t}, a_{t})$$

$$w_{t+1} \leftarrow w_{t} + \alpha_{w} \delta_{t} \nabla_{w} \hat{q}_{w}(s_{t}, a_{t})$$

$$\theta_{t+1} \leftarrow \theta_{t} + \alpha_{\theta} \nabla_{\theta} \pi_{\theta}(s) \nabla_{a} \hat{q}_{w}(s, a)|_{a = \pi_{\theta}(s)}$$



Critic uses Q-learning: no importance sampling needed



Actor uses deterministic policy: no importance sampling needed

### Deep Deterministic Policy Gradient (DDPG)

model-free off-policy actor-critic algorithm combining DPG and DQN

#### Algorithm 1 DDPG algorithm

Randomly initialize critic network  $Q(s, a|\theta^Q)$  and actor  $\mu(s|\theta^\mu)$  with weights  $\theta^Q$  and  $\theta^\mu$ .

Initialize target network Q' and  $\mu'$  with weights  $\theta^{Q'} \leftarrow \theta^{Q}, \theta^{\mu'} \leftarrow \theta^{\mu}$ 

Initialize replay buffer R

for episode = 1, M do

Initialize a random process  $\mathcal{N}$  for action exploration

Receive initial observation state  $s_1$ 

for t = 1, T do

Select action  $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$  according to the current policy and exploration noise

Execute action  $a_t$  and observe reward  $r_t$  and observe new state  $s_{t+1}$ 

Store transition  $(s_t, a_t, r_t, s_{t+1})$  in R

Sample a random minibatch of N transitions  $(s_i, a_i, r_i, s_{i+1})$  from R

Set  $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ 

Update critic by minimizing the loss:  $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$ 

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

Lillicrap, et al., "Continuous control with deep reinforcement learning", ICLR, 2016

## Key DRL Algorithms

- On-Policy
  - REINFORCE (1987)
  - Vanilla Policy Gradient (VPG, 2000)
  - Trust Region Policy Optimization (TRPO, 2015)
  - Proximal Policy Optimization (PPO, 2017)
  - ...
- Off-Policy
  - Deep Q-Networks (DQN, 2013)
  - Deep Deterministic Policy Gradient (DDPG, 2015)
  - Soft Actor-Critic (SAC, 2018)
  - ...