Policy Gradient Methods

CMPS 4660/6660: Reinforcement Learning

Acknowledgement: slides adapted from David Silver's RL course

https://www.davidsilver.uk/teaching/

Agenda

* Introduction
 Finite Difference Policy Gradient
* Monte-Carlo Policy Gradient

* Actor-Critic Policy Gradient

Policy-Based Reinforcement Learning

* So far we have approximated the value or action-value function using parameters,
Dw(s) = vr(s)
or 4y (s, a) = qz(s,a)

* A policy was generated directly from the value function
e E.g., using e-greedy
* Alternatively, we can directly parameterize the policy
mg(als) = Pr(4; = a|S; = s,0)

* We will focus again on model-free reinforcement learning

Value-Based and Policy-Based RL

e Value Based

 Learnt Value Function

* Implicit policy (e.g. e-greedy)

Value Fungtion Policy

* Policy Based

Actor

* No Value Function Value-Based Critic

* Learnt Policy

e Actor-Critic
 Learnt Value Function

* Learnt Policy

Policy-Based }

Advantages of Policy-Based RL

* Advantages
* Better convergence properties
 Effective in high-dimensional or continuous action spaces
* Can learn stochastic policies

e A good way of injecting prior knowledge about the policy into RL

* Disadvantages:
* Typically converge to a local rather than global optimum

* Evaluating a policy is typically inefficient and has high variance

Example: Rock-Paper-Scissors

* Two-player game of rock-paper-scissors

 Scissors beats paper <‘;:
* Rock beats scissors

e Paper beats rock

* Consider policies for iterated rock-paper-scissors

* A deterministic policy is easily exploited

* A uniform random policy is optimal (i.e. Nash
equilibrium)

Example: Aliased Gridworld (1)

* The agent cannot differentiate the grey states

* Consider features of the following form (for all N,
E,S, W)

x(s,a) = 1(wall to N and S, a=E)

* Compare value-based RL, using an approximate
value function

Qw(s,a) = f(x(s,a),w)

* To policy-based RL, using a parametrized policy

mg(als) = g(x(s,a),0)

Example: Aliased Gridworld (2)

* Under aliasing, an optimal deterministic policy will
either

 move W in both grey states (shown by red arrows)

* move E in both grey states
* Either way, it can get stuck and never reach the money

* Value-based RL learns a near-deterministic policy

e e.g. greedy or e-greedy

* So it will traverse the corridor for a long time

] -

Example: Aliased Gridworld (3)

* An optimal stochastic policy will randomly move E or W
in grey states

mg(move E | wall to Nand S) =0.5
mg(move W | wallto Nand S) =0.5

* It will reach the goal state in a few steps with high
probability

* Policy-based RL can learn the optimal stochastic policy

1 -

Agenda

* Introduction
* Finite Difference Policy Gradient
* Monte-Carlo Policy Gradient

* Actor-Critic Policy Gradient

Policy Objective Functions

* Goal: given policy mg(a|s) with parameters 8, find best
* But how do we measure the quality of a policy mgy?

* In episodic environments we can use the start value

J1(6) = v, (o) = For continuous state and

. , actions spaces, replace
* In continuing environments we can use the average value ¢, mymations by integrals

Javv (8) = Yses Uy () U, () and interpret mg (- |s) as a

density function
* Ug,(-) is the stationary distribution of states under g 4

Or the average-reward per time-step

Javr(0) = X Hry (s) Xamg(als) R(s,a)

11

Policy Optimization

Policy based reinforcement learning is an optimization problem
Find 8 that maximizes J(6)

Some approaches do not use gradient
 Hill climbing
* Simplex / amoeba / Nelder Mead

* Genetic algorithms

Greater efficiency often possible using gradient
* Gradient descent
e Conjugate gradient
* Quasi-newton

We focus on gradient descent, many extensions possible

And on methods that exploit sequential structure

Policy Gradient

* Let J(0) be any policy objective function

e Policy gradient algorithms search for a local maximum
in J(0) by ascending the gradient of the policy, w.r.t.
parameters

Ot+1 =0 +aVg J(6;) A0 = aVy J(6)
* where Vg J(0) is the policy gradient

/ 0](9)

