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Given a set of n points and their pairwise distances, the goal of clustering is to

partition the points into a “small” number of “related” sets. Clustering algorithms

are used widely to manage, classify, and summarize many kinds of data. In this

dissertation, we study the classic facility location and k-median problems in the

context of clustering, and formulate and study a new optimization problem that

we call the online median problem. For each of these problems, it is known to

be NP-hard to compute a solution with cost less than a certain constant factor

times the optimal cost. We give simple constant-factor approximation algorithms

for the facility location, k-median, and online median problems with optimal or near-

optimal time bounds. We also study distance functions that are “approximately”

metric, and show that such distance functions allow us to obtain a faster online

median algorithm and to generalize our analysis to other objective functions, such

as that of the well-known k-means heuristic.

Given n points, the associated interpoint distances and nonnegative point
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weights, and a nonnegative penalty for each point, the facility location problem asks

us to identify a set of cluster centers so that the weighted average cluster radii and the

sum of the cluster center penalties are both minimized. The k-median problem asks

us to identify exactly k cluster centers while minimizing just the weighted average

cluster radii. We give a simple greedy algorithm for the facility location problem that

runs in O(n2) time and produces a solution with cost at most 3 times optimal. For

the k-median problem, we develop and make use of a sampling technique that we call

successive sampling, and give a randomized constant-factor approximation algorithm

that runs in O(n(k + log n + log2 n)) time. We also give an Ω(nk) lower bound on

the running time of any randomized constant-factor approximation algorithm for

the k-median problem that succeeds with even a negligible constant probability.

In many settings, it is desirable to browse a given data set at differing levels

of granularity (i.e., number of clusters). To address this concern, we formulate a

generalization of the k-median problem that we call the online median problem. The

online median problem asks us to compute an ordering of the points so that, over all

i, when a prefix of length i is taken as a set of cluster centers, the weighted average

radii of the induced clusters is minimized. We show that a natural generalization

of the greedy strategy that we call hierarchically greedy yields an algorithm that

produces an ordering such that every prefix of the ordering is within a constant

factor of the associated optimal cost. Furthermore, our algorithm has a running

time of Θ(n2).

Finally, we study the performance of our algorithms in practice. We present

implementations of our k-median and online median algorithms; our experimental

results indicate that our approximation algorithms may be useful in practice.
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Chapter 1

Introduction

Given a set of n weighted points and their pairwise distances, the goal of clustering

is to partition the points into a “small” number of “related” sets. Clustering algo-

rithms are used widely to manage, classify, and summarize many kinds of data. For

example, Data Mining applications rely heavily on efficient clustering algorithms to

infer structure in massive data sets. We study two classic discrete location problems,

facility location and k-median problems, in the context of clustering. We also for-

mulate and study a generalization of the k-median problem that we call the online

median problem. We demonstrate that it is possible to obtain simple constant-

factor approximation algorithms for these problems with optimal or near-optimal

time bounds. We also study distance functions that are “approximately” metric,

and show that such distance functions allow us to obtain a faster online median

algorithm and to generalize our analysis to other objective functions, such as that

of the well-known k-means heuristic.

As the name may indicate, the facility location problem was originally studied

in operations research and is perhaps the canonical problem in discrete location

theory [33, 38]. Given a set of cities and the intercity distances, suppose that we

wish to open a number of facilities to provide some resource to the cities. Suppose
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also that each city also has a cost associated with opening a facility in that city. Then

the facility location problem asks us to identify a subset of the cities in which to open

facilities while minimizing the total opening cost as well as the sum, over all cities, of

the distance to the closest facility. This problem is useful for the problem of resource

placement, but serves equally well to model the problem of clustering. To see this,

we simply view the cities as objects that we wish to cluster (e.g., documents), the

opening costs as object penalties (e.g., infrequency of access) and the distances as

similarities between objects (e.g., number of words in common). Then the facility

location problem is a natural formulation of the clustering problem since it asks us

to identify a set of cluster centers so that the weighted average cluster radii and the

sum of the cluster center penalties are both minimized.

Another classic problem in operations research that corresponds to a well-

studied clustering problem is the k-median problem [38]. The k-median problem

asks to identify exactly k cluster centers while minimizing just the weighted average

cluster radii. We note that this problem is very similar to k-means clustering [9].

In many settings, it is desirable to browse a given data set at differing levels of

granularity (i.e., number of clusters). To address this concern, we formulate a gen-

eralization of the k-median problem that we call the online median problem. The

online median problem asks us to compute an ordering of the points so that, over all

i, when a prefix of length i is taken as a set of cluster centers, the weighted average

radii of the clusters is minimized.

This dissertation focuses on developing approximation algorithms for these

problems since, for each of them, it is NP-hard to compute a solution with cost

less than a certain constant factor times the optimal cost. We give a simple greedy

algorithm for the facility location problem that runs in O(n2) time and produces a

solution with cost at most 3 times optimal. In the course of developing algorithms

for the k-median and online median problems, we introduce two new algorithmic
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techniques that may be of independent interest. For the k-median problem, we

develop and make use of a sampling technique that we call successive sampling, and

give a randomized constant-factor approximation algorithm that runs in O(n(k +

log n + log2 n)) time. We also give an Ω(nk) lower bound on the running time of

any randomized constant-factor approximation algorithm for the k-median problem

that succeeds with even a negligible constant probability. For the online median

problem, we investigate whether it is possible to compute an ordering of the points

with the property that every prefix of length i of the ordering has cost within a

constant factor of optimal. That is, for every prefix of length i, when taken as a

set of cluster centers, has cost within a constant factor of the cost of the optimal i

cluster centers. We show that a natural generalization of the greedy strategy that

we call hierarchically greedy yields an algorithm that produces an ordering such that

every prefix of the ordering is within a constant factor of the associated optimal cost.

Furthermore, our algorithm runs in O(n2) time and is thus time-optimal.

We also study the performance of our algorithms in practice. We present

implementations of our k-median and online median algorithms and study their

performance. Our results indicate that our approximation algorithms may be useful

in practice. For synthetically generated inputs, our k-median algorithm provides a

reasonable tradeoff between solution quality and speed when compared to a typical

implementation of the widely used k-means heuristic. We also provide anecdotal

evidence that our online median algorithm may be useful for real-world applications.

1.1 Problem Definitions

We first introduce some useful terminology that we use throughout this dissertation.

