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Agenda
§ Course Logistics

§ Introduction to Reinforcement Learning
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Personal
§ Instructor:  Prof. Zizhan Zheng

• Office: Stanley Thomas 307B

• Email: zzheng3@tulane.edu

• Research Interests: Networks, Machine learning, Cybersecurity

• Office hours (virtual): Wed 10-11 am and by appointment
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Meeting Plan

§ Hybrid class (60% on ground, 40% online)
• Aug & Sep: Tu – on-ground, Th – online
• Will meet more in person in Oct and Nov

§ Class meeting time: Tu & Th 12:25pm-1:35pm
• Reading materials and discussions will be assigned on Canvas to compensate for 

the shortened class time
• All classes will be recorded

§ Zoom links
• Lecture: https://tulane.zoom.us/j/99301709427
• Office hour:  https://tulane.zoom.us/j/97536228925
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Attendance Policy

§ All students should follow the hybrid class meeting schedule unless 
• you don’t feel well or have COVID symptoms 
• you have been approved for remote learning  

§ If you cannot attend class for any reason, you are responsible for communicating 
with me to make up any work you may miss

§ If you are sick or told to quarantine, you can contact your case manager, and have 
your case management contact me directly
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Course Overview
§ Objectives

• Introduce both the classic results and state-of-the-art research in RL. 

• Focus on both the theoretical foundation and the application of RL

§ Prerequisites
• Knowledge of discrete probabilities and algorithms 

• Comfortable with rigorous mathematical reasoning
• Programming skills
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Topics

§ Markov Decision Processes

§ Dynamic Programming

§ Model-Free Prediction and Control

§ Value Function Approximation

§ Policy Gradient Methods
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§ Planning and Learning

§ Exploration and Exploitation

§ Imitation Learning, Inverse RL

§ Transfer Learning, Meta-learning

§ Multi-Agent Reinforcement Learning

§ ...



Textbook and References

§ Textbook: Richard S. Sutton and Andrew G. Barto, Reinforcement 
Learning: An Introduction (2nd edition), A Bradford Book, 2018. 

§ References
• Dimitri Bertsekas, Reinforcement Learning and Optimal Control, 

Athena Scientific, 2019. 
• Csaba Szepesvári, Algorithms for Reinforcement Learning, 2010.
• Aleksandrs Slivkins, Introduction to Multi-Armed Bandits, 2019.

§ Research papers, tutorials, etc. 
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http://www.incompleteideas.net/book/the-book-2nd.html
https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
https://arxiv.org/pdf/1904.07272.pdf


Grading Policy 

§ Problem Sets - 20%

§ Labs - 15%

§ Midterm - 20% 

§ Final Project - 35% 

§ Class participation - 10%

§ All grades will be posted on Canvas.
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A >= 90%; B >= 80%; C >= 70%; D >= 
60%; F < 60%

+/- grades will be given for 
borderline cases.



Problem Sets (20%) 

§ Given once every one or two weeks

• Due in the following week

• Some questions are for graduate students only

• Undergraduate will get extra points for trying those harder problems

10



Labs (15%)

§ 3 lab assignments

• Each student should work on Lab 1 individually

• Each project group can work on Labs 2 & 3 together: document contributions 
clearly

§ OpenAI Gym will be used for some of the labs

§ GPU access may be needed for Lab 3 and the final project

• Google Colab

11

https://gym.openai.com/
https://colab.research.google.com/


Final Project (35%)
§ Two students per group
• Group formation due Sep 1

§ Presentations (tentative)
• Proposal (15 min - Sep 24)
• Progress update (15 min - Oct 27)
• Mini-lecture (30 min - Nov 10  & Nov 12)
• Final presentation (30 min - Nov 30 – Dec 5)

§ Final report (Dec 6)
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Class Participation (10%)
§ Q&A in class & during office hours

§ Pop quizzes

§ Homework solution presentation

§ Online discussions
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Late Policy
§ 6 grace days that may be applied to homework/lab assignments

§ No more than 2 grace days on any single assignment
• assignment submitted > 2 days past the deadline (or no late day credit left) 

will get zero credit

§ No late days for the final presentation and report
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§ Course Webpage

• http://www.cs.tulane.edu/~zzheng3/teaching/cmps6660/fall20

• Used to post weekly schedule, assignments, lecture slides, reading material, etc. 

