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Abstract—The proliferation of Social Network Sites (SNSs)
has greatly reformed the way of information dissemination, but
also provided a new venue for hosts with impure motivations to
disseminate malicious information. Social trust is the basis for
information dissemination in SNSs. Malicious nodes judiciously
and dynamically make the balance between maintaining its social
trust and selfishly maximizing its malicious gain over a long time-
span. Studying the optimal response strategies for each malicious
node could assist to design the best system maneuver so as
to achieve the targeted level of overall malicious activities. In
this paper, we propose an interaction-based social trust model,
and formulate the maximization of long-term malicious gains
of multiple competing nodes as a non-cooperative differential
game. Through rigorous analysis, optimal response strategies are
identified and the best system maneuver mechanism is presented.
Extensive numerical studies further verify the analytical results.

I. INTRODUCTION

We have witnessed the prevailing useage of Social Network
Sites (SNSs), including Facebook, Twitter and Google+, for
the information sharing among users on their personal pages
and the interaction with friends or followers [1]. While SNSs
provide excellent platforms for information dissemination a-
mong millions of users [2], they also attract hosts with impure
motivations to exploit their massive influence for malicious
activities, such as spam, click fraud, identity theft and phishing
[3].

Unique feature of SNSs is that the information dissemina-
tion is primarily dependent on the social trust among users,
[4], e.g., a user’s post is more likely to be reposted by his/her
followers instead of others with no social tie. As a result, the
one-time gain from a malicious action is positively related with
the social trust of the malicious user, i.e., the higher the social
trust is, the more users will be influenced by the malicious
action.

The social trust of a user reflects the confidence that this
user will behave in an expected way, and can be evaluated
by his/her frequency of non-malicious interactions with other
users [4]. A positive interaction, e.g., posing a trustworthy
news, will improve the social trust of the user leading to larg-
er influence for information dissemination, while a negative
interaction, e.g., maliciously spreading a rumor, will result
in a degradation in the trust and hurting his/her potential of
information dissemination in the future. Hence, for a malicious
user aiming to maximize his/her overall personal benefits over
a long time span, a tradeoff should be made between dynami-
cally conducting positive and negative interactions with others,

e.g., obtaining malicious gain through negative interactions
while accumulating better trust by positive interactions for
larger malicious gain later.

It is desirable to understand the malicious host’s best action
strategy towards this tradeoff, and to accordingly propose
optimal system maneuver mechanism for the social trust
management so as to confine the malicious activities in the
system. However, it is non-trivial to find the optimal balance
between positive and negative interactions so as to maximize
the long term malicious gain: how can we quantify the impact
of an action on the future malicious gains and judiciously
conduct positive/negative actions dynamically?

The difficulty further escalates when we practically extend
the problem of optimizing the malicious gain at one individual
user to the picture of interplays among multiple malicious
users, who compete for the social trust, i.e., interaction densi-
ties with other normal users, in order to selfishly maximize
their own influence in information dissemination and thus
malicious gains. Each action taken by an individual user
will have an impact on the potential gain of other malicious
users and vice versa. The following questions should be
answered: how to evaluate the impact of an action on one’s
own and others’ malicious gains in the future; what is the best
strategy for each malicious user to dynamically adjust his/her
positive/negative interactions in this competition?

Each user can be viewed as a node in the online social net-
work. Our objective is to study the optimal response strategies
of the malicious nodes in both single-node case and multiple-
node case, respectively, such that we could find a better system
maneuver accordingly in order to manage the trust evaluation
and control the malicious activities. We propose an interaction-
based social trust evaluation model, and formulate the single-
node case as an optimal control problem and the competition
among multiple nodes as a non-cooperative differential game.
Through rigorous analysis, we solve the optimal response
strategies for each node in both cases, on the basis of which
we identify the best system maneuver mechanism given any
targeted level of overall malicious activities.

The main contributions of this paper can be summarized as
follows.

• We investigate social trust and its impact on the malicious
information dissemination in SNSs.

• We propose a general framework to model the social trust
using the frequency of interactions in the SNSs. Based on
this model, we gain the insight for the administrators of
SNSs to control the overall malicious activity.
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• Through rigorous analysis, we identify the best response
strategies for each node in both the single-node optimal
control problem and the multiple-node differential game.
Best system maneuver strategies are presented for each
case, so as to maintain the overall malicious activities at
any given level.

