Practice Final

1. (Logic and Proof)

- (a) Prove that $\forall x \in \mathbb{R} \; \exists y \in \mathbb{R} \; \exists z \in \mathbb{R} : (x \neq 0) \to (y \times z > \frac{1}{x})$ (10)
- (b) Prove that $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \forall z \in \mathbb{R} : (y z \le x) \lor (z y \le x)$ (10)

2. (Set Theory)

Let A be a finite set with $n \ge 1$ elements $A = \{A_1, A_2, \ldots, A_n\}$, where each A_i is itself a set, such that for any i, j we have $A_i \subseteq A_j$ or $A_j \subseteq A_i$.

- (a) Prove that A contains an element A_k , such that A_k is not a subset of any other element in A. (10)
- (b) Prove that A_k is a superset of every element of A.

3. (Induction and Recursion)

Consider the function $f : \mathbb{N} \to \mathbb{N}$ recursively defined by:

$$\begin{split} f(0) &= 0 \\ f(1) &= 1 \\ f(2) &= 2 \\ f(n) &= (f(n-3) + f(n-2) + 3)f(n-1) \end{split}$$

Prove by induction that $f(n) \ge n$ for $n \in \mathbb{N}$.

4. (Relations)

Consider the set $\mathbb{N}_{\top} = \mathbb{N} \cup \{\top\}$. We define a binary relation \sqsubseteq on \mathbb{N}_{\top} by:

$$n \sqsubseteq m \text{ iff } m = \top \text{ or } n \le m$$

where $n \leq m$ is the standard order on \mathbb{N} .

- (a) Prove that $(\mathbb{N}_{\top}, \sqsubseteq)$ is a poset.
- (b) Prove that any non-empty subset of \mathbb{N}_{\top} has a least upper bound in \mathbb{N}_{\top} . (10)

5. (Graphs)

Let G be a graph which contains a simple circuit of odd length. Prove that $\chi(G) \geq 3$.

(20)

(10)

(10)

(20)