Fix a set of points U , a distance function d : U×U → IR, and nonnegative functions

f, w : U → IR. For the purposes of this section, we assume that d is a metric, that

is, d is nonnegative, symmetric, satisfies the triangle inequality, and d(x, y) = 0 iff
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x = y. We let n = |U |, and define a subset of U to be a configuration iff it is

nonempty. (Remark: A configuration is simply a set of cluster centers.) For any

point x and configuration X, we define d(x,X) as miny∈X d(x, y). For any set of

points X, we let w(X) denote
∑

x∈X w(x).

We consider three computational problems: facility location, k-median, on-

line median. For the facility location problem, the cost of a configuration, denoted

cost (X), is defined as the sum of
∑

x∈X f(x) and
∑

x∈U d(x,X) · w(x). The input

to the facility location problem is (U, d), f , and w. The output is a minimum-cost

configuration. For the k-median and online median problems, the cost of a configu-

ration, which we denote as cost (X), is defined to be
∑

x∈U d(x,X) ·w(x). The input

to the k-median problem is (U, d), w, and an integer k, 0 < k ≤ n. The output

is a minimum-cost configuration of size k. The input to the online median prob-

lem is (U, d) and w. The output is a total order on U . We define the competitive

ratio of such an ordering as the maximum over all k, 0 < k ≤ n, of the ratio of

the cost of the configuration given by the first k points in the ordering to that of

an optimal k-median configuration. We define the competitive ratio of an online

median algorithm as the supremum, over all possible choices of the input instance

(U, d) and w, of the competitive ratio of the ordering produced by the algorithm.

An online median algorithm that guarantees a ratio of at most r is said to achieve

a competitive ratio of r, or to be r-competitive.

1.2 Our Techniques and Contributions

Algorithms for problems in discrete location theory arise in many practical applica-

tions (see, e.g., [33, 38], for numerous pointers to the literature). Given that many

of these problems are NP-hard, it is desirable to develop fast approximation algo-

rithms. For the k-median problem, we obtain an algorithm that is time optimal for

most values of k and with high probability produces a solution whose cost is within
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a constant factor of optimal. Our algorithm is based on a sampling technique that

we call successive sampling that may be of independent interest. For the facility

location and online median problems, we show that greedy strategies yield simple

and fast approximation algorithms. While a very simple greedy algorithm yields a

constant-factor approximation bound for the facility location problem, it appears

that a more sophisticated approach is needed to obtain a constant-factor approx-

imation guarantee for the k-median problem, let alone a constant-competitiveness

result for the online median problem. For example, in Section 5.1 we show that

perhaps the most natural greedy approach to the k-median (resp., online median)

problem leads to an unbounded approximation (resp., competitive) ratio. Our ap-

proach to the online median problem is based on a generalization of the greedy

strategy that we call the hierarchically greedy strategy. We also show that all of the

approximation results in this dissertation generalize to distance functions that are

only “approximately” metric.

1.2.1 Successive Sampling

A natural technique to cope with a large set of unlabeled data is to take a ran-

dom sample of the input in the hopes of capturing the essence of the input and

subsituting the sample for the original input. Ideally we hope that the sample size

required to capture the relevant information in the input is significantly less than

the original input size. However, in many situations naive sampling does not al-

ways yield the desired reduction in data. For example, for the problem of learning

Gaussians, this limitation manifests itself in the common assumption that the mix-

ing weights are large enough so that a random sample of the data will capture a

nonnegligible amount of the mass in a given Gaussian. Without this assumption,

the approximation guarantees of recent algorithms for learning Gaussians [2, 8] no

longer hold.
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A major contribution of our work is a simple yet powerful sampling technique

that we call successive sampling. We show that our sampling technique is an effec-

tive data reduction technique for the purpose of clustering in the sense it captures

the essence of the input with a very small subset (just O(k log(n/k)), where k is

the number of clusters) of the points. In fact, it is this property of our sampling

technique that allows us to develop an algorithm for the k-median problem that has

an optimal running time of Θ(nk) for k between log n and n/ log2 n and that, with

high probability, produces a solution with cost within a constant factor of optimal.

1.2.2 A Hierarchically Greedy Strategy

An obvious approach to the online median problem is to iteratively choose the

point that minimizes the objective function. Greedy strategies of this kind are

commonly applied in the design of online algorithms [4, 20] as well as approximation

algorithms [18] (for a more detailed discussion see Chapter 2). It turns out, however,

that for the online median problem, the simple greedy strategy mentioned above

has an unbounded competitive ratio. We consider a generalization of this strategy

that we call hierarchically greedy. The basic idea behind the hierarchically greedy

strategy is as follows: Rather than selecting the next point in the ordering based

on a single greedy criterion, we greedily choose a region (the set of points lying

within some ball) and then recursively select a point within that region. Thus, the

choice of point is influenced by a sequence of greedy criteria addressing successively

finer levels of granularity. We show that the hierarchically greedy strategy yields

a constant-competitive algorithm for the online median problem. Furthermore, our

online median algorithm has an optimal running time of Θ(n2).

6



1.2.3 Approximate Metrics

We also show that our analysis holds for classes of distance functions that are more

general than metrics. We study two classes of “approximate” metrics for which

the triangle inequality only holds to within a constant factor. We define and study

λ-approximate metrics and weakly λ-approximate metrics. We show that our anal-

ysis holds to within constant factors given either of these two classes of distance

functions. First, we show that λ-approximate distance functions facilitate an imple-

mentation of our online median algorithm running in time linear in the input size.

We then show that weakly λ-approximate distance functions allow us to apply our

techniques to objective functions other than the k-median objective. For example,

we show that the approximation bounds for both of our algorithms hold to within

constant factors for the well-known k-means objective function [9].

1.3 Summary of Results

We give an algorithm for the facility location problem that achieves an approxima-

tion ratio of 3 and runs in Θ(n2) time. The main idea of the algorithm is to compute

and use the “value” of balls about every point in the metric space. In retrospect,

the idea of value is implicit in the work of Jain and Vazirani [22]. We make this

idea explicit and use the values of balls to make greedy choices. Additionally, our

algorithm is faster than the Jain-Vazirani algorithm by a logarithmic factor.