• Extensive numerical studies further verify our analytical
results in differential system settings.

The rest of the paper is organized as follows. We highlight
the related work in Section II. In Section IV, we present our
model on the social trust and the threats from malicious nodes.
We solve the multiple-node differential game for both static
and dynamic cases in Section IV. Numerical studies under
different system settings are presented in Section V. Finally,
Section VI concludes the paper.

II. RELATED WORK

A. Social Trust and Trust Management

As an emerging research topic, social trust in social net-
works has been extensively discussed in [4] and references
therein. The application of trust frameworks and systems
in social networks involves defending malicious activities,
especially the spamming [5] [6] [7]. As mentioned in [5],
the behaviors of spammers are getting stealthy to evade
from existing detection techniques. Yang et al. [6] state that
malicious hosts can dilute their vicious posts and raise the
opportunities to survive through mixing normal content with
malicious content. To effectively eliminate the threat from
spammers, Wang et al. [7] design an trust based collaborative
spam mitigation system.

B. Game Theory in Cybersecurity

As a technique that naturally supports modeling decision-
making for multiple agents, game theory has been extensively
applied in security area. Hu et al. [8] and Feng et al. [9],
[10] propose dynamic game models to analyze the interplay
among attacker, defender and insider. Omic et al. [11] combine
the epidemic model with game theory in order to derive
the optimal protection mechanism against infection, whereas
Zhu et al. [12] utilize differential games to analyze the
infection process.

To the best of our knowledge, our work is the first in liter-
ature as the application of game theory for online social trust,
and presents provably optimal system maneuver mechanism
for SNSs.

III. SOCIAL TRUST AND THREAT MODEL

In this section, we first define the social trust in social
networks and its dynamics based on the mutual positive
interactions. Next, we formulate the threats from malicious
nodes, and discuss the problem models for optimal tradeoff
between positive and negative interactions. Important notations
are summarized in Table I.

TABLE I: Important notations.

αi(t) rate of posting trustable information from i
βi(t) rate of posting malicious information from i
xi(t) fraction of online users who are interacting with i at

t
ẋi(t) the evolving rate of xi at each time point
xi0 initial value of the xi

Pi(·) long-term profit gain of i from negative activities
Ci1(·) long-term cost for positive activities of i
Ci2(·) long-term cost for negative activities of i
α−i(t) action profile of positive activities for all players

except i
β−i(t) action profile of negative activities for all players

except i

A. Social trust

As a measurement of the confidence that an entity will
behave in an expected way, trust moves to the center of data
dissemination in SNSs. To build a trust community where
users provide healthy information and feel free to share with
each other, an effective and convenient trust system is required.

The interactions between a pair of users provides a natural
way to assess one’s social trust [4]. Users with high social trust
draw more attention from others and involve high frequency
of positive interaction with their neighbors, whereas un-trusted
nodes get little attention and have limited influence of data
dissemination over the SNSs. Current SNSs offer features to
reflect one’s social trust level based on users’ reactions on the
posted information, e.g., Facebook users normally click “like”
or “share” if they are in a comfortable interaction and they
could choose to report a spam if they feel offended by the
content.

In this paper, we use a general model to characterize
one’s social trust to the rest of the social network. Let N
denote the total number of users in the social network. Let
Xi(t) denote the number of users that trust node i at time
t, which is a random variable in general. We model the
social trust of node i at as xi(t) = E(Xi(t)/N), which
evolves over time. Its dynamics is determined by its initial
value xi0 ∈ [0, 1], which is a constant, and its actions
on disseminating trustable/malicous information as discussed
below. Alternatively, we can consider xi(t) as the fraction of
nodes that interact with node i (assuming a node only interacts
with the set of nodes that it trusts).

B. Dynamics of Social Trust

A malicious node delivers malicious content to as many
users as possible for a profit. However, it does not target at a
one-time profit from disseminating the malicious information.
Instead, it tries to persistently make profits over a long time-
span by continuously spreading malicious information. As
discussed previously, social trust determines the influence of
the information on the SNSs. Hence, a malicious node does not
consistently provide pure baleful content to avoid diminishing
its social trust and its information influence for later malicious
actions. Instead, it moves stealthily by mixing good content
with malicious content. It can either mix both type of content
into one post or by posting these two in separate claims [5] [6].
By doing so, it maintains an acceptable level of social trust,
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and makes a balance between its instantaneous malicious gain
of current action and its future profits.

