
Guide for Creating a Moving Target Defense Experimental Demo

Setting Up AWS VPC

● Create VPC
o On AWS, go to VPC on Management Console
o Click on Your VPCs
o Click on Create VPC

▪ For Name tag field enter “MTD”
▪ For IPv4 CIDR Block enter “10.0.0.0/16”
▪ Click Create

o Click Close
● Create Subnet

o On the VPC Management Console, click on Subnets
o Click on Create subnet

▪ For Name tag field enter “MTD subnet1”
▪ For VPC field select “MTD”
▪ For IPv4 CIDR block enter “10.0.0.0/24”
▪ Click Create

o Click Close
● Create Certificates

o Make sure AWS CLI is installed on your local machine
o Run the following commands to build and import certificates (go to

https://docs.aws.amazon.com/vpn/latest/clientvpn-admin/authentication-
authorization.html for more info on this step)

● Create Client VPN Endpoint
o On AWS, go to VPC on Management Console
o Click on Client VPN Endpoints
o Click on Create Client VPN Endpoint

git clone https://github.com/OpenVPN/easy-rsa.git
cd easy-rsa/easyrsa3
./easyrsa init-pki
./easyrsa build-ca nopass
./easyrsa build-server-full server nopass
./easyrsa build-client-full client1.domain.tld nopass
mkdir ~/custom_folder/
cp pki/ca.crt ~/aws_certs/
cp pki/issued/server.crt ~/aws_certs/
cp pki/private/server.key ~/aws_certs/
cp pki/issued/client1.domain.tld.crt ~/aws_certs
cp pki/private/client1.domain.tld.key ~/aws_certs/
cd ~/aws_certs/
aws acm import-certificate --certificate file://server.crt --private-key
file://server.key --certificate-chain file://ca.crt --region us-east-2
aws acm import-certificate --certificate file://client1.domain.tld.crt --private-key
file://client1.domain.tld.key --certificate-chain file://ca.crt --region us-east-2

▪ For Client IPv4 CIDR field enter “192.168.0.0/16”
▪ For Server certificate ARN select the server certificate that you created

earlier
▪ For Authentication Options field select “Use mutual authentication”
▪ For Client certificate ARN field select the client certificate that you

created earlier
▪ For Connection Logging select “No”
▪ Click Create Client VPN Endpoint

o Click Close
● Create Internet Gateway

o On AWS, got to VPC on Management Console
o Click on Internet Gateways
o Click on Create internet gateway

▪ For Name tag field enter “MTD internet gateway”
▪ Click Create

o Click Close
o Select your newly created internet gateway, and click Actions > Attach to VPC

▪ For VPC field select “MTD”
▪ Click Attach

o Click Close

● Set Up Tunnelblick
o Download Tunnelblick VPN client at https://tunnelblick.net/downloads.html
o On AWS, go to VPC on Management Console, and click on Client VPN Endpoints
o Select your Client VPN Endpoint, and click Download Client Configuration

▪ Click Download
o Ensure that your config file is in the same folder as your client cert file and your

client key file, and rename the folder “mtd-vpn.tblk”
o Click on the “mtd-vpn.tblk” file to upload it to Tunnelblick

Building Kali Linux Instance

● On AWS, go to EC2 on Management Console
● Click on Launch Instance
● Click on AWS Marketplace
● Select Kali Linux Image, then click Continue
● Select type of “t2.micro”, then click Review and Launch
● Click Edit Security Groups

o Click Add Rule
o For Type choose “All traffic”
o For CIDR enter “0.0.0.0/0”
o Click Review and Launch

● Click Edit Instance Details
o Change Number of Instances field to however many instances you want
o Change Network to your VPC that you created

o Click Review and Launch
● Click Launch
● Select “Create a new key pair” from dropdown
● For Key pair name field enter “kali-linux-key”
● Click Download Key Pair, and make sure that you save the “kali-linux-key.pem” file

somewhere that you remember
● Click Launch Instances
● On the EC2 Management Console, select the security group for the instance that you

just created
● Click on the Security group ID
● Click on Edit inbound rules
● Click on Add Rule
● For Type choose “All traffic”
● For Source enter “0.0.0.0/0”
● Click Save Rules

