
Dynamic Programming

CMPS 4660/6660: Reinforcement Learning

1

Dynamic Programming

• Contractions and Banach’s fixed point theorem

• Policy Evaluation

• Policy Optimization

• Value Iteration

• Policy Iteration

2

Norms

• 𝑉: a vector space over the reals

• 𝑓 ∶ 𝑣 → ℝ!" is a norm if

• If 𝑓 𝑣 = 0, then 𝑣 = 0

• For 𝑢, 𝑣 ∈ 𝑉, 𝑓 𝑢 + 𝑣 ≤ 𝑓(𝑢) + 𝑓(𝑣)

3

Examples of Norms

• 𝑉 = (𝑅!, +, ⋅)

• 𝑙" norms: for 𝑝 ≥ 1, 𝑣 # = ∑$%&! 𝑣$ "
&/"

• 𝑙(norms: 𝑣 (= max
&)$)!

|𝑣$|

• 𝑉 = (𝐵(𝑋), +, ⋅)

• 𝐵 𝑋 = 𝑓: 𝑋 → ℝ: sup
*∈,

𝑓 𝑥 < +∞ -- the vector space of uniformly

bounded real functions over domain 𝑋

• 𝑓 (= sup
*∈,

𝑓 𝑥

4

Convergence in norm

• 𝑉, ⋅ : a normed vector space

• 𝑣- -./ is said to converge to 𝑣 in norm if lim
-→(

𝑣- − 𝑣 = 0, denoted by

𝑣- → ⋅ 𝑣.

• In a 𝑑-dimensional vector space, this is equivalent to 𝑣-,$ → 𝑣$

• 𝑣-,$ - 𝑖-th component of 𝑣-

5

Cauchy Sequence

• 𝑉, ⋅ : a normed vector space

• 𝑣- -./ is called a Cauchy sequence if lim
-→(

sup
3.-

𝑣- − 𝑣3 = 0

• 𝑉, ⋅ is called complete if every Cauchy sequence is
convergent in norm

• A complete, normed vector space is called a Banach space

• Theorem: (𝐵(𝑋), ⋅ () is a Banach space for non-empty 𝑋

6

Contraction Mappings

• 𝑉, ⋅ : a normed vector space

• A mapping 𝑇: 𝑉 → 𝑉 is called 𝐿-Lipschitz if for any 𝑢, 𝑣 ∈ 𝑉,

𝑇𝑢 − 𝑇𝑣 ≤ 𝐿 𝑢 − 𝑣

• 𝐿 ≤ 1: 𝑇 is called a non-expansion

• 𝐿 < 1: 𝑇 called a 𝐿-contraction

7

Fixed Point

• 𝑣 ∈ 𝑉 is called a fixed point of 𝑇 if 𝑇𝑣 = 𝑣

• 𝑉 = 𝐵 𝒮 :	the	vector	space	of	bounded	value	functions	over	state	space	𝒮

• Bellman equation: 𝑣4 = 𝑟4 + 𝛾𝑃4𝑣4
• 𝑣4 is a fixed point 𝑇4: 𝑉 → 𝑉, 𝑇4𝑣 = 𝑟 + 𝛾𝑃𝑣

• 𝑇4 is called the Bellman operator underlying 𝜋

• Bellman optimality equation: 𝑣∗ 𝑠 = max
6

𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣∗ 𝑠8

• 𝑣∗ is a fixed point 𝑇∗: 𝑉 → 𝑉, (𝑇∗𝑣)(𝑠) = max
6

𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣 𝑠8

• 𝑇∗ is called the Bellman optimality operator 8

Banach’s fixed point theorem

• Let 𝑉 be a Banach space and 𝑇 a 𝐿-contraction mapping.
Then
• 𝑇 has a unique fixed point 𝑣
• For any 𝑣! ∈ 𝑉, if 𝑣#"$ = 𝑇𝑣#, then

• lim
#→&

𝑣# − 𝑣 = 0

• 𝑣# − 𝑣 ≤ 𝐿# 𝑣! − 𝑣 (geometric convergence)

