
Optimal Timing of Moving Target Defense: A
Stackelberg Game Model

Henger Li and Zizhan Zheng
Department of Computer Science, Tulane University, New Orleans, USA

Email: {hli30, zzheng3}@tulane.edu

Abstract—As an effective approach to thwarting advanced
attacks, moving target defense (MTD) has been applied to various
domains. Previous works on MTD, however, mainly focus on
deciding the sequence of system configurations to be used and
have largely ignored the equally important timing problem. Given
that both the migration cost and attack time vary over system
configurations, it is crucial to jointly optimize the spatial and
temporal decisions in MTD to better protect the system from
persistent threats. In this work, we propose a Stackelberg game
model for MTD where the defender commits to a joint migra-
tion and timing strategy to cope with configuration-dependent
migration cost and attack time distribution. The defender’s
problem is formulated as a semi-Markovian decision process
and a nearly optimal MTD strategy is derived by exploiting the
unique structure of the game.

I. INTRODUCTION

Cyber-attacks are becoming increasingly more adaptive and
sophisticated. One example is Advanced Persistent Threats
(APTs) [1], an emerging class of continuous and stealthy
hacking processes launched by incentive driven entities. To
avoid immediate detection and obtain long-term benefit, an
advanced attacker may carefully cover its tracks, e.g., by
internationally operating in a “low-and-slow” fashion [2]. The
stealth and persistent nature makes these attacks extremely
difficult to defense using traditional techniques that focus on
one-shot attacks of known types.

An important obstacle in combating stealthy attacks is
information asymmetry. An advanced attack often involves an
information collection stage (e.g., through probing the system)
to dynamically identify the best target to attack. In contrast,
a defender typically knows much less about a stealthy and
adaptive attacker. To revert the information asymmetry, an
promising approach is moving target defense (MTD), where
the defender constantly updates the system configuration to
increase the attacker’s uncertainty. By exploiting the diversity
and randomness at different system layers, various MTD tech-
niques have been proposed including dynamic networks [3],
[4], dynamic platforms [5], dynamic runtime environments [6],
dynamic software [7], and dynamic data [8].

In addition to empirical evaluation of domain specific MTD
techniques, decision and game theoretic approaches have
recently been adopted to derive more cost-effective MTD
solutions. In particular, a zero-sum dynamic game for MTD
is proposed in [9] where a fixed migration cost (i.e., the cost
of switching from one configuration to another) is assumed.
More recently, Bayesian Stackelberg games (BSGs) have been
applied to MTD [10], where the defender commits to an i.i.d.
strategy independent of the real-time system configuration,
leading to a suboptimal strategy. In our previous work [11], we

have proposed a Markovian modeling of MTD where the de-
cision on the next system configuration to be used depends on
the current one and derived the optimal Stackelberg strategy.

An important limitation of existing game models for MTD,
however, is that the temporal decision has been largely ig-
nored. Previous studies mainly focus on the spatial decision,
i.e., what is the next configuration to be used, while assuming
a simplified decision on timing. In particular, constant attack
times and periodic migration policies are commonly assumed
in previous work. However, different system configurations
typically require different techniques and expertise to set
up and to identify and exploit vulnerability. Thus, both the
migration cost and the amount of time that the attacker needs
to take down a system are configuration dependent. Both
of them should be taken into consideration when deciding
when to move as large attack times (or migration costs) imply
less frequent updates. Therefore, a simple periodic migration
strategy is far from satisfactory.

In this paper, we make the first effort on the joint optimiza-
tion of spatial and temporal decisions in MTD. We extend our
Markovian modeling of MTD in [11] by introducing attack
times that are both random and configuration dependent. We
consider a Stackelberg game model with the defender as the
leader and the attacker as the follower. Stackelberg games
provide a natural framework for studying information asym-
metry and have been broadly applied in cybersecurity [10],
[12], [13]. In our setting, the defender commits to a stationary
MTD strategy at the beginning of the game, which includes
both a configuration transition matrix (spatial decision) and a
set of defense periods, one for each configuration (temporal
decision). Instead of minimizing the long-term discounted cost
as in [11], we consider the more challenging time-average
cost objective in this work, which is more reasonable for
patient attackers targeting long-term advantages. The problem
of finding the best strategy for the defender is formulated as a
semi-Markov decision process (SMDP) [14] with continuous
decision variables. Although SMDPs with continuous deci-
sions are difficult to solve in general, we show that the classic
value iteration (VI) algorithm can be applied to our problem to
obtain a nearly optimal stationary strategy. We further derive
an efficient solution to the Min-Max problem in each iteration
of VI by utilizing the unique structure of the MTD game.