Vo J(6) =

af&@)
aedl

* and a is a step-size parameter

13

Computing Gradients By Finite Differences

* To evaluate policy gradient of mgy(a|s)

* For each dimensionk € {1, ...,d"}
* Estimate kth partial derivative of objective function w.r.t. 6
* By perturbing 8 by small amount € in kth dimension

aJ(6) _ J(O+eux)—J(6)

~y
~

69k €
where uy, is unit vector with 1 in kth dimension and 0 otherwise

Uses d’ evaluations to compute policy gradient in d' dimensions

Simple, noisy, inefficient - but sometimes effective

Works for arbitrary policies, even if policy is not differentiable

Agenda

* Introduction
 Finite Difference Policy Gradient
* Monte-Carlo Policy Gradient

* Actor-Critic Policy Gradient

Score Function

We now compute the policy gradient analytically

Assume policy g is differentiable whenever it is non-zero

and we know the gradient Vgmg(als)

Likelihood ratios exploit the following identity
Vomg(als)
mg(als)

= mg(als) Vg logmg(als)

Vomg(als) = mg(als)

* The score function is Vg log mg(als)

One-Step MDPs

e Consider a simple class of one-step MDPs
* Starting in state s~u(s)

e Terminating after one time-step with reward R(s, a)

* Use likelihood ratios to compute the policy gradient

J(0) = Eg,[R(s,a)]
= Yses U(S) Lgen mo(als)R (s, a)
Vo J(0) = Xses u(S) Xgen Vo mg(als) R(s, a)

Votg(als)
e (A[S)

= Xises H(S) Laea mo(als) Vg logmg(als) R(s, a)

= Xises U(S) Laeamo(als) R(s,a)

17

Policy Gradient Theorem

* The policy gradient theorem generalizes the likelihood ratio approach to multi-step MDPs
* Replaces instantaneous reward R with long-term value g, (s, a)

* Policy gradient theorem applies to start state objective, average reward and average
value objective (with different constants)

For any differentiable policy g, the policy gradient is

Vo 1 6) = ZSES dn(s) Zaec/l Vg g (als) qr(s,a)

where d(s) = Y20yt Pr(s; = s|sq, T)

18

Policy Gradient Theorem

* The policy gradient theorem generalizes the likelihood ratio approach to multi-step MDPs
* Replaces instantaneous reward R with long-term value g, (s, a)

* Policy gradient theorem applies to start state objective, average reward and average
value objective (with different constants)

For any differentiable policy g, the policy gradient is
Vo J1(0) = Xses An(S) Laea Vo Tolals) q- (s, a)
where d(s) = X120 vt Pr(s; = s|sg, T)
Thusfory =1, Vg J1(0) X Xses tn(S) Xgen mo(als)Vglogmg(als) g, (s, a)
= Egpua~ny Vo logmg(als) gz (s, a)]
= Er,[Vglogmg(als) q(s,a)]

Proof of Policy Gradient Theorem for J; andy =1

VQUTL'(S) = VQ [Za g (als)CITc(S: Cl)]

=
=
=)
=Y

Vomg(a
Vgmg(a

Vomg(a

Vomg(a

S)Qn(s: Cl) + g (a
S)Qrt(s: Cl) + g (a
$)qz(s,a) + mg(a

S)qTL'(S’ Cl) + g (a

S)Veq,(s,a)] (product rule of calculus)
$)Vo Lgr »0(s",7ls, @) (r + vy ()]
$) Xg p(s'ls,) Vovr (s)]

s) X p(s'ls,a) (unrolling)

YalVemg(a'ls')qr(s',a’) + mg(a'|s") X p(s|s’,a") Vour (s")]

= Xxes Le=0 PT(s¢ = X[So = 8,g) Xa[Vomg(alx)qr (x, a)]

Proof of Policy Gradient Theorem for J; and y = 1 (cont.)