Single malicious node: Let us first consider the case of a
single malicious node. Consider a malicious node i that posts
some content c(t) at time t. We model the impact of the
content on the dynamics of social trust of node i by a pair of
transition probabilities. Let p1(c(t), δ) denote the probability
that a node distrusting i at time t becomes trusting i at time
t + δ after the content is posted for a small time period δ,
which depends on both the content posted and δ. Similarly,
let p2(c(t), δ) denote the probability that a node trusting i at
time t becomes distrusting i at time t+δ. Intuitively, p1 models
the negative influence of malicious content through direct
interaction with node i, and p2 models the positive influence
of benign content that propagates indirectly, e.g., through
the “word-of-mouth” effect. In both cases, the influence is
assumed to be independent across nodes. It follows that

E(Xi(t+ δ)−Xi(t)|Xi(t)) = p1(c(t), δ)(N −Xi(t))

− p2(c(t), δ)Xi(t), (1)

Taking the expectation (with respect to Xi(t)) of both sides,
we have

xi(t+ δ)− xi(t) = p1(c(t), δ)(1− xi(t))− p2(c(t), δ)xi(t).
(2)

Dividing both sides by δ and letting δ → 0, we obtain the
following dynamics of social trust of node i,

ẋi(t) =
dxi(t)

dt
= αi(t)(1− xi(t))− βi(t)xi(t), (3)

xi(0) = xi0,

where αi(t) = limδ→0
p1(c(t),δ)

δ and βi(t) = limδ→0
p2(c(t),δ)

δ ,
which are assumed to exist. Instead of modeling the details of
p1 and p2, we consider (αi(t), βi(t)) as the strategy of node i
in this work. We note that the differential equation is intuitive
by itself. In particular, αi(t)(1− xi(t)) can be viewed as the
social trust gained by posting trustable information that has
positive response from 1−xi(t) (the share that is originally not
positively interacting with node i); while βi(t)xi(t) reflects the
loss of social trust because of disseminating malicious content
to xi(t) (the share that is originally positively interacting with
node i). To simplify the description, we normalize αi(t) and
βi(t) so that αi(t) + βi(t) = 1.

Multiple malicious nodes: Next, we consider the coexistence
of multiple malicious nodes in the SNSs and the competition
among them. As mentioned previously, social trust can be
viewed as the frequency of interactions among users. In a
continuous-time environment as in real-life applications, a
content viewer in SNSs only involves in an effective interac-
tion with one content provider at one time point. For instance,
a user cannot click “like” for two separate posts concurrently at
exactly the same time. Moreover, each online user has a limit
budget of attention as suggested in [13]. The notion budget of
attention quantifies the constraint on one’s frequency of pulling
content from the neighbors. Since attention is the foundation
and the necessary condition for interaction, we extend the

concept so as to characterize the upper bound exists on user’s
interaction rate.

Definition 1 (Budget of interaction): Budget of interaction
is a constrained rate of a user that quantifies all kinds of its
positive actions, which exclusively happen in continuous time
at a social network site.

That is to say, malicious nodes have to compete with each
other to gain social trust from their potential victims in order
to maximize their individual profits.

Given n competing malicious nodes (n > 1) in a online
social network, we assume that the sum of their social trust
should be upper-bounded by the total interactions in the entire
network, which is normalized to 1. That is,∑

i

xi(t) ≤ 1. (4)

Different from the previous single-node case, the dynamics
of node i’s social trust should consider the joint actions of all
the malicious nodes and be formulated as follows,

ẋi(t) =αi(t)(1− xi(t))−
∑
j∈−i

αj(t)xi(t)− βi(t)xi(t),

xi(0) =xi0 (5)

where αi(t)(1−xi(t)) and βi(t)xi(t) have the same meaning
as that in its counterpart with single malicious node; while∑

j∈−i αj(t)xi(t) denotes the accumulated loss rate of social
trust, that is obtained by other malicious nodes, i.e., j ∈ −i,
who post trustable information and attract the share that is
originally positively interacting with node i. Above derivative
equation captures the effect of ”word-of-mouth” and diffusion
progress, which are often used for advertising and marketing
in economics field [14].