We have made the following contributions in this paper.

• We propose a new active defense paradigm that incor-
porates spatial and temporal decisions to achieve robust
moving target defense.

• We extend the Bayesian Stackelberg game (BSG) model



by considering Markovian defense strategies, which are
more general than the repeated decisions in BSG and are
more appropriate for MTD.

• We derive a nearly optimal defense strategy based on the
value iteration technique and propose an efficient algo-
rithm for each iteration by utilizing the unique structure
of the Min-Max problem in the MTD game.

The rest of the paper is organized as follows. We review
the related work on MTD games in Section II and present
the game model and problem formulation in Section III.
The optimal defense strategy and its analysis are discussed
in Section IV. We evaluate our solution in Section V and
conclude the paper in Section VI.

II. RELATED WORK

Several game theoretic models have been proposed for MTD
in the last few years [15]. A zero-sum dynamic game for
MTD is proposed in [9], where each player chooses its action
independently in each round according to a mixed strategy and
gets immediate feedback on its payoff. However, the zero-
sum assumption does not hold in many security scenarios.
Further, a fixed migration cost is assumed in [9], which
neglects the heterogeneity in configurations. More recently,
Bayesian Stackelberg games (BSGs) have been applied to
MTD in web applications [10], where the defender commits
to an i.i.d. migration strategy, which is suboptimal when the
migration cost is configuration dependent. A BSG model for
the closely related cyber deception problem is studied in [12].
Several Markov models for MTD have also been proposed
recently [16], [17]. However, these works focus on analyzing
the expected time needed to compromise a system under
simple defense strategies instead of deriving optimal MTD
strategies. In our recent work [11], we have extended the BSG
models by introducing Markovian strategies into MTD while
still considering periodic migrations as in previous works.
Initiated by the FlipIt game [18], optimal timing of security
updates has received a lot of interest recently [19]–[21], where
instead of switching between configurations, the system is
recovered after a certain time period. However, these studies
do not apply to the optimal timing of MTD directly.

III. MTD GAME MODEL AND PROBLEM FORMULATION

In this section, we present our game theoretic model for
MTD and formulate the defender’s optimization problem.
Figure 1 gives an example of our attack-defense model.

A. System Model

System Configurations: We consider a system to be protected
and two players, an attacker and a defender. The system has a
set of configuration parameters that the defender can choose
from. Examples include IP addresses, network topology, OS
versions, memory address space layout, etc. To meet the
system’s integrity and performance requirement, only a subset
of configurations is valid, which is defined as the system
configuration space, denoted by S. Let n = |S| denote the
number of configurations.

Defense Model: The defender constantly migrates the system
configuration to increase the attacker’s uncertainty. We assume

S set of system configurations
n number of configurations
aj random attack time for configuration j
pij transition probability from configuration i to j
P transition probability matrix
pi the i-th row in P
α lower bound of pij
mij migration cost from configuration i to j
M migration cost matrix
τi length of the defense period when the previous con-

figuration is i
τ , τ maximum/minimum defense period
γ a parameter in transforming SMDP to MDP
δ step size in searching for τ in Algorithm 1
ω a parameter controlling the stopping criterion in Al-

gorithm 1

Table I: List of symbols in the paper

that a migration happens instantaneously subject to a cost mij

if the system moves from configuration i to configuration
j. We allow mii > 0 to model the cost of recovering the
system to the same configuration. Let M denote the matrix
of migration costs {mij}n×n. A continuous time horizon is
considered. Let tk denote the time instance when the k-th
migration happens and sk the system configuration in the k-
th defense period (from tk−1 to tk). At the end of the k-th
defense period, the defender picks the next configuration sk+1