Under the standard assumption that the point weights and interpoint dis-

tances are polynomially bounded, we obtain a randomized O(1)-approximate algo-

rithm for the k-median problem that runs in O(n(k + log n) + k2 log2 n) time. For

wide range of values of k, namely log n ≤ k ≤ n/ log2 n, this time bound simpli-

fies to O(nk). We also establish a matching Ω(nk) lower bound on the running

time of any randomized O(1)-approximate k-median algorithm with a nonnegligible
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success probability (e.g., at least 1
100). It is worth noting that in our study of the

k-median problem, we present our results with respect to two additional parameters

that capture the magnitude of the distances and point weights, respectively.

For the online median problem, we give a deterministic constant-competitive

algorithm for the online median problem running in O(n2 + `n) time (where ` is the

number of bits required to represent each distance). We note that our lower bound

for the k-median problem implies that any constant-competitive online median al-

gorithm requires Ω(n2) time. Thus, under the standard assumption that ` = O(n),

we achieve a time bound of Θ(n2) for the online median problem. While we for-

mulate and solve the online median problem, it worth noting that the k-median

problem is a special case of the online median problem. Hence our online median

algorithm is also the first deterministic constant-factor approximation algorithm for

the k-median problem running in time that is linear in the size of the input. (The

best previous deterministic running time of O((n2 log n)(` + log n)) is due to Jain

and Vazirani [22].)

We also show that all of our approximation results generalize to certain

classes of distance functions that are only “approximately” metric. We also show

that these generalizations are sufficient to consider objective functions other than

that of the facility location, k-median and online median problems. For example,

we show that our approximation results hold for the well-known k-means objective

function.

1.4 Outline of Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we give a brief

survey of previous approaches to clustering as well as the facility location results that

are most relevant to our work. In Chapter 3, we present our O(n2)-time constant-

factor approximation algorithm for the facility location problem. In Chapter 4, we

8



present a constant-factor approximation algorithm for the k-median problem and

show that for a wide range of values of k, our algorithm runs in O(nk) time. We

also show that any randomized constant-factor approximation algorithm for the k-

median problem with even a negligible success probability (say 1
100) requires Ω(nk)

time. Then, in Chapter 5, we study our generalization of the k-median problem,

the online median problem, and give a constant-competitive algorithm that runs in

Θ(n2) time. In Chapter 6, we discuss our experimental study of our k-median and

online median algorithm. Finally, we offer some concluding remarks in Chapter 7.
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Chapter 2

Related Work

In this chapter, we give a brief overview of traditional clustering techniques as well

as a survey of recent approximation algorithms for the facility location and k-median

problems. Clustering is a fundamental problem in unsupervised learning that has

found application in many problem domains. Approaches to clustering based on

learning mixture models as well as minimizing a given objective function have both

been well-studied [2, 5, 6, 8, 9, 32, 35]. In recent years, there has been significant

interest in developing clustering algorithms that can be applied to the massive data

sets that arise in problem domains such as bioinformatics and information retrieval

on the World Wide Web. Such data sets pose an interesting challenge in that

clustering algorithms must be robust as well as fast.

2.1 The k-Means Heuristic

The k-means heuristic is a widely-used clustering technique that has been used for

several decades [9, 35]. Given a set of n points drawn from a Euclidean space,

the k-means heuristic attempts to identify k cluster centers. The k-means heuristic

works as follows. First, a set of k points is chosen as an initial solution. These
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points may be chosen arbitrarily, uniformly at random, or according to some other,

typically simple, method. Then, this solution is iteratively improved as follows. In

each iteration, the input points are partitioned into k sets by associating each point

with its closest point in the current solution. The k centroids of the sets in the

partition is returned as the output of the iteration. One iteration of the k-means

heuristic requires O(nk) time. Typically, a small number of iterations is needed

until the solution converges to a local minimum.

We note that any subset of size k of the n given input points is a feasible

initial solution for k-means. We make use of this fact to propose our k-median

algorithm as an initialization procedure for k-means. Since the cost of the output of

successive iterations of k-means is monotonically decreasing, we will see in Chapter 4

that using our k-median algorithm to initialize k-means yields a clustering algorithm

that runs in O(nk) time for a wide range of values of k while guaranteeing that the

cost of the output is within a constant factor of optimal.

2.2 Learning Mixtures of Gaussians

A formulation of clustering that has perhaps been studied as extensively as k-means

or k-median clustering is that of fitting a mixture of Gaussian distributions to a

given set of points. Given a set of n points drawn from k Gaussian distributions

with associated mixing weights, the problem of learning Gaussian mixtures asks

us to compute the means, variances, and mixing weights underlying the original k

Gaussians. This problem has been studied in areas such as psychology, geology, and

astrophysics (see, e.g., [8, 32] for pointers to the literature). A classic approach to

the problem of learning mixtures of Gaussians is to utilize a local search technique

called Expectation Maximization (EM). The EM algorithm is often described as a

“probabilistic” version of k-means [24]. The objective of the EM algorithm is to

maximize the likelihood between the actual and computed parameters of the Gaus-
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sians. Just as k-means is susceptible to local minima, unless the initial parameters

are chosen carefully, the EM algorithm is susceptible to local maxima. The first

approximation algorithm for the problem of learning mixtures of Gaussians is due

to Dasgupta [8]; his algorithm finds the means, variances, and mixing weights of the

underlying Gaussians to the level of precision specified by the user.

It is interesting to note that algorithms for the k-median problem can be

used for a certain model-based clustering problem as well. Arora and Kannan [2]

formulate an approximation version of the problem of learning arbitrary Gaussians.

Given points from a Gaussian mixture, they study the problem of identifying a set

of Gaussians whose log-likelihood is within a constant factor of the log-likelihood of

the original mixture. Their approach to this learning problem is to reduce it to the

k-median problem and apply an existing constant-factor approximation algorithm.

2.3 Facility Location Problems

There has been much prior work on the facility location and k-median problems.

The facility location and k-median problems were originally studied in the context

of resource placement. It is straightforward to see that the notion of minimizing

weighted average distance to cluster centers applies equally well when we view the

cluster centers are resource distribution sites. In fact, the facility location and

k-median problem are perhaps the two most well-known problems in the area of

discrete location theory. The operations research community has studied problems

in discrete location theory for several decades. For a survey of the area, we refer the

reader to the texts by Mirchandani and Francis [38] and Love et al. [33]. Problems

in this area have also received attention recently due to their applicability to the

problem of placing resources on a network [25, 26, 27].

