
Policy Design under Collusion

Motivation

Governments sometimes must develop policy in the 
presence of agents who cooperate with each other (or would 
like to) despite conflicts of interest 

Examples: 
§ Procurement auctions 
§ Antitrust 
§ Organized criminals/drug tracking organizations 
§ Coalitions fighting terrorism (e.g. Syria) 
§ Private sector auctions (e.g. Google) 

How to design policy that maximizes the government’s 
objectives in the presence of collusion?
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Model:
§ Government and players play a repeated game (same 

stage game throughout) 
§ Government announces its strategy (“policy") prior to 

start of the game 
§ Policy effectively specifies a dynamic game (where stage 

game depends on history) 

Collusion: assume players play the player-optimal (strongly 
symmetric) equilibrium of that dynamic game 

Which policy maximizes government payoff, given players 
play the most collusive equilibrium?
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Simple Example

Players play prisoner's dilemma.  Government's payoff is 
directly opposed to players': negative of sum of players' 
payoffs 

If the government uses the simple policy of either “always 
retreat” or “always attack”, !≥1/3 is sufficient to enforce grim 
trigger
• suppose the government chooses “always attack”. For ! = 

0.4, the most conclusive (symmetric) equilibrium: “always 
(C,C)”, average payoff 2 

Related Work

Abreu, Pearce, and Stachetti (1990) (APS) recursive
characterization of repeated game equilibrium payoffs as
“largest self-generating set”

Computational implementation due to Judd, Yeltekin, and
Conklin (2003) (JYC), using polygon approximations of sets
at each iteration

Trace out Optimal Policy

Player 1, 2, …,n, have actions "# ∈ %# , government (“player 
0”) has action "& ∈ %&. % = Π#)&%#

Symmetric stage game with payoffs *# "&, ",, … , ".
• %, = %0 = ⋯ = %.
• *# "&, "#, "2#

3 = *4 "&, "4, "24
3 if "# = "4 and "2#3 ∈

%2# and "243 ∈ %24 are permutations of each other

Public monitoring: players observe the public history of 
pervious actions and a public correlation device
• 5: set of public histories
• strategy: 6#: 5 → %#

Discounted average payoff
9# 6 = 1 − ! [*# "

& + !*# "
, + !0*# "

0 + ⋯ ]

Government announces its strategy 6&: 5 → %& before the 
start of the game

Given 6&, 62& is a subgame perfect Nash Equilibrium (SPNE) 
if 62&|@ specifies a NE for any history ℎ ∈ 5.  An SPNE is 
strongly symmetric if 6# ℎ = 64(ℎ) for all D, E

Assumption: Given 6&, non-government players play “the 
most conclusive equilibrium,” the highest payoff strongly 
symmetric SPNE 

An optimal government policy 6& is given by 
max
IJ

9&(6&, 62&) such that 62& ∈ K(6&)

• 9& 6 = −∑#), 9# 6

• K(6&): set of most conclusive equilibrium under 6&

Analogous to JYC, construct outer bound MN(O) and inner 
bound MP(O) such that MP O ⋐ M(O) ⋐ MN(O)

Given R, possible to trace out optimal policy:
1. choose S ∈ R that maximizes government payoff
2. find government action "& and payoff sets T: % → R that 

generates S
• set initial govt policy 6&(empty history) = "&

3. For each action "3 ∈ %, find action "&3 and payoff sets 
T′: % → R that generates T(")

• set 6& " = "&
3

4. and so on… 

An interval V = [V,V] is (government-) generated by a 
collection of intervals O if there exist government action "&
and continuation payoff sets specified by T: % → O such 
that for each W ∈ V, there exist a symmetric player action 
profile "2& and continuation payoffs X: % → ℝ such that 
• payoffs available: X " ∈ T " ∀" ∈ %
• incentive compatibility:  

W = 1 − ! *# " + !X(")
≥ 1 − ! *# "#

3, "2# + !X "#
3, "2# ∀D, "#

3

Generating Operator:
• M\ O : collection of intervals generated by O
• M O = ]^ M\ O

• O is self-generating if O ⋐ M(O)

• O is a contraction of O’ (O ⋐ O′) if for every 
V ∈ O, there is V′ ∈ O′ such that V ⊂ V′

q Theorem: generating operators coverage to equilibrium 
collection:  F ⋑ B F ⋑ B0 F ⋑ ⋯ ⋑ E

• d = {f}, f = [minj,# *# " ,maxj,# *#(")] interval of 
feasible payoffs

• R: set of all strongly symmetric SPNE payoffs

For simplicity, assume two players. Let "k. denote the profile 
where player 1 plays l-th action and player 2 plays m-th action

To find a boundary point no, po in search direction qr, solve the 
following optimization problem: 

Ψ t ≡ sup
jJ,y:z→O

qr ⋅ no "&, T , po "&, T

|. ~. T "k. = T ".k ∀ l, m

where the inner optimization problems are 
no "&, T = min

#, �Ä
1 − ! *, "&, "## + !�W("&, "##)

|. ~. �W "3 = T "3 ∀"′ ∈ %

1 − ! *, "&, "## + !�W "&, "##
≥ 1 − ! *, "&, "Å# + !�W "&, "Å# ∀Ç

po "&, T = max
#, ÉÄ

1 − ! *, "&, "## + !ÉW("&, "##)

|. ~. …analogous constraints…

q Theorem: Let "&, T be given, the optimization problem 
no## "&, T and po## "&, T are feasible iff

max
Å
{ 1 − ! *, "&, "Å# + !T "Å# }

≤ 1 − ! *, "&, "## + !T "##

§ MIPs formulated accordingly to solve Ψ t

For ! = 0.4, best possible payoff for government is 0, 
obtained by the following policy:

• Reward players permanently for deviating, otherwise 
punish 

• When not too patient, stops collusion (where simple 
“always A" policy would fail) 

• (Vulnerable to players colluding on asymmetric strategies)

• Algorithm for tracing out optimal policy
• General government payoff 
• Imperfect monitoring

V

V

V

Player 1 payoff 

Pl
ay

er
 2 

pa
yo

ff 

“always R” full case


