Dynamic Programming

CMPS 4660/6660: Reinforcement Learning

Dynamic Programming

* Contractions and Banach’s fixed point theorem
* Policy Evaluation

* Policy Optimization

e Value lteration

* Policy Iteration

Norms

e I/: a vector space over the reals

e f:v > RJisanormif
e If f(v) =0,thenv =0
cForu,veV,f(u+v) < f(u)+ f(v)

Examples of Norms

* V=(R%+,)
+ 1P norms: forp = 1, |[vll, = (5%, lv:|P) "

00) _ _
e [norms: ||[V||e = max |v; |

*V=00BKX)+)
« B(X) = {f:X — R:sup|f(x)]| < +OO} -- the vector space of uniformly

XeEX
bounded real functions over domain X

* Iflloo = sup |f(x)]

xeX

Convergence In norm

* (V, |I-lD: a normed vector space

* {v,},,50 is said to converge to v in norm if lim ||v,, — v|| = 0, denoted by
Nn—o>00

Un =2|-|| V-
* In a d-dimensional vector space, this is equivalent to v, ; = v;

* VUpi-i-th component of v,

Cauchy Sequence

 (V, II-ID: a normed vector space

* {v,,},,50 is called a Cauchy sequence if lim sup||v, —v,,|| =0
n=>Om>n

 (V, II-ID is called complete if every Cauchy sequence is
convergent in norm

* A complete, normed vector space is called a Banach space

* Theorem: (B(X), ||*|le) is @ Banach space for non-empty X

Contraction Mappings

(I, |I-l): a normed vector space

e Amapping T: V = V is called L-Lipschitz if forany u,v € V,
ITu — Tv|| < L|lu — v||

e . < 1:T is called a non-expansion

e [, < 1:T called a L-contraction

Fixed Point

v € V is called a fixed pointof Tif Ty = v
V = B(S) : the vector space of bounded value functions over state space §

Bellman equation: v; = r™ + yP"v,
* v, isafixed pointT™:V -V, T"™v =r + yPv
* T™ is called the Bellman operator underlying
Bellman optimality equation: v,(s) = max[r(s, a) +y g PSS/(a)v*(S’)]
a
* v, isafixed point T*:V -V, (T*v)(s) = max[r(s, a) +y Qg PSSr(a)v(s’)]
a

* T* is called the Bellman optimality operator

Banach's fixed point theorem

* Let V be a Banach space and T a L-contraction mapping.
Then

* T has a unique fixed point v
* Foranyvy €V, ifv,,.1 = Tv,, then
e lim|lv, —v||=0
n—>00

* ||lv, — v|| < L"||vy — v|| (geometric convergence)

Stefan Banach
(1892-1945)

Proof of Banach’s fixed point theorem

Pick vy € I/ and definev,,,; =Tv,
Step 1: sequence {v, } is convergent

It suffices to show that {v,,} is a Cauchy sequence (since V is a Banach space)

1Ytk = vnll = ITVp—14k — TVl Since [[vg |l < llvie = vie—all + V-1 — vie—2ll +

vy — vl
< Lllvp—1+x — V-1l

< k-1 k-2 _
< L?||[vy—pik — Vn_sll lvell < (L2 +L7% + -+ Dy — vl

' < lv; — voll since L < 1
< L™y — ol 1-L

1
< L™ (vl + lIvol) Thus, [= vl < 17 (527 v = voll + lvoll)

and so, lim sup||v,+x — V]l =0 sincel <1
n=90 k>0

Proof of Banach’s fixed point theorem

Step 2: let v be the limit of {v,,}. We show that Tv = v.
Take limits of both sides inv,,,; = Tv,.

The left side converges to v, and the right side converges to Tv,, (T is a contraction, hence
it is continuous.) Thus, we must have v = T.

Step 3: uniqueness of the fixed point of T

AssumeTv = vand Tv' = v'. Then, ||lv = V|| = ||Tv — TV'|| < L||v — v'||. Since L < 1,
we must have ||[v — v'|| = 0, which implies v = v'.