with probability psksk+1
. We assume t0 = 0 and let s0 denote

the initial configuration (before t0).
We assume that the defender adopts a stationary strategy

consisting of (1) a transition matrix P = {pij}n×n where
pij is the probability of moving to configuration j when the
system is currently in configuration i, and (2) a vector {τi}i∈S ,
where τi is the next defense period to be used if the system
is currently in configuration i. According to this definition,
the k − th defense period only depends on sk−1 but not sk
(see Figure 1 for an example). This is to simplify the decision
problem as we discuss below. We may also consider strategies
where τk depends on sk only or both sk−1 and sk, which is
left to our future work. Without loss of generality, we assume
that τi ∈ [τ , τ ] for any i where τ > 0 and τ < ∞. Let pi
denote the i-th row of P .

Attack Model: We consider a persistent attacker that contin-
uously probes and attacks the system. We assume that once a
migration happens, the attacker learns this fact immediately
and makes a guess on the new configuration. Further, the
amount of time needed to compromise the system under
configuration j is modeled as a random variable aj with
distribution Aj and is i.i.d. across attacks. Consider the k-th
defense period. Let ŝk denote the attacker’s guess of sk. Under
the stationary defense strategy described above, the probability
that the attacker’s guess is correct is Pr(ŝk = sk) = psk−1ŝk .
The expected amount of time that the system is compromised
in the k-th period then becomes psk−1ŝkE[max(τsk−1

−aŝk , 0)]
where the expectation is with respect to the randomness of
attack time.

Stackelberg Game: We assume that the attacker always learns
sk at the end of the k-th defense period (a worst-case scenario
from the defender’s perspective). Consequently, the attacker



Figure 1: An example of the game model where configuration 1 is the
initial configuration. A blue (resp. red) block denotes a time interval
when the system is protected (resp. compromised). τi is the length
of the current defense period when the previous configuration is i.

may also learn the defender’s stationary strategy once enough
samples are collected. To simplify the analysis, we assume
that the defender announces its strategy at the beginning of
the game. We further assume that the attacker is myopic and
always exploits the most beneficial configuration according to
the defender’s strategy and the previous system configuration it
observed. We then have ŝk = argmaxj∈Spsk−1jE[max(τsk−1

−
aj , 0)]. Effectively, we consider a Stackelberg game with the
defender as the leader and the attacker as the follower. As
is typical in security games, we assume that the defender
knows the attack time distribution (but not its realization). It is
important to note that our game model is more general than the
Bayesian Stackelberg Game (BSG) models in [10], [12] since
the leader (defender) commits to a configuration-dependent
Markovian strategy rather than a simple i .i .d . strategy as in
BSG where pij is a constant across i. To simplify the notation,
we let wij = E[max(τi − aj , 0)] for i, j ∈ S.

B. Defender’s Problem as an SMDP

The defender’s objective is to strike a balance between the
loss from attacks and the cost of migration. To this end, we
formulate the defender’s problem as an average-cost semi-
Markov decision process (SMDP) as follows. We define the
state of the system as the set of configurations S. Let s0
be the initial state (before the game begins). We consider
stationary policies only. Each time the system is in state i,
a control µ(i) , (pi, τi) is applied, the defender then incurs
an expected cost c(i, µ(i)) = maxj(pijwij)+

∑
j pijmij , and

the system moves to state j with probability pij . Note that the
cost function includes both the expected loss from attacks as
well as the expected migration cost. For a given policy µ, the
time-average cost of the defender starting from an initial state
s0 is defined as:

Cµ(s0) = lim sup
N→∞

∑N−1
k=0 c(sk, µ(sk))∑N−1

k=0 τsk

= lim sup
N→∞

∑N−1
k=0 [maxj(pskjwskj) +

∑
j pskjmskj ]∑N−1

k=0 τsk
(1)

The defender’s goal is to commit to a policy µ that
minimizes its time-average cost for any initial state. We thus
obtain an infinite-horizon SMDP with average cost criterion
and continuous decision variables.

IV. OPTIMAL MTD STRATEGIES

In this section, we propose efficient algorithms to find a
nearly optimal solution to the defender’s problem.