As mentioned in Chapter 1, we focus on the metric versions of these problems;

for recent work and pointers to the literature on the general (non-metric) facility
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location and k-median problem, see [47]. More generally, the text by Hochbaum [18]

surveys the techniques used to obtain approximation lower bounds and approxima-

tion algorithms for a number of NP-hard optimization problems related to and

including the facility location problem and k-median problem. Below we present

the recent work on the metric facility location and k-median problem. The remain-

der of this section is organized by the algorithmic techniques used to attack these

problems.

2.3.1 Linear-Programming Approaches

The first constant-factor approximation algorithm for facility location is due to

Shmoys et al. [42] and is based on rounding the (fractional) solution to a linear

program. We will refer to algorithms that take this approach as LP-based. Chu-

dak [7] gives an LP-based (1 + 2
e )-approximation algorithm for facility location.

This was the best constant factor known until the work of Charikar and Guha [5],

which establishes a slightly lower approximation ratio of 1.728. The first constant-

factor approximation for the k-median problem was given by Charikar et al. [6] and

is also LP-based. That work follows a sequence of bicriteria results utilizing LP-

based techniques [30, 31]. (These bicriteria results produce a configuration of size

O(k) with cost at most a constant factor times that of an optimal configuration of

size k.) Jain and Vazirani [22] give the first nearly linear-time (in the input size)

combinatorial algorithms for the facility location and k-median problems, achieving

approximation ratios of 3 and 6, respectively. Their algorithm for facility loca-

tion runs in O(n2 log n) time, and their algorithm for the k-median problem runs

in O((n2 log n)(` + log n)), where ` is roughly the number of bits needed to repre-

sent any distance in the input. While the latter algorithms are combinatorial, the

primal-dual approach used in their analysis is based on linear programming theory.

(See [13] for an excellent introduction to the primal-dual method.)

13



2.3.2 Local Search and Greedy Approaches

Strategies based on local search and greedy techniques are commonly used to obtain

algorithms for the facility location problem and the k-median problem. The work of

Korupolu et al. [26] shows that a simple local search heuristic proposed by Kuehn

and Hamburger [28] in the 1960s yields both a constant-factor approximation for

the facility location problem and a bicriteria approximation for the k-median prob-

lem. Guha and Khuller [15] showed that greedy improvement can be used as a

postprocessing step to improve the approximation guarantee of certain facility lo-

cation algorithms. Subsequently, Charikar and Guha [5] achieve an approximation

ratio of 1.853 for facility location by combining a local search heuristic with the best

LP-based algorithm known; this algorithm runs in Õ(n3) time. Charikar and Guha

also give a 4-approximation for the k-median problem by building on the techniques

of Jain and Vazirani [22]; this algorithm also runs in Õ(n3) time. Subsequent to our

work, Arya et al. [3] gave an analysis of local search that yields the first constant-

factor approximation guarantee for the k-median problem. More recently, Jain et

al. [21] gave a simple O(n3)-time greedy algorithm for the facility location, obtaining

the best known approximation ratio of 1.61.

2.3.3 “Sublinear-Time” Algorithms

The algorithms discussed above for the facility location and k-median problems are

“superlinear” in the sense that the input size for these problems (i.e., the number of

pairwise distances) is O(n2), and the algorithms discussed above all have running

times of ω(n2). In this section, we discuss “sublinear” algorithms for the facility

location and k-median problem; that is, algorithms running in o(n2) time. The first

constant-factor approximation algorithm for the k-median problem running in o(n2)

time is due to Indyk. He gives a randomized (O(k), O(1))-approximate algorithm

for the uniform weights k-median problem [19] that runs in Õ(nk/δ2) time, where
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δ is the desired failure probability. Indyk’s algorithm combines random sampling

of the input points with a black-box (αk, β)-approximate k-median algorithm to

achieve a (2αk, (1 + δ)(6 + 3β))-approximate algorithm, where δ is the desired

success probability. Given an Õ(n2)-time black-box k-median algorithm, Indyk’s

algorithm runs in Õ(nk/δ2) time. (The Õ-notation omits polylogarithmic factors in

n and k)

Thorup [43] gives randomized constant-factor approximation algorithms for

several facility location problems in a graph. In this problem setting, we are not

given a metric distance function but rather a graph on the input points with m

positively weighted edges from which the distances must be computed; all of Tho-

rup’s algorithms run in [43] run in Õ(m) time. Thorup [43] also gives an Õ(nk)

time randomized constant-factor approximation algorithm for the k-median prob-

lem that we consider. As part of this k-median algorithm, Thorup gives a sampling

technique that also consists of a series of sampling steps; his approach produces an

(O((k log2 n)/ε), 2 + ε)-configuration for any positive real ε with 0 < ε < 0.4, but

is only guaranteed to succeed with probability 1
2 . We note that Thorup also makes

use of our facility location algorithm as the basis for a Õ(m)-time algorithm for the

facility location problem in a graph.

Mishra et al. [39] show that in order to find a (k, O(1))-configuration, it is

enough to take a sufficiently large sample of the input points and use it as input

to a black-box O(1)-approximate k-median algorithm. To compute a (k, O(1))-

configuration with an arbitrarily high constant probability, the required sample size

is Õ(R2
dk). In the general case, the size of the sample may be as large as n,

but depending on the diameter of the input metric space, this technique can yield

running times of o(n2) (e.g., if the diameter is o(n2/k)).

Guha et al. [16] give k-median algorithms for the data stream model of com-

putation. Under the data stream model of computation, input data is processed
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sequentially, and the performance of an algorithm is measured by how many passes

it makes over the input and by its space requirements. For the data stream model of

computation, Guha et al. [16] give a single-pass O(1)-approximate algorithm for the

k-median problem that runs in Õ(nk) time and requires O(nε) space for a positive

constant ε. We also make use of a technique due to Guha et al. [16] that takes

an (m, O(1))-configuration and extracts a (k, O(1))-configuration; they use this

technique in isolation in a divide-and-conquer fashion to develop their k-median al-

gorithms. We view the extraction technique as a postprocessing step that yields a (k,

O(1))-approximate k-median algorithm given an (m, O(1))-approximate k-median

algorithm. In our algorithms, we take advantage of the fact that this postprocess-

ing step can be performed rapidly. For example, if m = O(k) and the black-box

algorithm requires O(n2) time, the time required for postprocessing is just O(k2).