Building Metasploitable3 Instance

● Build Metasploitable3 Instance on VirtualBox
o Make sure that VirtualBox is installed on your machine
o Make sure that vagrant is installed on your machine

● Run following commands (go to https://github.com/jocic/AWS.Metasploitable3 for
more info on this step)

● It takes a while, but once the instance “Metasploitable3-ub1404” has been created on

VirtualBox, click on the instance, and then click Start
● Log in to the instance using username “vagrant” and password “vagrant”
● Pre-install necessary items using following commands

o When prompted, select “apache2”
o When prompted, enter “Y”
o When prompted, select “No’

● Power off the instance
● Export the VM from VirtualBox

o Select the instance in VirtualBox
o Click on File > Export Appliance
o In the window that appears, select Continue > Continue > Export

mkdir metasploitable3-workspace
cd metasploitable3-workspace
curl -O https://raw.githubusercontent.com/rapid7/metasploitable3/master/Vagrantfile &&
vagrant up

git clone https://github.com/MovingTargetDefenseCapsone/semester1.git
cd semester1
./set_up_migration.sh

● VM Import (go to https://docs.aws.amazon.com/vm-
import/latest/userguide/vmimport-image-import.html for more info on this step)

o On AWS, go to S3 on the Management Console
o Click on Create Bucket

▪ Name the bucket “mtdbucket”
▪ Click on Create Bucket

o Select your newly created S3 bucket
o Click on Upload

▪ Click on Add Files
▪ Locate your “Metasploitable3-ub1404.ova” image that you exported

earlier, select the file, and Click Open
▪ Click Upload and wait for file to upload

o Create new file on your local machine called “trust-policy.json”

o Create new file on your local machine called “role-policy.json”

{
 "Version": "2020-04-01",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": { "Service": "vmie.amazonaws.com" },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals":{
 "sts:Externalid": "vmimport"
 }
 }
 }
]
}

{
 "Version":"2020-04-01",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::mybucket",
 "arn:aws:s3:::mybucket/*"
]
 },

 {
 "Effect":"Allow",
 "Action":[
 "ec2:ModifySnapshotAttribute",
 "ec2:CopySnapshot",
 "ec2:RegisterImage",
 "ec2:Describe*"
],
 "Resource":"*"
 }

o Run commands to attach “trust-policy.json” and “role-policy.json”

o Create new file on your local machine called “containers.json”

o Run commands to import the instance and check on its status

● Launch instance using Metasploitable3 image
o On AWS, go to EC2 on Management Console
o Click on Launch Instance
o Click on My AMIs
o Select newly imported instance image
o Click Review and Launch
o Click Edit Security Groups

▪ Click Add Rule
▪ For Type choose “All traffic”
▪ For CIDR enter “0.0.0.0/0”
▪ Click Review and Launch

o Click Edit Instance Details
▪ Change Number of Instances field to however many instances you want
▪ Change Network to your VPC that you created
▪ Click Review and Launch

o Click Launch

aws iam create-role –-role-name vmimport –-assume-role-policy-document file://trust-
policy.json
aws iam put-role-policy –-role-name vmimport –-policy-name vmimport –-policy-document
file://role-policy.json

[
 {
 "Description": "metasploitable3 ",
 "Format": "ova",
 "UserBucket": {
 "S3Bucket": "mtdbucket",
 "S3Key": "Metasploitable3-ub1404.ova"
 }
 }
]

aws ec2 import-image –-description "metasploitable3" –-license-type BYOL –-disk-
containers file://containers.json
aws ec2 describe-import-image-tasks –-import-task-ids import-ami-<fill-in-here>

o Select “Create a new key pair” from dropdown
o For Key pair name field enter “metasploitable3-key”
o Click Download Key Pair, and make sure that you save the “metasploitable3-

key.pem” file somewhere that you remember
o Click Launch Instances

● On the EC2 Management Console, select the security group for the instance that you
just created