A. Approximation and Transformation

The SMDP defined in (1) has a finite state space S and a
compact action space [0, 1]n×[τ , τ ]. There are two major chal-
lenges to solve the SMDP. First, when an arbitrary transition
matrix P is allowed, the Markov chain associated with a given
stationary policy is not necessarily unichain. Consequently, the
time-average cost may vary over the initial configurations [14].
Second, the continuous decision variables make it challenging
to apply standard techniques such as value iteration and policy
iteration as the Min-Max problem (defined below) in each
iteration can be difficult to solve.

We discuss how to address the second challenge in the
next subsection. To address the first challenge, we impose the
following constraint on P by requiring that pij ≥ α for any i, j
where α > 0 is a small number. With this simple constraint,
the unichain requirement is always satisfied. To understand
why the assumption is reasonable, consider two stationary
policies with transition matrices P and P ′, respectively, both
of which are unichain. If |Pij −P ′ij |≤ α for any i, j, then the
stationary distribution of P is close to that of P ′ by making
α small enough [22]. Thus, the loss of optimality is negligible
for small enough α if we only consider unichain policies. On
the other hand, in a multichain policy, some configurations are
never used for MTD, which is unlikely to happen in practice as
it reduces the attacker’s uncertainty. A rigorous understanding
of the multichain case is left to our future work.

With the above assumption and the fact that the single stage
cost c(i, µ(i)) is continuous in pij and τi, it is known that
the optimal time-average cost is independent of the initial
configuration, and further, there is a stationary deterministic
policy that is optimal [14]. Moreover, we can apply a standard
trick to transform the SMDP to a discrete-time MDP with
average cost criterion defined below:

C̃µ(s0) = lim sup
N→∞

1

N

N−1∑
k=0

c̃(sk, µ(sk)) (2)

with the single stage cost and transition probabilities given
by [14]:

c̃(i, µ(i)) =
maxj (wijpij) +

∑
j pijmij

τi
(3)

p̃ij = γ
pij − δij

τi
+ δij (4)

where δij = 1 if i = j and δij = 0 otherwise, and γ satisfies
0 < γ < τi/(1 − pii) for any i ∈ S and pii < 1. We choose
γ = τ in this work. The original SMDP and the transformed
discrete-time MDP have the same class of stationary policies.
Further, for each stationary policy µ, Cµ(i) = C̃µ(i) for any
i ∈ S. This result does not require any assumption about
the chain structures of the Markov chains associated with the
stationary policies.



Algorithm 1 Value Iteration algorithm for the MTD game
Input: S, τ , τ ,M, α, γ, ε, δ.
Output: τ∗, P ∗.

1: t = 0, V 0(i) = 0, ∀i ∈ S;
2: repeat
3: t = t+ 1;
4: for i ∈ S do
5: v =∞;
6: for τ = τ ; τ ≤ τ ; τ = τ + δ do
7: p′ = arg minp V

t(i,p, τ);
8: v′ = V t(i,p′, τ)
9: if v′ < v then

10: p∗i = p′, τ∗i = τ, v = v′;
11: V t(i) = v;
12: V = maxi∈S |V t(i)− V t−1(i)|,
13: V = mini∈S |V t(i)− V t−1(i)|;
14: until V − V < ωV

B. Value Iteration Algorithm

Given the transformation defined above, the problem then
boils down to solving the average cost MDP in (2). Since p̃ij >
0 for any i, j, the MDP is still unichain. As the state space
is finite and the action space is a separable metric space, it is
known that the standard value iteration algorithm converges to
the optimal average cost [23]. The main challenge is to design
an efficient solution to the Min-Max problem in each iteration
as discussed below.