Vo]1(0) = Vgvr(so)
= Y. Nt=o Pr(s; = s|sg, mg) Xa[Veme (als)qr (s, a)]
— Zs dn(s) Za[veﬂe (als)CITc(S: a)]

/ Ar
= T (s Doz 2 Tl Vomo (als)qn (s, a)]

= 25’ dr(s") Xstr(s) XalVeme(als)qr(s, a)]
X X5 U (S) XalVemg(als)qr (s, a)]

* Yo dy(s") =X Xilo Pr(s; = s'|sg, mg): the average length of an episode

Softmax Policy

We will use a softmax policy as a running example

Weight actions using linear combination of features ¢(s,a) '8

Probability of action is proportional to exponentiated weight

ed)(s,a)TB
T[Q (als) — Zb ed)(S;b)Te

The score function is

Vglogmg(als) = ¢(s,a) — Xpme(bls)p(s,b)

Gaussian Policy

In continuous action spaces, a Gaussian policy is natural

Mean is a linear combination of state features v(s) = ¢(s) '8

Variance may be fixed g4, or can also parametrized

Policy is Gaussian, a~N (v(s), 0%)

* The score function is

(a—v(s))p(s)
2

0}

Vg logmg(als) =

where g (- |s) is interpreted as a density function

Monte-Carlo Policy Gradient (REINFORCE)

* Update parameters by stochastic gradient ascent
* Using policy gradient theorem
* Using return G; as an unbiased sample of q,(s;, a;)

011 = 0; + aVglogmy(asls,) Gy

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization m(a|s, 0)
Algorithm parameter: step size a > 0

Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sp, Ao, R1,...,57_1,Ar_1, BT, following (|-,)
Loop for each step of the episode t =0,1,...,T —1:
G+ ZZ=t+1 vFt-1Ry,
0 < 60+ ay'GViInnw(AlSt, 0)

24

Agenda

* Introduction

 Finite Difference Policy Gradient
* Monte-Carlo Policy Gradient

e Actor-Critic Policy Gradient

Reducing Variance Using a Critic

* Monte-Carlo policy gradient still has high variance

* We use a critic to estimate the action-value function
Gw(s,a) = qr(s, a)

* Actor-critic algorithms maintain two sets of parameters

e Critic Updates action-value function parameters w

* Actor Updates policy parameters, in direction suggested by critic

* Actor-critic algorithms follow an approximate policy gradient
Vg J(0) = Er [Vg logmg(als) §,,(s, a)]

Or41 = 0 + aVglogmg(aclse) 4y, (¢, as)

Estimating the Action-Value Function

* The critic is solving a familiar problem: policy evaluation
 How good is policy for current parameters w?

* This problem was explored before, e.g.
* Monte-Carlo policy evaluation
 Temporal-Difference learning

* TD(A)

* Could also use e.g. least-squares policy evaluation

Action-Value Actor-Critic

* Simple actor-critic algorithm based on action-value critic

function QAC
Initialize 6, w, S
Sample A~mg (- |S)
for each step do On-policy, similar to Sarsa(0)
Take action A4, observe R, S’
Sample A'~mg (- |S")
0 « 6+ agVglogmg(AlS) §,,(S,A)
0 <R+ qu(S,J A") — EI\W(SIA)
w e« w+a,oV, §,(S,A)
A<A,S S
end for
end function

Bias in Actor-Critic Algorithms

* Approximating the policy gradient introduces bias

* A biased policy gradient may not find the right solution

« e.g.if g, (s, a) uses aliased features, can we solve gridworld example?
* Luckily, if we choose value function approximation carefully
* Then we can avoid introducing any bias

 i.e. We can still follow the exact policy gradient

Compatible Function Approximation

Theorem (Compatible Function Approximation Theorem)

If the following two conditions are satisfied:

* Value function approximator is compatible to the policy
Vy, G (s,a) =Vglogmy(als)T or G, (s,a) =Vgylogmg(als)T w

i.e., value function approximators are linear in “features” of the stochastic policy

Compatible Function Approximation

Theorem (Compatible Function Approximation Theorem)

If the following two conditions are satisfied:

* Value function approximator is compatible to the policy
Vy, G (s,a) =Vglogmy(als)T or G, (s,a) =Vgylogmg(als)T w
i.e., value function approximators are linear in “features” of the stochastic policy