● Click on the Security group ID
● Click on Edit inbound rules
● Click on Add Rule
● For Type choose “All traffic”
● For Source enter “0.0.0.0/0”
● Click Save Rules

Accessing AWS VPC and Connecting to Kali Linux and Metasploitable3 Instances

● Associate Client VPN endpoint
o On AWS, go to VPC on Management Console
o Under Virtual Private Network(VPN), click on Client VPN Endpoints
o Select the correct endpoint, and then click on Associations
o Click Associate

▪ For the VPC field, select your VPC that you created earlier
▪ For the Choose subnet to associate field, select your subnet that you

created earlier
▪ Click Associate, and then click Close

o Wait until the State field of the endpoint says “Available” with a green dot next
to it, and then proceed to the next step

● Start Instances
o On AWS, go to EC2 on Management Console
o Click on Running Instances
o Select the instances that you would like to start, and make note of the private IP

address for each one
o Click on Actions > Instance State > Start
o Click Yes, Start
o Wait until the Instance State field says “running” with a green dot next to it, and

then proceed to the next step
● Start Tunnelblick

o Click on the Tunnelblick icon on your toolbar
o Click on Connect mtd-vpn

● Connecting to Metasploitable3 instance (Click on Connect on EC2 Management console
for more information)

o Navigate to the directory where you saved “metasploitable3-key.pem”
o From command line, run the following commands

 chmod 400 metasploitable3-key.pem

ssh -i “metasploitable3-key.pem” vagrant@private-ip-address

o Enter “yes” if prompted
o Enter password “vagrant”

● Connecting to Kali Linux instance (Click on Connect on EC2 Management console for
more information)

o From command line, run the following commands

o Enter “yes” if prompted

Shutting Down VPC

● Type “exit” in command line to exit instances
● Exit Tunnelblick

o Click on Tunnelblick icon on toolbar
o Click Disconnect mtd-vpn

● Shut down instances
o Select instances that are running
o Click on Actions > Instance State > Stop

● Disassociate Client VPN Endpoint
o On AWS, go to VPC on Management Console
o Under Virtual Private Network(VPN), click on Client VPN Endpoints
o Select the correct endpoint, and then click on Associations
o Select Association, and click Disassociate
o Click Yes, Disassociate

Building Attack Script

● Create attacker.sh, attack-script.sh, and command_shell.sh on local machine (all can be
found at https://github.com/MovingTargetDefenseCapstone/semester1)

● Copy attack scripts to Kali Linux instance on AWS
o On local machine, navigate to the directory where you saved “kali-key.pem” and

run the following commands

● The attack scripts should now appear on the Kali Linux machine

Building Configuration Migration Scripts

chmod 400 kali-linux-key.pem
ssh -i “kali-linux-key.pem” ec2-user@private-ip-address

git clone https://github.com/MovingTargetDefenseCapstone/semester1.git
scp -i kali-key.pem semester1/attack-script.sh ec2-user@private-ip-address:~/
scp -i kali-key.pem semester1/attacker.sh ec2-user@private-ip-address:~/
scp -i kali-key.pem semester1/command_shell.sh ec2-user@private-ip-address:~/

● On the Metasploitable3 machine, if they do not already exist, create the following
scripts in semester1 directory (can be found at
https://github.com/MovingTargetDefenseCapstone/semester1)

○ mysql_payroll_app.php
○ postgres_payroll_app.php
○ mysql_payroll_app.py
○ postgres_payroll_app.py
○ add_rows_to_users.mysql
○ add_rows_to_users.psql
○ mysql_php_to_pg_php.sh
○ mysql_php_to_mysql_py.sh
○ mysql_php_to_pg_py.sh
○ pg_php_to_pg_py.sh
○ pg_php_to_mysql_py.sh
○ pg_php_to_mysql_php.sh
○ pg_py_to_mysql_php.sh
○ pg_py_to_mysql_py.sh
○ pg_py_to_pg_php.sh
○ mysql_py_to_mysql_php.sh
○ mysql_py_to_pg_php.sh
○ mysql_py_to_pg_py.sh

● Run the following commands to change executable permissions on migration scripts

● Create a script called migration.py (can be found also in the GitHub repository) that

randomly switches between configurations after waiting a specified amount of time.