2.4 Hardness Results

In this section, we give the known lower bounds on the approximation ratio for the

facility location and k-median problem as well as lower bounds on the running time

of constant-factor approximation algorithms for these problems.

Guha and Khuller [15] provide the best lower bound known of 1.463 on the

approximation ratio for the facility location problem. Guha [14] gives a lower bound

of 1+ 1
e on the approximation ratio for the k-median problem. Jain et al. [21] recently

improved this lower bound to 1 + 2
e .

For the facility location problem, Thorup [43] notes that it is relatively

straightforward to establish an Ω(n2) lower bound on deterministic constant-factor

approximation algorithms for the facility location problem. Guha et al. [16] establish

a lower bound of Ω(nk) for deterministic O(1)-approximate k-median algorithms.

We note that they work with a slightly different definition of the k-median problem

in which the distance between two distinct points is allowed to be 0. We adopt the
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view that points at distance zero are represented by a single point with commensu-

rately higher weight; this view avoids having an infinite value for Rd. For the proof

of the lower bound, Guha et al. [16] construct a problem instance for which optimal

solution has cost 0 and reduce the problem to a graph k-partitioning problem [23].

The intuition is that any algorithm producing a k-configuration with nonzero cost

is not O(1)-approximate. Although their lower bound arguments make use of dis-

tinct points at distance 0 (i.e., an infinite Rd), with a slight modification their proof

only requires that Rd exceed n by a sufficiently large constant factor relative to the

desired approximation ratio. Intuitively, with such a large setting of Rd, a deter-

ministic k-median algorithm taking o(nk) time and making just one “mistake” fails

to achieve the desired approximation ratio. Our lower bounds are stronger in the

sense that we focus on constructing problem instances that have small values of Rd,

and then show that any randomized k-median algorithms running in o(nk) time is

likely to make many “mistakes” on these instances.
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Chapter 3

The Facility Location Problem

In this chapter, we present a simple O(n2)-time algorithm for the facility location

problem that achieves an approximation ratio of 3. As stated previously, the main

idea of our algorithm is to compute and use the “value” of balls about every point in

the metric space. In retrospect, the idea of value is implicit in the work of Jain and

Vazirani [22]. We make this idea explicit and use the values of balls to make greedy

choices. Additionally, our algorithm is faster than the Jain-Vazirani algorithm by

a logarithmic factor. Thorup [43] notes that it is relatively straightforward to see

that Ω(n2) time is required by any algorithm for the facility location problem that

achieves a constant approximation ratio. Thus, our simple greedy algorithm is time-

optimal.

The following definitions are used throughout the present chapter as well as

Chapters 4 and 5.

• For any nonnegative integer m, let [m] denote the set {i | 0 ≤ i < m}.

• A ball A is a pair (x, r), where the center x of A, denoted center(A), belongs

to U , and the radius r of A, denoted radius(A), is a nonnegative real.

• Given a ball A = (x, r), we let Points(A) denote the set {y ∈ U | d(x, y) ≤ r}.
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However, for the sake of brevity, we tend to write A instead of Points(A).

For example, we write “x ∈ A” and “A ∪ B” instead of “x ∈ Points(A)” and

“Points(A) ∪ Points(B)”, respectively.

• The value of a ball A = (x, r), denoted value(A), is
∑

y∈A(r− d(x, y)) ·w(y).

• For any ball A = (x, r) and any nonnegative real c, we define cA as the ball

(x, cr).

3.1 Algorithm

In the first step of the following algorithm, we assume that there is at least one

point x such that w(x) > 0. (The problem is trivial otherwise.) The output of

the algorithm is the configuration Zn, which we also refer to as Z. Remark: The

indexing of the sets Zi has been introduced solely to facilitate the analysis.

• For each point x in U , determine an associated ball Ax = (x, rx) such that

value(Ax) = f(x).

• Determine a bijection ϕ : [n] → U such that rϕ(i−1) ≤ rϕ(i), 0 < i < n.

• Let Bi = (xi, ri) denote the ball Aϕ(i), 0 ≤ i < n. Let Z0 = ∅.

• For i = 0 to n − 1: If Zi ∩ 2Bi = ∅ then let Zi+1 = Zi ∪ {xi}; otherwise, let

Zi+1 = Zi.

We now sketch a simple O(n2)-time implementation of the above algorithm.

For each point x, the associated radius rx can be computed in O(n) time. (This is

essentially a weighted selection problem.) Thus the first step requires O(n2) time.

The second step involves sorting n values and can be accomplished in O(n log n)

time. The running time for the third step is negligible. Each iteration of the fourth

step can be easily implemented in O(n) time, for a total of O(n2) time.
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3.2 Approximation Ratio

In this section we establish the following theorem.

Theorem 1 For any configuration X, cost (Z) ≤ 3 · cost (X).

Proof: Immediate from Lemmas 3.2.3 and 3.2.7 below.

Lemma 3.2.1 For any point xi, there exists a point xj in Z such that j ≤ i and

d(xi, xj) ≤ 2ri.

Proof: If there is no such point xj with j < i, then Zi ∩ 2Bi is empty, and so xi

belongs to Z.

Lemma 3.2.2 Let xi and xj be distinct points in Z. Then d(xi, xj) > 2·max{ri, rj}.

Proof: Assume without loss of generality that j < i. Thus ri ≥ rj . Furthermore,

d(xi, xj) > 2ri since xj belongs to Zi and Zi ∩ 2Bi is empty.

For any point x and any configuration X, let

charge(x, X) = d(x,X) +
∑

xi∈X

max{0, ri − d(xi, x)}.

Lemma 3.2.3 For any configuration X,
∑

x∈U charge(x, X) · w(x) = cost (X).

Proof: Note that

∑
x∈U

charge(x,X) · w(x) =
∑

xi∈X

∑
x∈Bi

(ri − d(xi, x)) · w(x) +
∑
x∈U

d(x,X) · w(x)

=
∑

xi∈X

value(Bi) +
∑
x∈U

d(x,X) · w(x),

which is equal to cost (X) since value(Bi) = f(xi).

Lemma 3.2.4 Let x be a point, let X be a configuration, and let xi belong to X.