9

Stefan Banach
(1892-1945)

Proof of Banach’s fixed point theorem
Pick 𝑣! ∈ 𝑉 and define 𝑣"#$ = 𝑇𝑣"
Step 1: sequence 𝑣" is convergent

It suffices to show that 𝑣" is a Cauchy sequence (since 𝑉 is a Banach space)

10

𝑣"#% − 𝑣" = 𝑇𝑣"&$#% − 𝑇𝑣"&$

≤ 𝐿 𝑣"&$#% − 𝑣"&$

≤ 𝐿' 𝑣"&'#% − 𝑣"&'

≤ 𝐿" 𝑣% − 𝑣!
⋮

≤ 𝐿"(𝑣% + 𝑣!)

Since 𝑣% ≤ 𝑣% − 𝑣%&$ + 𝑣%&$ − 𝑣%&' +
…+ 𝑣$ − 𝑣!

𝑣% ≤ (𝐿%&$+𝐿%&' +⋯+ 1) 𝑣$ − 𝑣!

≤
1

1 − 𝐿 𝑣$ − 𝑣!

Thus, 𝑣"#% − 𝑣" ≤ 𝐿" $
$&(

𝑣$ − 𝑣! + 𝑣!

and so, lim
"→*

sup
%+!

𝑣"#% − 𝑣" = 0

since 𝐿 < 1

since 𝐿 < 1

Proof of Banach’s fixed point theorem

Step 2: let 𝑣 be the limit of 𝑣" . We show that 𝑇𝑣 = 𝑣.

Take limits of both sides in 𝑣"#$ = 𝑇𝑣".

The left side converges to 𝑣, and the right side converges to 𝑇𝑣" (𝑇 is a contraction, hence
it is continuous.) Thus, we must have 𝑣 = 𝑇𝑣.

Step 3: uniqueness of the fixed point of 𝑇

Assume 𝑇𝑣 = 𝑣 and 𝑇𝑣′ = 𝑣′. Then, 𝑣 − 𝑣′ = 𝑇𝑣 − 𝑇𝑣′ ≤ 𝐿 𝑣 − 𝑣′ . Since 𝐿 < 1,
we must have 𝑣 − 𝑣′ = 0, which implies 𝑣 = 𝑣′.

11

Proof of Banach’s fixed point theorem

Step 4: geometric convergence

12

𝑣" − 𝑣 = 𝑇𝑣"&$ − 𝑇𝑣

≤ 𝐿 𝑣"&$ − 𝑣

≤ 𝐿' 𝑣"&' − 𝑣

≤ 𝐿" 𝑣! − 𝑣
⋮

Dynamic Programming

• Contractions and Banach’s fixed point theorem

• Policy Evaluation

• Policy Optimization

• Value Iteration

• Policy Iteration

13

Prediction (Policy Evaluation)

• Bellman equation: 𝑣4 = 𝑟4 + 𝛾𝑃4𝑣4
• 𝑉 = (𝐵 𝒮 , ⋅ ()

• 𝑇4: 𝑉 → 𝑉 where 𝑇4𝑣 = 𝑟4 + 𝛾𝑃4𝑣

Fact 1: 𝑇4 is a 𝛾-contraction with respect to ⋅ (

Fact 2: 𝑇4 is monotone, i.e., if 𝑢 ≤ 𝑣, then 𝑇4𝑢 ≤ 𝑇4𝑣

14

𝑣4 is the unique fixed
point of the Bellman
equation underlying 𝜋

If 𝑣/ ≤ 𝑇𝑣/, then 𝑣/ ≤ 𝑣& ≤ 𝑣9 ≤ 𝑣: ≤ ⋯

If 𝑣/ ≥ 𝑇𝑣/, then 𝑣/ ≥ 𝑣& ≥ 𝑣9 ≥ 𝑣: ≥ ⋯

Prediction (Policy Evaluation)

𝑇' is a 𝛾-contraction with respect to ⋅ &

Proof:

15

≤ 𝛾 sup
,∈𝒮

;
,!∈𝒮

𝑃,,!
/ 𝑢(𝑠0) − 𝑣(𝑠0

≤ 𝛾 sup
,∈𝒮

;
,!∈𝒮

𝑃,,!
/ 𝑢 − 𝑣 * = 𝛾 𝑢 − 𝑣 *

= 𝛾 sup
,∈𝒮

∑,!∈𝒮 𝑃,,!
/ 𝑢(𝑠0) − 𝑣(𝑠0)

𝑇/𝑢 − 𝑇/𝑣 * = sup
,∈𝒮

𝑟/ 𝑠 + 𝛾 ∑,! 𝑃,,!
/ 𝑢 𝑠0 − 𝑟/ 𝑠 + 𝛾 ∑,! 𝑃,,!

/ 𝑣 𝑠0

Iterative policy evaluation

Input: 𝜋 (policy to be evaluated), 𝜃 > 0 (threshold)

Initialize 𝑉(𝑠) for 𝑠 ∈ 𝒮#, arbitrarily except 𝑉 𝑠∗ = 0

Loop:

Δ ← 0
Loop for each 𝑠 ∈ 𝒮:

𝑉′ 𝑠 ← ∑2 𝜋 𝑎 𝑠 𝑟 𝑠, 𝑎 + 𝛾 ∑,! 𝑃,,! 𝑎 𝑉 𝑠0

Δ ← max(Δ, |𝑉′ 𝑠 − 𝑉 𝑠 |)
𝑉 ← 𝑉′

until Δ < 𝜃

16

To reduce complexity,
precompute

𝑟! 𝑠 = $
"∈𝒜(&)

𝜋 𝑎 𝑠 𝑟 (𝑠, 𝑎)

𝑃&,&!
! = $

"∈𝒜(&)

𝜋 𝑎 𝑠 𝑃&&! 𝑎

Each iteration updates the values of all states

In-place iterative policy evaluation

Input: 𝜋 (policy to be evaluated), 𝜃 > 0 (threshold)

Initialize 𝑉(𝑠) for 𝑠 ∈ 𝒮#, arbitrarily except 𝑉 𝑠∗ = 0

Loop:
Δ ← 0
Loop for each 𝑠 ∈ 𝒮:

𝑣 ← 𝑉(𝑠)

𝑉 𝑠 ← ∑2 𝜋 𝑎 𝑠 𝑟 𝑠, 𝑎 + 𝛾 ∑,! 𝑃,,! 𝑎 𝑉 𝑠0

Δ ← max(Δ, |𝑣 − 𝑉 𝑠 |)
until Δ < 𝜃

17

sweeps through the state space
usually converges faster

Example: Gridworld

𝒮 = 1,2, … , 14
𝒜 = {up, down, right, leN}

• Actions that would take the agent off the grid
leave its location unchanged

18

Terminal state

Terminal state

Example: Gridworld

19

𝑘 = 0 𝑘 = 1 𝑘 = 2

𝑘 = 3 𝑘 = 10 𝑘 = ∞

𝑣B from iterative policy evaluation under equiprobable random policy

Dynamic Programming

• Contractions and Banach’s fixed point theorem

• Policy Evaluation

• Policy Optimization

• Value Iteration

• Policy Iteration

20

Control (Policy Optimization)

• Bellman optimality equation:𝑣∗ 𝑠 = max
6

𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣∗ 𝑠8

• 𝑉 = (𝐵 𝒮 , ⋅ ()

• 𝑣∗ is a fixed point of 𝑇∗: 𝑉 → 𝑉 where (𝑇∗𝑣)(𝑠) = max
6

𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣 𝑠8

Fact 1: 𝑇∗ is a 𝛾-contraction with respect to ⋅ (

Fact 2: 𝑇∗ is monotone, i.e., if 𝑢 ≤ 𝑣, then 𝑇∗𝑢 ≤ 𝑇∗𝑣

21

𝑣∗ is the unique solution
to the Bellman
optimality equation.