11

Proof of Banach’s fixed point theorem

Step 4: geometric convergence

|lvn = vl = ITvy-1 = TVl
< L|lvp—y — vl

< L*||vp— — vl

< L™|vo — v

12

Dynamic Programming

* Contractions and Banach’s fixed point theorem
* Policy Evaluation

* Policy Optimization

e Value lteration

* Policy Iteration

Prediction (Policy Evaluation)

 Bellman equation: v; = r* + yP™v,
* V=B)
e T™.V - V whereT™ =r™ + yP™v

Fact 1: T™ is a y-contraction with respect to ||*|| - U 15 the unique fixed
point of the Bellman
Fact 2: T™ is monotone, i.e., ifu < v, thenT™u < T™v equation underlying

IA

» If vg < Tvy, thenvyg < vy < vy, < V3

|f Vo = TU(), then Vo = (%] > (%) > V3 > ...

14

Prediction (Policy Evaluation)

T™ is a y-contraction with respect to |||

Proof:
IT™u — T™||o, = sup|[r™(s) + y Xy PTou(s)]| = [r™(s) + y 2o PEiv(s))]|

SES S SS S SS
= ysgg|25165 P (u(s') — v(s’))|
S

<ysup) Pil(u(s) —v(s")

<ysup) Plillu—vle=vlu—-vle

iterative policy evaluation

Input: i (policy to be evaluated), 8 > 0 (threshold)
Initialize V(s) for s € §7, arbitrarily except V(s*) = 0

To reduce complexity,

Loop:
recompute
Ao P P
Loop for each s € §: rT(s) = Z m(als)r (s, a)
a€cA(s)

V'(s) « Zam(als) (r(s @) +v Ty Psg (@) V(s))

A < max(A, |V'(s) = V(s)])
VeV

untilA < 6

PT, = z (als) P, (@)

acA(s)

Each iteration updates the values of all states

16

In-place iterative policy evaluation

Input: i (policy to be evaluated), 8 > 0 (threshold)
Initialize V(s) for s € §, arbitrarily except V(s*) = 0

Loop:
A<0O
sweeps through the state space
Loop for each s € §: , i Fact
usually converges faster
v« V(s) Y 5

V(s) « Tam(als) (r(s,a) + v Xy Por (@) V(s"))
A «— max(A, |v—V(s)])
untilA < 6

17

Example: Gridworld

/ Terminal state

actions

S =1{1,2,..,14}
A = {up, down, right, left}

1 2 3
4 5 6 7
8 9 10 |11
12 (13 [14

* Actions that would take the agent off the grid

leave its location unchanged

T~

Rt:—l

on all transitions

Terminal state

Example: Gridworld

{v} } from iterative policy evaluation under equiprobable random policy

0.0(0.0] 0.0 0.0 0.0(-1.0|-1.0(-1.0 0.0|-1.7(-2.0(-2.0
0.01 0.0 0.0] 0.0 -1.0/-1.0{-1.0|-1.0 -1.7]-2.0|-2.0|-2.0
0.01 0.0 0.0] 0.0 -1.0|-1.0]-1.0|-1.0 -2.0/-2.0{-2.0|-1.7
0.01 0.0 0.0] 0.0 -1.0{-1.0|-1.0] 0.0 -2.0|-2.0(-1.7| 0.0
k = k=1 k=2
0.0]-2.4]/-2.9/-3.0 0.0]-6.1|-8.4|-9.0 0.0]-14.]-20.]-22.
-2.4/-2.91-3.0{-2.9 -6.1|-7.7|-8.4|-8.4 -14./-18.1-20.]-20.
-2.9(-3.0|-2.9|-2.4 -8.4(-8.4|-7.7|-6.1 -20.1-20.1-18.1-14.
-3.0/-2.91-2.4] 0.0 -9.0|-8.4|-6.1| 0.0 -22.1-20.]1-14.{ 0.0

k = k=10 k = o

Dynamic Programming

* Contractions and Banach’s fixed point theorem
* Policy Evaluation

* Policy Optimization

e Value lteration

* Policy Iteration

Control (Policy Optimization)

* Bellman optimality equation:v,(s) = max[r(s, a) +y Qg PSSr(a)v*(s’)]
a

* V=(B(S))

* v, is afixed point of T*:V — V where (T*v)(s) = max|r(s,a) + y X Psor (@)v(s")]
a

Fact 1: T* is a y-contraction with respect to ||-||,, =) V. is the unique solution
to the Bellman

Fact 2: T" is monotone, i.e.,ifu < v,thenT*u < T*v optimality equation.