If d(x, xi) = d(x,X) then charge(x, X) ≥ max{ri, d(x, xi)}.
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Proof: If x does not belong to Bi, then charge(x, X) ≥ d(x, xi) > ri. Otherwise,

charge(x,X) ≥ d(x, xi) + (ri − d(x, xi)) = ri ≥ d(x, xi).

Lemma 3.2.5 Let x be a point and let xi belong to Z. If x belongs to Bi, then

charge(x,Z) ≤ ri.

Proof: By Lemma 3.2.2, there is no point xj in Z such that i 6= j and x belongs

to Bj . The claim now follows from the definition of charge(x,Z), since d(x, Z) ≤

d(x, xi).

Lemma 3.2.6 Let x be a point and let xi belong to Z. If x does not belong to Bi,

then charge(x,Z) ≤ d(x, xi).

Proof: The claim is immediate unless there is a point xj in Z such that x belongs

to Bj . If such a point xj exists, then Lemmas 3.2.2 and 3.2.5 imply d(xi, xj) >

2 · max{ri, rj} and charge(x,Z) ≤ rj , respectively. The claim now follows since

d(x, xi) ≥ d(xi, xj)− d(x, xj) > 2rj − rj = rj .

Lemma 3.2.7 For any point x and configuration X,

charge(x, Z) ≤ 3 · charge(x,X).

Proof: Let xi be some point in X such that d(x, xi) = d(x,X). By Lemma 3.2.1,

there exists a point xj in Z such that j ≤ i and d(xi, xj) ≤ 2ri.

If x belongs to Bj , then charge(x,Z) ≤ rj by Lemma 3.2.5. The claim follows

since j ≤ i implies rj ≤ ri and Lemma 3.2.4 implies charge(x,X) ≥ ri.

If x does not belong to Bj , then charge(x,Z) ≤ d(x, xj) by Lemma 3.2.6.

Thus charge(x, Z) ≤ d(x, xi) + d(xi, xj) ≤ d(x, xi) + 2ri. The claim now follows by

Lemma 3.2.4, since the ratio of d(x, xi) + 2ri to max{ri, d(x, xi)} is at most 3.
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Chapter 4

The k-Median Problem

Given a set of points and associated interpoint distances, let the median of the set

be the point in the set that minimizes the weighted sum of distances to all other

points in the set. (Remark: The median is essentially the discrete analog of the

centroid, and is also called the medoid [36].) In this chapter, we will develop an effi-

cient algorithm for the well-known clustering problem where the goal is to partition

n weighted points into k sets such that the sum, over all points x, of the weight of

x multiplied by the distance from x to the median of set containing x is minimized.

This clustering problem is a variant of the classic k-median problem; the k-median

problem asks us to mark k of the points such that the sum over all points x of the

weight of x times the distance from x to the nearest marked point is minimized. It

is straightforward to see that the optimal objective function values for the k-median

problem and its clustering variant are equal, and furthermore that we can convert

a solution to the k-median problem into an equal-cost solution to its clustering

variant in O(nk) time. We establish a lower bound of Ω(nk) time on any random-

ized constant-factor approximation algorithm for either the k-median problem or

its clustering variant. Therefore, any constant-factor approximation algorithm for

the k-median problem implies a constant-factor approximation algorithm with the
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same asymptotic time complexity for the clustering variant. For this reason, we

focus only on the k-median problem in developing our upper bounds.

In light of the practical importance of clustering in numerous application

areas, we are also motivated to ask how input characteristics such as the point

weights and interpoint distances affect the complexity of the k-median problem

and its clustering variant. Weighted points are useful in a number of applications;

we ask the following natural question: Does allowing inputs with arbitrary point

weights incur a substantial time penalty? We note that even for moderate weights,

say O(n2), the naive approach of viewing a weighted point as a collection of unit-

weight points increases the input size dramatically. For certain applications, the

interpoint distances may lie in a relatively small range. Thus we are motivated

to ask: Does constraining distances to a small range admit substantially faster

algorithms? We resolve both of the above questions for a wide range of input

parameters by establishing a time bound of Θ(nk) for the k-median problem and its

clustering variant. Thus, in many cases having large point weights does not incur

a substantial time penalty, and, we cannot hope to develop substantially faster

algorithms even when the interpoint distances lie in a small range.

4.1 Summary of Results

Before summarizing the results in this chapter, we present some additional notation

that we will use in this chapter as well as the next chapter. Recall that we fixed

a set of points U with an associated metric distance function d : U × U → IR and

nonnegative function w : U → IR. An m-configuration is a configuration of size

at most m. For any points x and y in U , let w(x) denote the nonnegative weight

of x. We denote the minimum cost of any m-configuration by OPTm. (Recall that

an m-configuration corresponds to a set of m cluster centers.) For brevity, we say

that an m-configuration with cost at most a · OPT k is an (m, a)-configuration.
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We define an assignment as a function from U to U . For any assignment τ , we let

τ(U) denote the set {τ(x) | x ∈ U}. We refer to an assignment τ with |τ(U)| ≤ m

as a m-assignment. Given an assignment τ , we define the cost of τ , denoted c (τ),

as
∑

x∈U d(x, τ(x)) · w(x). It is straighforward to see that for any assignment τ ,

cost (τ(U)) ≤ c (τ). For brevity, we say that an assignment τ with |τ(U)| ≤ m and

cost at most a · OPT k is an (m, a)-assignment. For an assignment τ and a set

of points X, we let c (τ,X) =
∑

x∈X d(x, τ(x)) ·w(x). A k-median algorithm is (m,

a)-approximate if it produces an (m, a)-configuration. A k-median algorithm is

a-approximate if it is (k, a)-approximate. In light of the practical importance of

clustering in the application areas mentioned previously, we also consider the given

interpoint distances and point weights in our analysis. Let Rd denote the ratio of

the diameter of U (i.e., the maximum distance between any pair of points in U)

to the minimum distance between any pair of distinct points in U . Let Rw denote

the ratio of the maximum weight of any point in U to the minimum nonzero weight

of any point in U . (Remark: We can assume without loss of generality that at

least one point in U has nonzero weight since the problem is trivial otherwise.) Let

rd = 1 + blog Rdc and rw = 1 + blog Rwc.

We will also say that certain claims hold with high probability ; that is, for any

positive constant ξ, we can adjust constant factors in the definition of the algorithm

to achieve a failure probability less than n−ξ.