From Optimal Value to Optimal Policy

Proof: 𝑇4𝑣∗ = 𝑇∗𝑣∗ = 𝑣∗

22

Theorem
Let 𝜋 be the deterministic stationary policy such that

𝜋 𝑠 = argmax
6∈𝒜(7)

𝑟 𝑠, 𝑎 + 𝛾`
7!
𝑃77! 𝑎 𝑣∗ 𝑠8 , ∀𝑠 ∈ 𝒮

Then 𝑣4 = 𝑣∗. Hence, 𝜋 is optimal.

⇒ 𝑣4 = 𝑣∗

Value Iteration
Input: 𝜃 > 0 (threshold)
Initialize 𝑉(𝑠) for 𝑠 ∈ 𝒮), arbitrarily except 𝑉 𝑠∗ = 0

Loop:
Δ ← 0
Loop for each 𝑠 ∈ 𝒮:

𝑣 ← 𝑉(𝑠)

𝑉 𝑠 ← max
"∈𝒜 &

𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑉 𝑠+

Δ ← max(Δ, |𝑣 − 𝑉 𝑠 |)
until Δ < 𝜃

Output the deterministic policy 𝜋 such that

𝜋 𝑠 = argma𝑥
"∈𝒜 &

𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑉 𝑠+

23

Value Iteration

Proof: see Singh and Yee, “An Upper Bound on the Loss from Approximate Optimal-Value
Functions”, 1994.

24

Theorem
Let 𝑣 be a state-value function such that |𝑣 𝑠 − 𝑣∗(𝑠)| ≤ 𝜃′ for all 𝑠 ∈ 𝑆, and
𝜋 a greedy policy for 𝑣. Then for all 𝑠 ∈ 𝑆,

𝑣4 𝑠 − 𝑣∗ 𝑠 ≤
2𝛾𝜃′
1 − 𝛾

Gambler’s Problem

• A gambler has the opportunity to make bets on the
outcomes of a sequence of coin flips.
• If the coin comes up heads, he wins as many dollars as he has

staked on that flip; if it is tails, he loses his stake.
• The game ends when the gambler wins by reaching his goal of

$100, or loses by running out of money.

• On each flip, the gambler must decide what portion of
his capital to stake, in integer numbers of dollars.
• This problem can be formulated as an undiscounted,

finite (non-deterministic) MDP.

25

Gambler’s Problem

• The state is the gambler's capital 𝑠 = {0,1,2,3… , 100}
• The actions are stakes 𝑎 ∈ {1, 2, … ,min(𝑠, 100 − 𝑠)}
• The reward is zero on all transitions except those on

which the gambler reaches his goal, when it is +1.
• The state-value function then gives the probability of

winning from each state.
• A policy is a mapping from levels of capital to stakes

• The optimal policy maximizes the probability of reaching the
goal.

• Let 𝑝, denote the probability of the coin coming up heads.
• If 𝑝, is known, then the entire problem space is known and can

be solved

26

Gambler’s Problem

27

𝑝F = 0.4

Asynchronous Value Iteration

• Synchronous VI
• operates at all states simultaneously in every iteration
• may stuck at bad states

• Asynchronous VI
• 𝑉(𝑠) is updated for a subset of states in one iteration
• Iteration orders can be deterministic or randomized
• convergence is still guaranteed as long as all the states are visited infinitely number of times

• Advantage of asynchronous VI
• Faster convergence
• Parallel and distributed computation
• Simulation-based/online implementation (see SB Ch.8)

28

Dynamic Programming

• Contractions and Banach’s fixed point theorem

• Policy Evaluation

• Policy Optimization

• Value Iteration

• Policy Iteration

29

Policy Improvement

30

Proof: Exercise

Theorem
Let 𝜋! be a stationary policy and let 𝜋 be the greedy policy with respect to 𝑣/" . That
is, 𝜋 𝑠 = argmax2 𝑟 𝑠, 𝑎 + 𝛾 ∑,! 𝑃,,! 𝑎 𝑣/" 𝑠