From Optimal Value to Optimal Policy

Let T be the deterministic stationary policy such that

,Vs €S

m(s) = argmax [r(s, a)+y) Py(a)v.(s')
acA(s)

Sl

Then v; = v,. Hence, 1 is optimal.

Proof: T"v, = T"v, = v, = v, =,

Value |teration

Input: @ > 0 (threshold)
Initialize V(s) for s € §7, arbitrarily except V(s*) = 0

Loop:
A<0
Loop for each s € §:
v« V(s)
V(s) « Jnax, (r(s, a) +y Lg Pssr(a) V(S’))
A < max(A, |lv—V(s)])
untilA < 6

Output the deterministic policy such that

m(s) = aggg(i;c (r(s, a) +y X Per(a) V(Sr))

Value |teration

Let v be a state-value function such that |v(s) — v.(s)| < 8'foralls € S, and
m a greedy policy for v. Then forall s € S,

2y6’

Vr(s) —vs)l = T—
|4

Proof: see Singh and Yee, “An Upper Bound on the Loss from Approximate Optimal-Value
Functions”, 1994.

24

Gambler’s Problem

* A gambler has the opportunity to make bets on the
outcomes of a sequence of coin flips.

* If the coin comes up heads, he wins as many dollars as he has
staked on that flip; if it is tails, he loses his stake.

* The game ends when the gambler wins by reaching his goal of
$100, or loses by running out of money.
* On each flip, the gambler must decide what portion of
his capital to stake, in integer numbers of dollars.

* This problem can be formulated as an undiscounted,
finite (non-deterministic) MDP.

Gambler’s Problem

* The state is the gambler's capital s = {0,1,2,3 ..., 100}
* The actions are stakes a € {1, 2, ..., min(s, 100 — s)}

* The reward is zero on all transitions except those on
which the gambler reaches his goal, when it is +1.

* The state-value function then gives the probability of
winning from each state.

* A policy is a mapping from levels of capital to stakes

* The optimal policy maximizes the probability of reaching the
goal.

* Let p;, denote the probability of the coin coming up heads.

* If py, is known, then the entire problem space is known and can
be solved

Gambler’s Problem

1-
Final value
0.8 function
Value 991 Final
estimates | poIicy
4 e (stake)
02- ~ |=— sweep 1
,.f",;:— = j ——— Sweep 2
o e sweep3
I T T T]
1 25 50 75 99
Capital
Pn = 0.4

50+
40
30
0_
10 -

14

o

I

50
Capital

15

99

27

Asynchronous Value [teration

* Synchronous VI
* operates at all states simultaneously in every iteration

* may stuck at bad states

* Asynchronous VI

e V(s) is updated for a subset of states in one iteration
e |teration orders can be deterministic or randomized

» convergence is still guaranteed as long as all the states are visited infinitely number of times

e Advantage of asynchronous VI
* Faster convergence
» Parallel and distributed computation

* Simulation-based/online implementation (see SB Ch.8)

Dynamic Programming

* Contractions and Banach’s fixed point theorem
* Policy Evaluation

* Policy Optimization

e Value lteration

* Policy Iteration

Policy Improvement

Let 7 be a stationary policy and let r be the greedy policy with respect to vy . That
is, m(s) = argmaxa[r(s, a) +vy Xy Psgr (@) vy, (S’)] ,Vs € §. Then we have
(1) v, = v

(2) If T* vy, (s) > vy (s) for some s € S, then v, > vy

(3) f T* vy (s) = vy, (s) forall s € S, then 1 is an optimal policy

Proof: Exercise

E I E I E I E
Ty = Vg, 2T = Vg, 2Ty 2= T,

Policy Improvement

Let 7 be a stationary policy and let r be the greedy policy with respect to vy . That
is, m(s) = argmaxa[r(s, a) +vy Xy Psgr (@) vy, (S’)] ,Vs € §. Then we have

(1) vg = vy,

(2) If T* vy, (s) > vy (s) for some s € S, then v, > vy

(3) f T* vy (s) = vy, (s) forall s € S, then 1 is an optimal policy

Proof: See [CS] Appendix A.2 Theorem 3

* Note that 7(s) = argmaxa[r(s, a) +y X Psgr(@)vy, (S’)]