The VI algorithm (see Algorithm 1) maintains a value vector
V t ∈ R+n in each iteration t. Initially, V 0(i) = 0 for each
i ∈ S. In iteration t, the algorithm solves the following Min-
Max problem for each configuration i ∈ S (lines 4-11):

V t(i) = min
pi,τi

[
c̃(i, µ(i)) +

∑
j∈S

p̃ijV
t−1(j)

]
= min

pi,τi

[
maxj (wijpij) +

∑
j pij(mij + γV t−1(j))

τi

+ (1− γ

τi
)V t−1(i)

]
s.t. pi ∈ [α, 1]n,

∑
j

pij = 1, τi ∈ [τ , τ ]. (5)

Let V t(i,p, τ) denote the value of the objective function
in (5) when pi = p and τi = τ . The Min-Max problem is
difficult to solve due to the coupling of P and τ . To this end,l
dleretize the search space for τi. For each τi ∈ {τ , τ + δ, τ +
2δ, ..., τ̄ ] where δ is a parameter, (5) is solved to search for
the best pi (lines 6-10). An efficient solution for this step is
discussed below. A smaller δ gives a better solution at the
expense of a higher searching overhead.

Algorithm 1 stops when V t(i) − V t−1(i) is close to a
constant across i (see lines 15-17 where ω is a parameter).
When the algorithm stops, V t(i) − V t−1(i) provides a good
approximation of the optimal time-average cost. The error
bound of the value iteration algorithm is established in [23].

C. Solving the Min-Max Problem
A major obstacle in implementing Algorithm 1 is to find

an efficient solution to the Min-Max problem (5) for a fixed
τ (line 7 in Algorithm 1). To this end, we first show that
the optimal p to this problem has a simple structure, which
significantly simplifies the problem.

In the following discussion, we consider the Min-Max
problem for configuration i in iteration t and for a fixed
τ . We drop the indices i and t to ease the notation. Let
mj = mij , pj = pij , wj = wij , and V (j) = V t−1(j). Let
wmin = mini∈S wi, wmax = maxi∈S wi, and ρ = wmax

wmin
. Since

the denominator in the first term and the second term in (5)
are both are constants, it suffices to consider the following
problem:

min
p

[
max
j

(wjpj) +
∑
j

pj(mj + γV (j))
]

s.t. p ∈ [α, 1]n,
∑
j

pj = 1. (6)

Let U(p) denote the value of the objective function in (6)
for a given p. Let θj = mj + γV (j) denote the coefficient
of pj in the second term of (6). For a given p, let k be
any configuration with wkpk = maxj∈S(wjpj). We partition
S\{k} into two sets where A = {a ∈ S : θa > wk + θk} and
B = S\(A ∪ {k}). Let {bj}1≤j≤|B| denote the sequence of
elements in B sorted in θ non-decreasingly.

Proposition 1. For any optimal p to (6), pa = α,∀a ∈ A.

Proof. Assume pa = α + ε for some a ∈ A and ε > 0. We
construct a new solution p′ with p′a = α, p′k = pk + ε, and
p′j = pj for any other j. Observe that p′ is a feasible solution
and k = arg maxj(wjp

′
j). It follows that U(p′) − U(p) =

wk(p′k−pk)+(p′a−pa)θa+(p′k−pk)θk = (wk+θk)ε−θaε < 0
since θa > wk + θk for any a ∈ A. This contradicts the fact
that p is an optimal solution.

Proposition 2. Assume α ≤ 1
nρ . There is an optimal p to (6)

where we can find an index q ∈ {1, 2, ..., |B|} such that pbj =
wk

wbj
pk for 1 ≤ j ≤ q and pbj = α for q < j ≤ |B|.

Proof. We first make the following observation. Consider any
optimal solution p to (6). Assume that there are j1, j2 ∈
{1, ...|B|} such that j1 < j2, pbj1 <

wk

wbj1

pk, and pbj2 > α. We

claim that we can construct a new optimal solution p′ such that
either p′bj1 = wk

wbj1

p′k or p′bj2 = α (or both) while keeping other
probabilities unchanged. To see this, let ε1 = wk

wbj1

pk − pbj1
and ε2 = pbj2 − α. We distinguish two cases.

Case 1: ε1 ≤ ε2: we define p′bj1
= pbj1 + ε1, p′bj2 =

pbj2 − ε1, and p′j = pj for any other j. Observe that p′ is
a feasible solution and p′bj1

= wk

wbj1

p′k. Further, we still have

wkp
′
k = maxj(wjp

′
j). It follows that U(p′)−U(p) = (θbj1 −

θbj2 )ε1 ≤ 0 since j1 < j2. Thus, p′ is optimal.
Case 2: ε1 > ε2: we define p′bj1

= pbj1 + ε2, p′bj2 =

pbj2 −ε2, and p′j = pj for any other j. p′ is again feasible and
p′bj2

= α, and we still have wkp′k = maxj(wjp
′
j). It follows

that U(p′)−U(p) = (θbj1 − θbj2 )ε2 ≤ 0 since j1 < j2. Thus,
p′ is optimal.