0 , ∀𝑠 ∈ 𝒮. Then we have

(1) 𝑣/ ≥ 𝑣/"
(2) If 𝑇∗𝑣/" 𝑠 > 𝑣/" 𝑠 for some 𝑠 ∈ 𝒮, then 𝑣/ > 𝑣/"
(3) If 𝑇∗𝑣/" 𝑠 = 𝑣/" 𝑠 for all 𝑠 ∈ 𝒮, then 𝜋! is an optimal policy

𝜋/→
G
𝑣4"→

H
𝜋& →

G
𝑣4# →

H
𝜋9 →

G
⋯→

H
𝜋∗→

G
𝑣∗

Policy Improvement

31

Proof: See [CS] Appendix A.2 Theorem 3

Theorem
Let 𝜋! be a stationary policy and let 𝜋 be the greedy policy with respect to 𝑣/" . That
is, 𝜋 𝑠 = argmax2 𝑟 𝑠, 𝑎 + 𝛾 ∑,! 𝑃,,! 𝑎 𝑣/" 𝑠

0 , ∀𝑠 ∈ 𝒮. Then we have

(1) 𝑣/ ≥ 𝑣/"
(2) If 𝑇∗𝑣/" 𝑠 > 𝑣/" 𝑠 for some 𝑠 ∈ 𝒮, then 𝑣/ > 𝑣/"
(3) If 𝑇∗𝑣/" 𝑠 = 𝑣/" 𝑠 for all 𝑠 ∈ 𝒮, then 𝜋! is an optimal policy

• Note that 𝜋 𝑠 = argmax" 𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑣!" 𝑠
+

⇏ 𝑣! = max" 𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑣!" 𝑠
+

Policy Improvement

Proof of part (1)

𝜋 𝑠 = argmax6 𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣4" 𝑠
8 , ∀𝑠 ∈ 𝒮

⇒ 𝑇4𝑣4" ≥ 𝑇4"𝑣4"
⇒ 𝑇4 9𝑣4" ≥ 𝑇4𝑣4" ≥ 𝑣4"
…
⇒ 𝑇4 (𝑣4" ≥ 𝑣4"
⇒ 𝑣4 ≥ 𝑣4"

32

= 𝑣4"

Policy Iteration

Initialization
𝑉 𝑠 ∈ ℝ and 𝜋 𝑠 ∈ 𝒜 𝑠 arbitrarily for all 𝑠 ∈ 𝒮

Policy Evaluation
Loop:
Δ ← 0
Loop for each 𝑠 ∈ 𝒮:
𝑣 ← 𝑉(𝑠)

𝑉 𝑠 ← ∑"𝜋 𝑎 𝑠 𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑉 𝑠+

Δ ← max(Δ, |𝑣 − 𝑉 𝑠 |)
until Δ < 𝜃

33

Policy Improvement
policy-stable← true
For each 𝑠 ∈ 𝒮:

old-action← 𝜋 𝑠
𝜋 𝑠 ← argmax

"
[𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&! 𝑎 𝑉 𝑠+]

if old-action≠ 𝜋 𝑠 , then policy-stable=false
If policy-stable, then stop and return 𝑉 and 𝜋
else go to 2.

1

2

3

A subtle bug: policy continually
switches between two or more
policies that are equally good.

Policy Iteration for Action Values

Initialization
𝑄 𝑠, 𝑎 ∈ ℝ arbitrarily for all 𝑠 ∈ 𝒮 and 𝑎 ∈ 𝒜 𝑠
𝜋 𝑠 ∈ 𝒜 𝑠 arbitrarily for all 𝑠 ∈ 𝒮

Policy Evaluation
Loop:
Δ ← 0
Loop for each 𝑠 ∈ 𝒮 and 𝑎 ∈ 𝒜 𝑠
𝑞 ← 𝑄(𝑠, 𝑎)
𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾 ∑&! 𝑃&&!(𝑎)𝑄 𝑠+, 𝜋(𝑠+)
Δ ← max(Δ, |𝑞 − 𝑄 𝑠, 𝑎 |)

until Δ < 𝜃

34

Policy Improvement
policy-stable← true
For each 𝑠 ∈ 𝒮:

old-action← 𝜋 𝑠
𝜋 𝑠 ← argmax" 𝑄(𝑠, 𝑎)
if old-action≠ 𝜋 𝑠 , then policy-stable=false

If policy-stable, then stop and return 𝑄 and 𝜋
else go to 2.