In this chapter we present a randomized O(1)-approximate k-median algo-

rithm that runs in

O

([
n + rdrw log

(
n

krw

)]
max{k, log n}+ (krw)2

)
(4.1)

time. Note that if k = Ω(log n), kr2
w = O(n), and rdrw log( n

krw
) = O(n), this time

bound simplifies to O(nk). Furthermore, these constraints simplify if we make the

standard assumption that the interpoint distances and point weights are polyno-

mially bounded. Then, we only need k = Ω(log n) and k = O( n
log2 n

) to obtain a
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time bound of O(nk). Our algorithm succeeds with high probability, that is, for any

positive constant ξ, we can adjust constant factors in the definition of the algorithm

to achieve a failure probability less than n−ξ.

We also establish a matching Ω(nk) lower bound on the running time of

any randomized O(1)-approximate k-median algorithm with a nonnegligible success

probability (e.g., at least 1
100), subject to the requirement that Rd exceeds n/k

by a sufficiently large constant factor relative to the desired approximation ratio.

To obtain tight bounds for the clustering variant, we also prove an Ω(nk) time

lower bound for any O(1)-approximate algorithm, but we only require that Rd be a

sufficiently large constant relative to the desired approximation ratio. Additionally,

our lower bounds assume only that Rw = O(1).

The key building block underlying our k-median algorithm is a novel sam-

pling technique that we call “successive sampling”. The basic idea is to take a

random sample of the points, set aside a constant fraction of the n points that

are “close” to the sample, and recurse on the remaining points. We show that

this technique rapidly produces a configuration whose cost is within a constant

factor of optimal. Specifically, for the case of uniform weights, our successive sam-

pling algorithm yields a (k log (n/k), O(1))-configuration with high probability in

O(n max{k, log n}) time.

In addition to this sampling result, our algorithms rely on an extraction

technique due to Guha et al. [16] that uses a black box O(1)-approximate k-median

algorithm to compute a (k, O(1))-configuration from any (m, O(1))-assignment.

The black box algorithm that we use is the linear-time deterministic online median

algorithm presented in Chapter 5. We note that although our online median al-

gorithm solves a more general problem than k-median, it is still the fastest known

deterministic constant-factor approximation algorithm for the k-median problem.

We note that this extraction technique implies that our sampling algorithm could
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have significant practical benefit as a data reduction technique and thus has the

possibility of obtaining a highly scalable k-median algorithm. That is, instead of

considering all n points, this extraction result allows to consider just the output of

our sampling algorithm, which has roughly O(k log n/k) points.

In developing our randomized algorithm for the k-median problem we first

consider the special case of uniform weights, that is, where Rw = rw = 1. For

this special case we provide a randomized algorithm running in O(n max{k, log n})

time subject to the constraint rd log n
k = O(n). The uniform-weights algorithm is

based directly on the two building blocks discussed above: We apply the successive

sampling algorithm to obtain (k log (n/k), O(1))-configuration and then use the

extraction technique to obtain a (k, O(1))-configuration. We then use this algorithm

to develop a k-median algorithm for the case of arbitrary weights. Our algorithm

begins by partitioning the n points into rw power-of-2 weight classes and applying

the uniform-weights algorithm within each weight class (i.e., we ignore the differences

between weights belonging to the same weight class, which are less than a factor

of 2 apart). The union of the rw k-configurations thus obtained is an (rwk, O(1))-

configuration. We then make use of our extraction technique to obtain a (k, O(1))-

configuration from this (rwk, O(1))-configuration.

4.1.1 Comparison to k-Means

As mentioned in Chapter 2, approaches to clustering such as the k-means heuristic

are well-studied (see, e.g., [9, 36]). The k-means heuristic is commonly used in

practice due to ease of implementation, speed, and good empirical performance.

Indeed, one iteration of the k-means heuristic requires just O(nk) time [9]; typical

implementations of the k-means heuristic make use of a small to moderate number

of iterations.

However, it is easy to construct inputs with just a constant number of points
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that, for certain initializations of k-means, yield solutions whose cost is not within

any constant factor of the optimal cost. For example, suppose we have 5 unit-

weight points in IR2 where three points are colored blue and two are colored red.

Let the blue points have coordinates (0, 1),(0, 0), and (0,−1), and let the red points

have coordinates (−D, 0) and (D, 0). For k = 3, the optimal solution has cost 1,

whereas the k-means heuristic, when initialized with the blue points, converges to

a solution with cost 2D (the blue points). Since D can be arbitrarily large, in this

case the k-means heuristic does not produce a solution within any constant factor of

optimal. Indeed, a variety of heuristics for initializing k-means have been previously

proposed, but no such initialization procedure is known to ensure convergence to a

constant-factor approximate solution.

The reader may wonder whether, by not restricting the k output points to be

drawn from the n input points, the k-means heuristic is able to compute a solution

of substantially lower cost than would otherwise be possible. The reduction in the

cost is at most a factor of two since given a k-means solution with cost C, it is

straightforward to identify a set of k input points with cost at most 2C.

For the k-means heuristic, the objective function is typically taken to be the

sum of squared distances rather than distances. The reader may wonder whether

this variation leads to a substantially different optimization problem. It is straight-

forward to show that squaring the distances of a metric space yields a distance

function that is “near-metric” in the sense that all of the properties of a metric

space are satisfied except that the triangle inequality only holds to within a con-

stant factor (2, in this case). It is not difficult to show that all of our upper bounds

hold, up to constant factors, for such near-metric spaces. Thus, if our algorithm is

used as the initialization procedure for k-means, the cost of the resulting solution is

guaranteed to be within a constant factor of optimal. Our algorithm is particularly

well-suited for this purpose because its running time, being comparable to that of a
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single iteration of k-means, does not dominate the overall running time.

4.2 Successive Sampling

Our first result is a successive sampling algorithm that constructs an assignment

that has cost O(OPT k) with high probability. We make use of this algorithm to

develop our uniform weights k-median algorithm. (Remark: We assume arbitrary

weights for our proofs since the arguments generalize easily to the weighted case;

furthermore, the weighted result may be of independent interest.) Informally speak-

ing, the algorithm works in sampling steps. In each step we take a small sample

of the points, set aside a constant fraction the weight whose constituent points are

each close to the sample, and recurse on the remaining points. Since we eliminate a

constant fraction of the weight at each sampling step, the number of samples taken

is logarithmic in the total weight. We are able to show that using the samples taken,

it is possible to construct an assignment whose cost is within a constant factor of

optimal with high probability. For the uniform weights k-median problem, our sam-

pling algorithm runs in O(n max{k, log n}) time. (We give a k-median algorithm for

the case of arbitrary weights in Section 4.5.)