Algorithm 2 Solving the Min-Max problem (6)
Input: S, {wi}, {mi}, γ, V, α.
Output: p∗.

1: θj = mj + γV (j), ∀j ∈ S;
2: u =∞
3: for k ∈ S do
4: pj = α, for all j such that θj > wk + θk;
5: B = {b : θb ≤ wk + θk};
6: {bj} = the sequence of items in B sorted in θ non-

decreasingly;
7: for q = 1; q ≤ |B|; q = q + 1 do
8: pk = 1−|A|α−(|B|−q+1)α∑

j<q

wk
wj

+1
;

9: pbj = wk

wbj
pk, ∀j ≤ q, pbj = α, ∀j > q;

10: if wkpk +
∑
j∈S pjθj < u then

11: u = wkpk +
∑
j∈S pjθj ;

12: p∗ = p;

From the above observation, starting from any optimal so-
lution p, we can construct a new optimal solution p′ in which
there is an index q ∈ {1, 2, ..., |B|} such that p′bj = wk

wbj
p′k for

1 ≤ j < q, pbj = α for q < j ≤ |B|, and p′bq ∈ [α, wk

wbq
p′k].

We then show that, starting from such a p′, we can construct
a new optimal solution p′′ that satisfies the statement in the
theorem. The main idea is to move a small amount of value
from {p′bj , j < q} ∪ {p′k} to p′bq or the other way around
depending on which direction is more beneficial. To this end,
we again distinguish two cases:

Case 1: (1 +
∑
j<q

wk

wbj
)θbq >

∑
j<q

wk

wbj
θbj + (wk + θk):

Let ε > 0 be a small value to be determined. We construct a
new solution p′′ where p′′k = p′k + ε, p′′bj = p′bj + wk

wbj
ε for all

j < q, p′′bq = p′bq − ε −
∑
j<q

wk

wbj
ε, and p′′bj = p′bj for other

j. Note that p′′bj = wk

wbj
p′′k is maintained for j < q. Further,

we can choose ε so that p′′bq = α. It is easy to see that p′′

is a feasible solution. Further, U(p′′) − U(p′) =
(
− (1 +∑

j<q
wk

wbj
)θbq +

∑
j<q

wk

wbj
θbj + (wk + θk)

)
ε ≤ 0. Hence, p′′

is also optimal.
Case 2: (1 +

∑
j<q

wk

wbj
)θbq ≤

∑
j<q

wk

wbj
θbj + (wk + θk):

We construct a new solution p′′ where p′′k = p′k − ε, p′′bj =
pbj − wk

wbj
ε for all j < q, p′′bq = p′bq + ε +

∑
j<q

wk

wbj
ε, and

p′′bj = p′bj for other j. We again have p′′bj = wk

wbj
p′′k for j < q,

and we can choose ε so that p′′bq = wk

wbq
p′′k . We claim that

when α ≤ 1
nρ , we further have (i) p′′bj ≥ α for j ≤ q and (ii)

p′′jwj ≤ wkp
′′
k for j ∈ A ∪ {bq+1, bq+2, ..., b|B|}. From these

properties, we can conclude that p′′ is a feasible solution, and
U(p′′)−U(p′) =

(
(1+

∑
j<q

wk

wbj
)θbq−

∑
j<q

wk

wbj
θbj−(wk+

θk)
)
ε ≤ 0. Thus, p′′ is also optimal. The detailed proofs of the

two claims can be found in our online technical report [24].

Based on the two propositions above, we then design an
efficient solution to (6) (see Algorithm 2). The algorithm
iterates over all k ∈ S. For a given k, two sets A and B

are identified and pj = α for j ∈ A (line 4). We then search
for a proper index q ≤ |B| and set the value of pbj for bj ∈ B
according to Proposition 2 (lines 7-9). The running time of
Algorithm 2 is dominated by sorting all the configurations
according to their θ values for each k. Thus, the complexity
of the algorithm is O(n2 log n), which is much faster than
searching the whole probability space.