1

2

3

Policy Iteration

𝜋J→
K
𝑣L!→

M
𝜋N →

K
𝑣L" →

M
𝜋O →

K
⋯→

M
𝜋∗→

K
𝑣∗

• Each policy is a strict improvement over the previous one (unless it’s already optimal).

• A finite MDP only has a finite number of (deterministic stationary) policies => the
process converges in a finite number of iterations.

• PI vs. VI
• PI converges in fewer iterations than VI
• But the computational cost of a single step in PI is much higher

35

Generalized Policy Iteration

• Generalized policy iteration (GPI) - letting
policy-evaluation and policy-improvement
processes interact, independent of the
granularity and other details of the two
processes.

• If both processes stabilize with respect to
each other, the value function and policy
must be optimal.

36

Linear Programming Method for MDP

• Policy Evaluation

• Policy Optimization

min
I
∑7∈𝒮 𝑣(𝑠)

subject to 𝑣 𝑠 ≥ 𝑟 𝑠, 𝑎 + 𝛾 ∑7! 𝑃77! 𝑎 𝑣 𝑠8 , ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜(𝑠)

• The correctness of the LP is based on the following fact:

If 𝑣 ≥ 𝑇∗𝑣, then 𝑣 ≥ 𝑣∗ (Exercise)

37

𝑣4 = 𝑟4 + 𝛾𝑃4𝑣4 ⇒ 𝑣4 = 𝐼 − 𝛾𝑃4 K&𝑟4

Partially Observable MDP

• A Partially Observable Markov Decision Process is a tuple 𝑋,𝒜,𝑂, 𝑝, 𝛾
• 𝑋 = {1,2, … , 𝑑} is a finite set of hidden states

• 𝒜 is a finite set of actions

• 𝑂 is a finite set of observations (including rewards)

• 𝑝 𝑥8, 𝑜 𝑥, 𝑎 = Pr 𝑋L = 𝑥8, 𝑂L = 𝑜|𝑋LK& = 𝑥, 𝐴LK& = 𝑎
• 𝛾 is a discount factor, 𝛾 ∈ [0,1]

38

Belief States

• A history 𝐻L is a sequence of actions, observations and rewards,

𝐻L = 𝑂/, 𝐴/, 𝑂&, 𝐴& , … , 𝑂LK&, 𝐴LK&, 𝑂L

• A belief state 𝑆L = 𝐬L ∈ ℝ! is a probability distribution over states,
conditioned on the history 𝐻L

𝐬L = Pr 𝑋L = 𝑖 𝐻L = ℎ ,… , Pr 𝑋L = 𝑑 𝐻L = ℎ

39

POMDP to Belief MDP

40

• The belief state is Markov, i.e.,

Pr 𝑆LM& = 𝐬′ | 𝑆L = 𝐬, 𝐴L = 𝑎, 𝑆LK& = 𝐬LK&, 𝐴LK& = 𝑎LK&, … , 𝑆/ = 𝐬/

= Pr 𝑆LM& = 𝐬8 𝑆L = 𝐬, 𝐴L = 𝑎

• We thus obtain a continuous state MDP

• Belief update:

𝐬LM& 𝑖 =
∑N%&! 𝐬L 𝑗 𝑝(𝑖, 𝑜|𝑗, 𝑎)

∑N%&! ∑B%&! 𝐬L 𝑗 𝑝(𝑘, 𝑜|𝑗, 𝑎)