We can find from Eqn. (4) and Eqn. (5) that, each malicious
node has to compete with each other for higher social trust,
which leads to higher profit gain accordingly to Eqn. (6).

C. Payoff and Cost Functions for Malicious Nodes
The instantaneous malicious profit of node i at time t should

be proportional to its malicious activity rate βi(t) and its social
trust xi(t), i.e., the amount of interactions could be influenced.
Hence, the long-term profit gain Pi for node i is defined as
follows,

Pi = lim
T→∞

1

T

∫ T

0

piβi(t)xi(t)dt, (6)

where pi is the unit malicious profit for node i, with a positive
constant value.

However, every activity comes with an operational cost.
Both positive activity αi(t) and negative activity βi(t) con-
sume money in manpower at the malicious node. As common-
ly applied in literature [12] [14] [15] , we utilize the quadratic
cost function to capture the instantaneous operational costs.
The long-term costs for positive activities, Ci1 and negative
activities, Ci2, are evaluated as follows,

Ci1 = lim
T→∞

1

T

∫ T

0

qiα
2
i (t)dt, (7)

Ci2 = lim
T→∞

1

T

∫ T

0

riβ
2
i (t)dt, (8)
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where qi and ri are the unit cost of providing trustable content
and the unit penalty for each malicious activity, respectively.
pi, qi and ri are all positive.

To sum up, the net profit for malicious node i is

Pi − Ci1 − Ci2. (9)

In the case of multiple malicious nodes, each of the mali-
cious nodes acts independently and selfishly to maximize its
individual net profit as defined in Eqn. (9).

D. System Maneuver

The objective of this paper is to find the optimal system
maneuver mechanism, i.e., configuration of the system param-
eters, in order to control the overall malicious activity within
the targeted level.

The overall malicious activity is defined as i) βi(t) for the
single-node case; and ii)

∑
i∈[1,n] βi(t) for the multiple-node

case, when βi(t) has converged to its optimal strategy.
As for the system administrator, it can adjust the value of ri,

which could be the unit penalty for malicious activities of node
i, at the start of the system so as to achieve its targeted level
of overall malicious activity. Note that pi and qi are constants
that are only related with the malicious node’s setting while
not controllable by the system administrator.

IV. SOCIAL TRUST GAMES

In this section, we study the competition among multi-
ple malicious nodes and identify the best response strategy
for each node. The competition is formulated into a non-
cooperative differential game [15] that is continuously played
among nodes. Note that the optimal control problem for the
single malicious node setting can be easily derived from the
game result and its result is given in our online technical
report [16], since it can be viewed as a degenerate case of
the differential game.

For each malicious node i ∈ {1, 2, ..., n}, it solves a profit-
maximization problem in the game as follows,

max Ji(αi(t), βi(t), α−i(t), β−i(t))

= lim
T→∞

1

T

∫ T

0

piβi(t)xi(t)− qiα
2
i (t)− riβ

2
i (t)dt

(10)

s.t. ẋi(t) = αi(t)(1− xi(t))−
∑
j∈−i

αj(t)xi(t)− βi(t)xi(t),

xi(0) = xi0, αi(t), βi(t) ∈ [0, 1], αi(t) + βi(t) = 1,

We denote Φ(t) = {αi(t), α−i(t);βi(t), β−i(t)} as the
strategy profile, where {α−i(t), β−i(t)} is the action set of
malicious nodes other than i. ϕi(t) = {αi(t), βi(t)} consti-
tutes the strategy of i. Our objective is to derive the open-loop
Nash Equilibrium (NE) defined as follows.

Definition 2: Consider the game described by Eqn. (16). The
strategy profile Φ∗(t) = {ϕ∗

1(t), ..., ϕ
∗
n(t)} constitutes a Nash

equilibrium solution if and only if, all following inequalities
are satisfied

J1(ϕ
∗
1(t), ..., ϕ

∗
n(t)) ≥ J1(ϕ1(t), ..., ϕ

∗
n(t)),

...
Jn(ϕ

∗
i (t), ..., ϕ

∗
n(t)) ≥ Jn(ϕ

∗
1(t), ..., ϕ

∗
n(t)).

Note that it is unrealistic for a malicious node to reveal
its state to the competitors as the game evolves. Therefore,
we consider the open-loop information structure in the game,
which means that the players do not acquire further informa-
tion except the common knowledge of the state vector at initial
time t = 0 [15].