P Vg = maxa[r(s, a) +vy Xg Pssr(@)vy, (s’)]

Policy Improvement

Proof of part (1)
w(s) = argmaxa[r(s, a) +y g Pggr(@)vp, (S’)] ,Vs €S
= TV, = TV, = Vg,

= (T™) vy, = Ty = vy,

= (T™)®vg, = Vg,

= Vg = Ur,

Policy Iteration

1 Initialization 3
V(s) € Rand (s) € A(s) arbitrarily foralls € §

2 Ppolicy Evaluation
Loop:
A<0
Loop for each s € §:
v« V(s)
V(s) « Xam(als) (r(s,a) + ¥ By Psgr (@) V("))
A < max(A, |lv —V(s)])
untilA < 6

Policy Improvement
policy-stable < true
For eachs € §:
old-action < 1 (s)
n(s) < argmax[r(s,a) +y Xy Pggr(@)V(s")]
a

if old-action # 1(s), then policy-stable=false
If policy-stable, then stop and returnV and

else go to 2.

A subtle bug: policy continually
switches between two or more
policies that are equally good.

33

Policy Iteration for Action Values

1 Initialization 3 Policy Improvement
Q(s,a) € R arbitrarily for alls € § and a € A(s) policy-stable < true
m(s) € A(s) arbitrarily foralls € § Foreachs € S§:
old-action « 1 (s)
2 Policy Evaluation n(s) « argmax, Q(s,a)
Loop: if old-action # 1(s), then policy-stable=false
A0 If policy-stable, then stop and return Q and 7
Loop for each s € S and a € A(s) else go to 2.
q < Q(s a)

Q(s,a) «r(s,a) +y Xy Pggr(a)Q(s’,m(s"))
A < max(4, |q — Q(s,a)])
untilA < 6

34

Policy Iteration

E I E I E I E
Ty = Vg, 2T = Uy, DTy 2> T, D,

e Each policy is a strict improvement over the previous one (unless it’s already optimal).

* Afinite MDP only has a finite number of (deterministic stationary) policies => the
process converges in a finite number of iterations.

* Plvs. VI
* Pl converges in fewer iterations than VI

e But the computational cost of a single step in Pl is much higher

Generalized Policy Iteration
evaluation

Vs v,
e Generalized policy iteration (GPI) - letting /\

policy-evaluation and policy-improvement n V
processes interact, independent of the 7~ greedy(V)
granularity and other details of the two _

orocesses Improvement

* If both processes stabilize with respect to
each other, the value function and policy
must be optimal.

Linear Programming Method for MDP

* Policy Evaluation

v, = 1" +yP"™v, v, =({—-yP") Ir"

* Policy Optimization

mvin ZSES U(S)

subjecttov(s) =2 r(s,a) +y X P (@)v(s’),Vs €S,a € A(s)

* The correctness of the LP is based on the following fact:

If v > T*v, then v = v, (Exercise)

37

Partially Observable MDP

* A Partially Observable Markov Decision Process is a tuple (X, A, O, p,y)
« X ={1,2,...,d} is afinite set of hidden states
* A is afinite set of actions
e O is afinite set of observations (including rewards)
e p(x',o|lx,a) =Pr{X; =x",0; = o0|X;_1 = x,4;_1 = a}
* y is a discount factor, y € [0,1]

38

Belief States

* A history H; is a sequence of actions, observations and rewards,

Ht —_ 00,140, 01, All . Ot—l'At—li Ot

* A belief state Sy = s; € R? is a probability distribution over states,
conditioned on the history H;

St — (PI‘[Xt — llHt — h]) nes) Pl‘[Xt — let — h])

POMDP to Beliet MDP

* Belief update:

>4_1s¢lilp(i olj, @)
1 Zh=1sclilp(k 0lj, @)

Se+1li] =

* The belief state is Markov, i.e.,
Pr(5t+1 = S’ | St = S,At = a, St—l = St_l’At_l = A¢—1, ...,SO = S())
— Pr(5t+1 — S’|St — S,At — a)

 We thus obtain a continuous state MDP

40