* Value function parameters w minimize the mean-squared error

e2(W) = Eny |(4(s, @) — G (s5,))]

Then the policy gradient is exact, VyJ(8) = E.,[Vg logmg(als) Gy (s,a)]

Proof of Compatible Function Approximation Theorem

* If wis chosen to minimize mean-squared error, gradient of € w.r.t. w must be zero
V,e2(w) =0
IETL’g [(qT[(SJ Cl) T q\W(SJ a))vWéI\W(SJ Cl) — O

IETL’@ [(qn(s: Cl) _ Q\W(Si a))ve lOg T[Q (Cl S) — O

]:ET[Q [%T(S: a)Vg logmg (a S) — Eng [EI\W(S» a)VH logmg (als)]
So §,,(s,a) can be substituted directly into the policy gradient,

Vo J(0) = Ep,[Vglogmg(als) Gw (s, a)l

Reducing Variance Using a Baseline

* We subtract a baseline function B(s) from the policy gradient

* This can reduce variance, without changing expectation
En,|Ve logmg(als) [Gw (s, @) — B(s)]| = Er,[Vg logmg(als) G, (s, a)]
because Eq, [V log 79 (als) B(s)] = Tses £(5) Taen Voma (als)B(s)

= 2ses H(S)B(s)Vg Xgeq To(als)
=0

Reducing Variance Using a Baseline (cont.)

* A good baseline is the state value function B(s) = v;(s)

* So we can rewrite the policy gradient using the advantage function
Ar(s,a) = qr(s,a) — v (s)
Vo J(0) = Er, [Vg logmg(als) Ar(s,a)]

* The advantage function can significantly reduce variance of policy gradient

* E.g., when all actions have high values, a high baseline can be used to
differentiate the actions

Estimating the Advantage Function (1)

* So the critic should really estimate the advantage function
 For example, by estimating both v,.(s) and g, (s, a)
* Using two function approximators and two parameter vectors,
Dy (s) = vr(s)
Gw'(s,a) = qg(s,a)
A(s,a) = G, (s,a) — D, (s)
And updating both value functions by e.g. TD learning

Estimating the Advantage Function (2)

For the true value function v (s), the TD error

or = R(s,a) +yvg(s) — vr(s)

is an unbiased estimate of the advantage function
E,(6;|s,a) =E;[R(s,a) + yv,(s')]|s, a] — v;(s)

= CITI(S; a) — vn(S)
= A,(s,a)

So we can use the TD error to compute the policy gradient

Vo J(0) = E,,|Vglogmy(als)dy, |

In practice we can use an approximate TD error §,, = R(s,a) +y¥,,(s") — D,,(s)

This approach only requires one set of critic parameters w

TD Actor-Critic (episodic)

One-step Actor—Critic (episodic), for estimating mg =~ .

Input: a differentiable policy parameterization m(als, 8)
Input: a differentiable state-value function parameterization u(s,w)
Parameters: step sizes a® > 0, a% > 0
Initialize policy parameter 8 € R and state-value weights w € R4 (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~ 7(-|S,0)
Take action A, observe S’, R
0 +— R+~vo(S",w) —0(S,w) (if S’ is terminal, then v(S",w) = 0)

W+ w+aVoVo(S,w)
0+ 0+a°I5VIinm(A|S,0)
I+ ~I

S« 5

37

TD(A) Actor-Critic (episodic)

Actor—Critic with Eligibility Traces (episodic), for estimating mg ~ 7.

Input: a differentiable policy parameterization m(a|s, @)
Input: a differentiable state-value function parameterization v(s,w)
Parameters: trace-decay rates \? € [0,1], A% € [0, 1]; step sizes a® > 0, ™ > 0
Initialize policy parameter 8 € R? and state-value weights w € R4 (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

z% < 0 (d’-component eligibility trace vector)

z" < 0 (d-component eligibility trace vector)

I 1
Loop while S is not terminal (for each time step):
A~ 7(-]S,0)
Take action A, observe S’, R
6 — R+ ~ov(S5",w) —o(S,w) (if S’ is terminal, then v(S’,w) = 0)

zV — yAVzW + Vo (S,w)