Troubleshooting

When you are executing one of the state change scripts you may get the following error:

chmod +x mysql_php_to_pg_php.sh
chmod +x mysql_php_to_pg_py.sh
chmod +x mysql_php_to_mysql_py.sh
chmod +x pg_php_to_pg_py.sh
chmod +x pg_php_to_mysql_php.sh
chmod +x pg_php_to_mysql_py.sh
chmod +x pg_py_to_mysql_py.sh
chmod +x pg_py_to_mysql_php.sh
chmod +x pg_py_to_pg_php.sh
chmod +x mysql_py_to_mysql_php.sh
chmod +x mysql_py_to_pg_php.sh
chmod +x mysql_py_to_pg_py.sh

ERROR 2002 (HY000): Can't connect to local MySQL server through
socket '/var/run/mysqld/mysqld.sock' (2)

If this happens, run the following command:

Guide for Running the Demo and Expected Results

Attacker

● When the attacker.sh script is run, it takes three parameters: the CVE attack used for
probing for the server language, the target IP address, and the source IP address.

● The options for the CVE attack are “CVE-2015-3306”, “CVE-2014-3704”, and “CVE-2010-
2075”.

● Once the script starts running, the attack occurs in three stages.
● The first stage is the probing of the server language on the target machine. This is done

by one of three CVE attacks, which is specified by the parameter that the user enters
when running the script.

● The time for extracting the information depends on which language it is, as well as
which CVE is being used.

Probing Times (Server Language)

 CVE-2015-3306 CVE-2014-3704 CVE-2010-2075

PHP 14.630 s 19.135 s 14.567 s

Python 14.727 s 19.915 s 15.012 s

● The probing attack “CVE-2014-3704” runs more slowly than the other two, so most
likely would not be selected by the attacker. For the other two attacks there is no
advantage to using one over the other, so the attacker could use either one.

● Once the attacker has probed and extracted the server language, the script enters the
second stage, which consists of using SQLMAP to probe for the database language.

sudo mv /var/run/mysql-default /var/run/mysqld

● The time for extracting the information depends on the server language and the
database language

Probing Times (Database Language)

 PHP Python

MySQL 12.733 s 16.615 s

PostgreSQL 12.824 s 25.560 s

● The third and final stage of the attacker script is the actual attack using the information
extracted from the probing attacks.

● The script runs a final SQLMAP attack using the server language and database language.
● The attack does not take much time because it has the specific information needed to

exploit the system.
● The attack times recorded are for 5000 data rows, which can be adjusted by changing

the add_rows_to_users.mysql file and the add_rows_to_users.psql file.

 Attack Times (5000 data rows)

 Defender Configuration Time
 MySQL, PHP 7.137 s
 MySQL, Python 8.138 s
 PostgreSQL, PHP 1 11.001 s
 PostgreSQL, Python 11.986 s

Defender

● While this attack is going on, the defender can change its state by running the
migration.py script, which changes the configuration after a certain amount of time
specified in the script.

● After the time interval has elapsed, there is still a certain amount of time that it takes
for the configuration to change. The time depends on how many data rows there are,
which can be changing by editing the add_rows_to_users.mysql file and the
add_rows_to_users.psql file, as mentioned before.

● The times displayed below are for 5000 data rows, which matches up with what we did
for the attacker.

● The table is organized with the vertical axis being the starting configuration and the
horizontal axis being the configuration it switches to.

Switch Times (5000 data rows)

 MySQL, PHP MySQL, Python PostgreSQL,

PHP
PostgreSQL,

Python
MySQL, PHP 0 s 0.101s 0.588 s 0.612 s

MySQL, Python 0.103 s 0 s 0.606 s 0.565 s
PostgreSQL,

PHP
2.443 s 2.584 s 0 s 0.108 s

PostgreSQL,
Python

2.409 s 2.449 s 0.105 s 0 s