§ Canvas

• Used to post grades, discussions, and reading material, etc.
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http://www.cs.tulane.edu/~zzheng3/teaching/cmps6660/fall20


Introduction

CMPS 4660/6660: Reinforcement Learning
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Acknowledgement: slides adapted from David Silver's RL course and Berkeley CS285.

https://www.davidsilver.uk/teaching/
http://rail.eecs.berkeley.edu/deeprlcourse/


Reinforcement Learning

§ Learn to make good sequences of 
decisions in an uncertain environment
• Goal directed 
• Sequence of actions
• Learn from interaction

§ Learn a policy = a mapping from past 
experience to action
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agent environment



Example: Inventory 
Management 
§ Actions: what to purchase

§ Observations: inventory level

§ Rewards: profit - storage cost
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Example: Robotics

Actions: motor current or torque

Observations: images
• State estimation

Rewards: task success measure 
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Example: Classic Games

§ Actions: a legal game action 
• Simple, known rules

§ Observations: board position
• perfect information: Chess, Checkers, Go 
• imperfect information: Poker

§ Rewards
• win (+1), lose (-1), otherwise (0)
• Delayed feedback
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Types of learning task

§ Supervised learning

• Learn to predict an output when given an input vector

§ Unsupervised learning

• Discover a good internal representation of the input

§ Reinforcement learning

• Learn to select an action to maximize payoff

-- Hinton: “The Next Generation of Neural Networks”, SIGIR’20



Many Faces of Reinforcement Learning
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Learning and Planning
§ Two fundamental problems in sequential decision making

§ Reinforcement Learning:
• The environment is initially unknown
• The agent interacts with the environment
• The agent improves its policy

§ Planning:
• A model of the environment is known
• The agent performs computations with its model (without any external interaction)
• The agent improves its policy
• a.k.a. deliberation, reasoning, introspection, pondering, thought, search
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Atari Example: Reinforcement Learning

§ Rules of the game are 
unknown

§ Learn directly from 
interactive game-play

§ Pick actions on joystick, 
see pixels and scores
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Atari Example: Planning

§ Rules of the game are known

§ Can query emulator
• perfect model inside agent's brain

§ If I take action 𝑎 from state 𝑠:
• what would the next state be?
• what would the score be?

§ Plan ahead to find optimal policy
• e.g. tree search
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Exploration and Exploitation 

§ Reinforcement learning is like trial-and-error learning

§ The agent should discover a good policy

§ From its experiences of the environment

§ Without losing too much reward along the way



Exploration and Exploitation 

§ Exploration finds more information about the 
environment, e.g., try a new restaurant

§ Exploitation exploits known information to maximize 
reward, e.g., go to your favorite restaurant

§ A fundamental tradeoff in any sequential decision making 
under uncertainty

§ Multi-armed bandit: a canonical model to study the 
tradeoff

27



Generalization

§ Reinforcement learning can be used to solve large problems, e.g.

• Backgammon: 10!" states

• Computer Go: 10#$" states

• Helicopter: continuous state space

§ Function approximation

• Generalize from seen states to unseen states
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Deep Reinforcement Learning 

§ Reinforcement Learning => a framework for sequential decision making

§ Deep learning => models that can handle unstructured environment

§ Deep RL => algorithms that can solve very complex decision-making problems 
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End-to-end decision making via Deep RL
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Why should we study this now?
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Beyond learning from reward

§ Learning from demonstrations

• Directly copying observed behavior 
(imitation learning)

• Inferring rewards from observed 
behavior (inverse RL)
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https://www.youtube.com/watch?v=wbhCXPSNNH0

https://www.youtube.com/watch?v=wbhCXPSNNH0


Beyond learning from reward

§ Learning from other tasks

• Transfer learning

• Meta learning: learning to learn
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What can deep learning & RL do well now?

§ Acquire high degree of proficiency in 
domains governed by simple, known rules

§ Learn simple skills with raw sensory inputs, 
given enough experience

§ Learn from imitating enough human-
provided expert behavior
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What has proven challenging so far?

§ Humans can learn incredibly quickly
• Deep RL methods are usually slow 

§ Humans can reuse past knowledge
• Transfer learning in deep RL is an open problem

§ Not clear what the reward function should be

§ Not clear what the role of prediction should be
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“There are no methods that are guaranteed to work for 
all or even most problems, but there are enough 
methods to try on a given challenging problem with a 
reasonable chance that one or more of them will be 
successful in the end.”
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-- Dimitri P. Bertsekas