A. Static Case

We first analyze the static scenario of multiple competing
malicious nodes, where the activity variables of all malicious
nodes, i.e., αi(t) and βi(t) remain unchanged during the
runtime of the game. The goal of each malicious node is to
maximize the individual net profit through choosing its optimal
action before the game starts. Based on the definition of its
net profit as in Eqn. (9) and the dynamics of its social trust
as in Eqn. (3), we can have the optimal control problem as
follows (for simplicity, we denote αi(t) and βi(t) as αi and
βi since they are time-invariant in this subsection),

max Ji(αi, α−i) = lim
T→∞

1

T

∫ T

0

pi(1− αi)xi(t)− ri(1− αi)
2

− qiα
2
i dt (11)

s.t. ẋi = αi − xi(t)−
∑
j∈−i

αjxi(t), xi(0) = xi0, (12)

αi ∈ [0, 1]

where we have used the fact that αi + βi = 1.
We obtain the fraction of users who involves positive

interaction with the malicious node i in the SNS at time t
through solving the ODE Eqn. (12).

xi(t) =e−(1+
∑

j∈−i αj)txi0 (13)

+
αi

1 +
∑

j∈−i αj
(1− e−(1+

∑
j∈−i αj)t)

Substituting the above xi(t) into the profit-maximization
problem as defined in Eqn. (11) and Eqn. (12) , we can
simplify the problem into,

max
pi(1− αi)αi

1 +
∑

j∈−i αj
− ri(1− αi)

2 − qiα
2
i (14)

s.t. αi ∈ [0, 1]

We can derive the best response of the malicious node i by
analyzing the structure of Eqn. (14) and the proof is given in
our online technical report [16].

Proposition 1: For the static case of multiple competing
malicious nodes, the best response for the malicious node i,
where i = 1, ..., n is given by

α∗
i =

pi + 2ri(1 +
∑

j∈−i αj)

2[pi + qi + ri + (qi + ri)
∑

j∈−i αj ]
(15)
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Theorem 1: There exists a Nash equilibrium for the static
social trust game.

Proof: Let Bi(a−i) = a∗i : [0, 1] → [0, 1] be the best
response function of i. The action set [0, 1] is compact and
convex. Also, the best response function Bi is continuous over
[0, 1]. Thus, there exists a fixed point that satisfies the equation
α∗
i = Bi(α

∗
i ) based on Brouwer’s fixed point theorem [17].

Since a NE satisfies the fixed point equation, we prove the
existence of NE.

B. Dynamic Case

In this subsection, we analyze the dynamic case for the
game among multiple malicious nodes. The general term of
dynamics has been described in Eqn. (5). For each malicious
node i ∈ {1, 2, ..., n}, it solves a profit-maximization problem
in the game as follows (using the fact that αi(t)+βi(t) = 1),

max Ji(αi, α−i) = lim
T→∞

1

T

∫ T

0

pi(1− αi(t))xi(t)− qiα
2
i (t)

− ri(1− αi(t))
2(t)dt (16)

s.t. ẋi(t) = αi(t)− xi(t)−
∑
j∈−i

αj(t)xi(t),

xi(0) = xi0, αi(t) ∈ [0, 1].

We follow the procedure in [18] to look for the open-loop
Nash equilibrium.

Lemma 1: For the dynamic case of multiple competing
malicious nodes, the best response of the malicious node
i = 1, ..., n) is given by

α∗
i (t) =

{
λi(t)−pixi(t)+2ri

2(qi+ri)
λi(t) > pix(t)− 2ri,

0 otherwise.
(17)

Proof: To obtain the best response of each malicious
nodes, we solve an optimal control problem for i. The Hamil-
tonian function of i is denoted by Hi as:

Hi(αi,α−i, t) = λi(t)(αi(t)− xi(t)−
∑
j∈−i

αj(t)xi(t))

+ pi(1− αi(t))xi(t)− qiα
2
i (t)− ri(1− αi)

2(t)

where λi(t) is the co-state variable attached to xi(t).
We apply the Pontryagin maximum principle to derive the

best response of i,

α∗
i (t) = argmax {Hi(αi(t), α−i(t), xi(t), λi(t))}.

The state space is compact and convex. Also, Hi is concavity
and differentiable with respect to control αi(t). We then obtain
the best response Eqn. 17 by solving ∂Hi

∂αi
= 0.