V. NUMERICAL RESULTS

In this section, we evaluate our MTD strategy through
numerical studies under different system settings and demon-
strate its advantage by comparing it with two heuristic strate-
gies where a fixed defense period is used for all configurations:

1) Random sampling (RS): The defender stays in the cur-
rent configuration for a fixed duration τ and then moves
to a new configuration with probability 1/n. The optimal
τ is obtained by solving the following problem.

min
τ

maxj E(max(τ − aj , 0)) + 1
n

∑
i,jmij

nτ

2) Proportional sampling (PS): The defender stays in the
current configuration for a fixed duration τ and then
moves to a new configuration j with probability pj that
is proportional to wj = E[max(τ − aj , 0)]. The defense
strategy (τ, {pj}) is obtained by solving the following
problem.

min
τ,{pj}

maxj(wjpj) +
∑
i,j pipjmij

τ

s.t. wj = E(max(τ − aj , 0),∀j ∈ S
wipi = wjpj ,∀i, j ∈ S∑

j∈S
pj = 1

Simulation setup: In the simulations, the number of configu-
rations n is chosen from {5, 10, ..., 30}. The set of migration
costs are i.i.d. samples from a uniform distribution. For each
configuration j, its attack time aj follows an exponential
distribution with parameter λj , where λj is sampled from a
uniform distribution and is i.i.d. across j. In each simulation,
we conduct 100 trials by taking 10 samples of the migration
cost matrix M and 10 samples of {λj}. We set α = 0.01 and
ω = 0.01 in Algorithms 1 and 2. We set τ = 0.1, τ̄ = 5,
and δ = 0.1. For each τi ∈ {0.1, 0.2, ..., 5} and each λj , we
estimate wij by taking 500 samples of aj , which are inputs
to all the three policies.

Simulation results: In Figure 2(a), we evaluate the perfor-
mance of the three policies by varying the number of con-
figurations. The migration costs are sampled from U(0, 1.5)
and λ−1j are sampled from U(1, 2) for all j. We observe that
for the all three strategies, the time-average cost decreases
as the number of configurations increase. This is because the
uncertainty to the attacker increases with n. Moreover, the cost
of VI decreases much faster than the two baselines, which
indicates the weakness of the simple heuristics for large n.

Figure 2(b) compares the average costs of the three policies
when the mean attack time λ−1j is sampled from U(ν −
0.5, ν + 0.5) for each j where ν increases from 0.5 to 2.5.
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Figure 2: Simulation Results.

The number of configurations is fixed to 10 and the migration
costs are sampled from U(0.5, 1). It is expected that the costs
of all the strategies decrease as attack time increases. Again,
our algorithm performs much better than the two baselines.
Further, the gap increases for large ν. This is because for large
attack time, the migration cost becomes the dominant factor,
which is not properly taken into account in the two baselines.

In Figure 2(c), we compare the three policies under different
variances of the migration cost distribution. In this case,
n = 10 and λ−1j is sampled from U(0.5, 1.5) for each j.
The migration costs are sampled from U [m,m] where the
mean migration cost (m + m)/2 is fixed to 1.5 and we
vary (m −m)/2. We observe that the performance of PS is
close to VI for small variances while the gap becomes bigger
for large variances. This is because when each node has a
similar migration cost, the loss due to attacks becomes the
dominant part in the total cost, which is considered in both
PS and VI. On the other hand, when the variance becomes
large, our algorithm is able to better handle the heterogeneity
of configurations by jointly optimizing P and τ and by
considering a different τi for each i.

VI. CONCLUSION

In this paper, we propose a Stackelberg game model for
moving target defense (MTD) that jointly considers the spatial
and temporal decisions in MTD. In contrast to the i.i.d.
strategies considered in most previous works, our model
considers the more general Markovian strategies and further
incorporates state-dependent attack times. By formulating the
defender’s problem as a semi-Markovian decision process, we
derive a nearly optimal defense strategy that can be efficiently
implemented by utilizing the structure of the MTD game.
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