2 «— yA\28 + IV Inn(A|S,)
W+ w+aVozW

0« 0+ a%5z°

I+ ~I

S+ 5

38

Summary of Policy Gradient Algorithms

* The policy gradient has many equivalent forms

Vo J(H) :EM
:Em _
=E,,|
=E,,|
=E,,|

s)G] REINFORCE
$)Guw (s, a)] Q Actor-Critic
s)A(s,a)] Advantage Actor-Critic
$)0u] TD Actor-Critic

TD(A) Actor-Critic

* Each leads a stochastic gradient ascent algorithm

* Critic uses policy evaluation (e.g. MC or TD learning) to estimate §,, (s, a),

A(s,a),or 8,

Off-Policy Actor-Critic

m: target policy, 5: behavior policy

Policy objective function

J(0) = X /J,B(S) Vng (s)
= Ds Up (s) Zamo(als) g(s,a)

Off-policy policy-gradient
Vo J(0) = Xstp(s) 2a Vomg(als) g (s, a)

_ ng(als) Vgmg(als)
_ ZSMﬁ(S) Zaﬁ(als) ,B(a|5) ”0(a|5) qTL'(S’ a)

_ m(als)
= By |7:..) Vo logmy(als) 4r(s, @)

Tg(als)

B(als)

Both the actor and the critic use an importance sampling ratio to adjust

Deterministic Policy Gradient

* Deterministic policy mg: & —» A
* Policy objective function
J(0) = 25 P1(S) Vry(5)
= 2sP1(8) qr (s, mg(s))

* Deterministic policy-gradient

Vg J(8) x X6 Hrg (s)Vemg(s) Vaqr(s, a) |a:n9(s)

Deterministic Policy Gradient (cont.)

* On-Policy Deterministic Actor-Critic
6t <« Ry +vQuw (St41, Arg1) — Gu (St ar)
Wipr < Wi + @, 66V, Gy (e, a)

Or41 < 0 + ag Vorig(s) Vadw (s, @)l a=ry(s)

mm) (Critic uses Sarsa updates

 Off-Policy Deterministic Actor-Critic (with trajectories generated by (als))

6: < R + Yqw (1, o (St 1)) — Gw(Se, ar) Critic uses Q-learning:
Wipr < We + ay0:Vy, G (St at) no importance sampling
needed

Or41 < 0; + ag Vomg(s) Vaquw (s, Al a=r,s)

\ Actor uses deterministic
policy: no importance
sampling needed 42

Deep Deterministic Policy Gradient (DDPG)

* model-free off-policy actor-critic algorithm combining DPG and DQN

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q (s, a|#?) and actor s(s|6*) with weights 89 and 6+.
Initialize target network @’ and y/ with weights 09" « 09, 9*" « o+

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration

Receive initial observation state s,

fort=1,Tdo
Select action|a; = u(s:|0*) + N

according to the current policy and exploration noise

Execute action a; and observe reward 7; and observe new state s;
Store transition (s, a¢, 74, S¢+1) in R

Sample a random minibatch of N transitions (s;, a;, 7;, S;+1) from R
Set y; = 1 +vQ' (i1, 1/ (5i41/6#)]09)

Update critic by minimizing the loss: L = % STi(yi — Q(si,ai]09))?
Update the actor policy using the sampled policy gradient:

1
VOI‘J ~ N Z an(sa aleQ)Is:s,—.a:,u,(s,-)VB“,u(sleu)|si

Update the target networks:

* Lillicrap, et al., “Continuous
control with deep

69 «— 70° + (1 — T)OQI

or <« 0" + (1 — 7)o" 2016 43

reinforcement learning”, ICLR,

https://arxiv.org/pdf/1509.02971.pdf

Key DRL Algorithms

* On-Policy
 REINFORCE (1987)
 Vanilla Policy Gradient (VPG, 2000)
* Trust Region Policy Optimization (TRPO, 2015)
* Proximal Policy Optimization (PPO, 2017)

* Off-Policy
* Deep Q-Networks (DQN, 2013)
e Deep Deterministic Policy Gradient (DDPG, 2015)
* Soft Actor-Critic (SAC, 2018)