At each time instance, we are able to solve for explicit
value of α∗

i (t) through numerical approach from following
Pontryagin necessary conditions

∂Hi

∂αi
= 0, −∂Hi

∂xi
= λ̇i.

We can now acquire the open-loop NE in steady status
from Pontryagin necessary conditions (see our online technical
report [16] for the proof).

Theorem 2: The best response of malicious node i at the
open-loop equilibrium is given by

α∗
i (t) =

pi + 2ri(1 +
∑

j∈−i αj(t))

2[pi + qi + ri + (qi + ri)
∑

j∈−i αj(t)]
. (18)

Remark 1: In the steady status, the optimal dynamic control
coincides with the static solution for the single malicious node
setting (n = 1).
Remark 2: For n non-cooperative malicious nodes, we are
able to get n best responses in steady status separately. Thus,
we have n simultaneous equations with n unknown variables.
It is trivial to obtain explicit solutions in some cases using
analytical or numerical techniques.

To bound our analysis in a controllable scope, we take the
situation of two symmetric players as a simple illustration.
The symmetric means that the payoff and the cost factors are
same for two players. We simply denote them as p, q and r
respectably.

Corollary 1: Consider two symmetric competing malicious
nodes exist in the SNS, the optimal system maneuver is given
by

r∗(t) = (p+ q)(3− 2β(t))2 − 1

4
(3p+ q), (19)

where β(t) is the control of malicious behavior from two
symmetric malicious nodes in steady status.

Proof: From Theorem (2), we know that

β∗(t) = β∗
i (t) = β∗

j (t) =
1

2
(3−

√
(p+ q)(3p+ q + 4r)

2(p+ q)
).

which can be used to derive the system maneuver r∗(t).
We can further obtain the following corollary for general
situations.

Corollary 2: Consider the game among two non-cooperative
players i and j. At the open-loop equilibrium, the best re-
sponse function of i is negatively sloped for all pi, qi and
ri ∈ (0,∞]. In absolute value, the slope is everywhere
decreasing in ri.

Proof: The slope of best response function at the open-
loop equilibrium is given by

∂αi

∂αj
= −4ri(qi + ri) + pi(qi + 3ri)

2(pi + (qi + ri)(1 + αj)2)
< 0.

V. NUMERICAL STUDY

In this section, we illustrate the results with numerical
examples. We build our simulation on Matlab platform with
bvp4c toolbox.

Suppose there is an existing malicious node that has already
reached its steady state. Now we introduce another homoge-
nous malicious node with identical configurations with the
existing node. Let p = 0.4, q = 0.2, r = 0.2 for both nodes.

From Fig. 1(a), we can observe that the player I deviates
from its previously steady state 0.5 and its x1(t) begins
decreasing, meanwhile, x2(t) of player II starts from 0 and
increases until finally converging to the steady position, which
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Fig. 1: Multiple Competing Malicious Nodes

matches the analytical result for steady position. Since the
factors of two players are symmetric, it is not surprise that
two players finally converge to the same state.

Next, we examine how the control in the steady state evolves
when the amount of players increases. The parameters are
set as same, i.e., p = 0.4 and q = r = 0.2. As shown in
Fig. 1(b), α∗(t) begins at 0.5 and converges to 0.35 when n
increases, whereas β∗ starts from 0.5 and converges to 0.65.
This observation means that the competition does not motivate
good behaviors by nodes.

We then study the influences of the system maneuver ri
on the controls and the states of a two-player game scenario.
Let p1 = p2 = 0.5 and q1 = q2 = 0.1, Fig. 1(c) depicts
the evolution progress of the states and the controls of two
players with r1 = 0.2 and r2 = 0.3 separately. We can see
that the higher system maneuver comes with the lower negative
activity rate in social trust games.

VI. CONCLUSION

This paper investigates the social-trust-based information
dissemination by malicious nodes in social network sites. An
interaction-based social trust model is presented. For studying
the best response strategies of malicious nodes with a long-
term objective, we formulate the maximization of malicious
gains in a long time-span of multiple competing malicious
nodes as a non-cooperative differential game. Through rigor-
ous analysis, optimal response strategies for each malicious
node are identified and the best system maneuver mechanisms
are presented in order to achieve the targeted level of overall
malicious activities in the system. The numerical studies
further verify the analytical results.
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