1. (Logic and Proof)
 (a) Show that the following propositional sentence:

 \[((a \lor \neg a) \rightarrow b) \land (b \land c \rightarrow d) \land (c \lor \neg f) \]

 is satisfiable.
 (b) Prove that \(\forall x \in \mathbb{R} \exists y \in \mathbb{R} \exists z \in \mathbb{R} : (x > 0) \rightarrow (x = y^2 \land x = z^2 \land y \neq z) \)
 (c) Prove that \(\exists x \in \mathbb{R} \forall y \in \mathbb{R} \forall z \in \mathbb{R} : (y^2 + z^2 = x^2) \rightarrow (y = 0 \land z = 0) \)

2. (Set Theory)
 Let \(A \) be an arbitrary set and let \(\mathcal{P}(A) \) be its powerset. Consider the set \(S = \bigcup_{X \in \mathcal{P}(A)} X \), which is the union of all subsets of \(A \).
 (a) Prove that \(S \subseteq A \).
 (b) Prove that \(A \subseteq S \).
 (c) Show that \(A = S \).

3. (Induction and Recursion)
 Consider the function \(f : \mathbb{N} \rightarrow \mathbb{N} \) defined by:

 \[f(n) = n^{(n-1)(n-2)(n-3)} \cdot 2^{10} \]

 which computes a tower of decreasing powers of \(n \) in a right-associative way. That is, the powers are computed in a right-to-left or top-to-bottom way. So, \(f(4) = 4^{3^2} = 4^9 = 4^8 = 4^9 \).
 (a) Provide a recursive definition for the function \(f \). You do not have to prove that your definition is correct.
 (b) Prove by induction that \(f(n) \geq n \) for each \(n \in \mathbb{N} \).

4. (Combinatorics)
 Answer each of the following questions. You do not have to provide any proofs.
 (a) Let \(A \) be a set with 13 elements. How many subsets of \(A \) are there with at least 3 elements and at most 7 elements?
 (b) Let \(B = \{a, b, c, d, e, f\} \). How many words can we form with the letters of \(B \), where each letter is used exactly once and one of the letters in \(\{a, b, c\} \) is next to the other two?
 (c) Let \(C \) be a set with three elements given by \(C = \{a, b, c\} \). How many functions \(f : C \rightarrow \mathbb{N} \) are there, such that \(f(a) + f(b) + f(c) = 7 \)?