Throughout the remainder of this paper, we use the symbols α, β, and k′

to denote real numbers appearing in the definition and analysis of our successive

sampling algorithm. The value of α and k′ should be chosen to ensure that the

failure probability of the algorithm meets the desired threshold. (See the paragraph

preceding Lemma 4.3.3 for discussion of the choice of α and k′.) The asymptotic

bounds established in this paper are valid for any choice of β such that 0 < β < 1.

We also make use of the following definitions:

• A ball A is a pair (x, r), where the center x of A belongs to U , and the radius

r of A is a nonnegative real.
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• Given a ball A = (x, r), we let Points(A) denote the set {y ∈ U | d(x, y) ≤ r}.

However, for the sake of brevity, we tend to write A instead of Points(A).

For example, we write “x ∈ A” and “A ∪ B” instead of “x ∈ Points(A)” and

“Points(A) ∪ Points(B)”, respectively.

• For any set X and nonnegative real r, we define Balls(X, r) as the set ∪x∈XAx

where Ax = (x, r).

4.2.1 Algorithm

The following algorithm takes as input an instance of the k-median problem and

produces an assignment σ such that with high probability, c (σ) = O(cost (X)) for

any k-configuration X.

Let U0 = U , and let S0 = ∅. While |Ui| > αk′:

• Construct a set of points Si by sampling (with replacement) bαk′c times from

Ui, where at each sampling step the probability of selecting a given point is

proportional to its weight.

• For each point in Ui, compute the distance to the nearest point in Si.

• Using linear-time selection on the distances computed in the previous step,

compute the smallest real νi such that w(Balls(Si, νi)) ≥ βw(Ui). Let Ci =

Balls(Si, νi).

• For each x in Ci, choose a point y in Si such that d(x, y) ≤ νi and let σ(x) = y.

• Let Ui+1 = Ui \ Ci.

Note that the loop terminates since w(Ui+1) < w(Ui) for all i ≥ 0. Let t be

the total number of iterations of the loop. Let Ct = St = Ut. By the choice of Ci

in each iteration and the loop termination condition, t is O(log (w(U)/k′)). For the

29



uniform demands k-median problem, t is simply O(log (n/k′)). From the first step

it follows that |σ(U)| is O(tk′).

The first step of the algorithm can be performed in O(nk′) time over all

iterations. In each iteration the second and third steps can be performed in time

O(|Ui| k′) by using a (weighted) linear time selection algorithm. For the uniform

demands k-median problem, this computation requires O(nk′) time over all itera-

tions. The running times of the third and fourth steps are negligible. Thus, for the

uniform demands k-median problem, the total running time of the above algorithm

is O(nk′).

4.3 Analysis of the Successive Sampling Algorithm

The goal of this section is to establish that, with high probability, the output σ of our

successive sampling algorithm has cost O(OPT k). We formalize this statement in

Theorem 2 below; this result is used to analyze the algorithms of Sections 4.4 and 4.5.

The proof of the theorem makes use of Lemma 4.3.3, established in Section 4.3.1,

and Lemmas 4.3.5 and 4.3.11, established in Section 4.3.2.

Theorem 2 With high probability, c (σ) = O(cost (X)) for any k-configuration X.

Proof: The claim of Lemma 4.3.3 holds with high probability if we set k′ =

max{k, log n} and α and β appropriately large. The theorem then follows from

Lemmas 4.3.3, 4.3.5, and 4.3.11.

Before proceeding, we give some intuition behind the proof of Theorem 2.

The proof consists of two main parts. First, Lemma 4.3.3 shows that with high

probability, for i such that 0 ≤ i ≤ t, the value νi computed by the algorithm in

each iteration is at most twice a certain number µi. We define µi to be the minimum

real for which there exists a k-configuration X contained in Ui with the property

that a certain constant fraction, say 3
4 , of the weight of Ui is within distance µi
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from the points of X. We note that µi can be used in establishing a lower bound

on the cost of an optimal k-configuration for Ui. By the definition of µi, for any

k-configuration Y , a constant fraction, say 1
4 , of the weight of Ui has distance at

least µi from the points in Y . To prove Lemma 4.3.3, we consider an associated

balls-in-bins problem. For each i, 1 ≤ i ≤ t, we consider a k-configuration X that

satisfies the definition of µi and for each point in X, view the points in Ui within

distance µi as a weighted bin. Then, we view the random samples in the first step

of the sampling algorithm as ball tosses into these weighted bins. We show that

with O(k) such ball tosses, a high constant fraction of the total weight of the bins

is covered with high probability. Since the value of νi is determined by the random

samples, it is straightforward to conclude that νi is within twice µi.

It may seem that Theorem 2 follows immediately from Lemma 4.3.3, since

for each i, we can approximate µi within a factor of 2 with νi, and any optimal

k-configuration can be charged a distance of at least µi for a constant fraction of the

weight in Ui. However, this argument is not valid since for j > i, Uj is contained in

Ui; thus an optimal k-configuration could be charged µi and µj for the same point.

For the second part of the proof of Theorem 2 we provide a more careful accounting

of the cost of an optimal k-configuration. Specifically, in Section 4.3.2, we exhibit t

mutually disjoint sets with which we are able to establish a valid lower bound on the

cost of an optimal k-configuration. That is, for each i, 1 ≤ i ≤ t, we exhibit a subset

of Ui that has a constant fraction of the total weight of Ui and for which an optimal

k-configuration must be charged a distance of at least µi. Lemma 4.3.11 formalizes

this statement and proves a lower bound on the cost of an optimal k-configuration,

and Lemma 4.3.5 completes the proof of Theorem 2 by providing an upper bound

on the cost of σ.
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4.3.1 Balls and Bins Analysis

The proof of Lemma 4.3.3 below relies on bounding the failure probability of a

certain family of random experiments. We begin by bounding the failure probability

of a simpler family of random experiments related to the well-known coupon collector

problem. For any positive integer m and any nonnegative reals a and b, let us define

f(m,a, b) as the probability that more than am bins remain empty after dbe balls

are thrown at random (uniformly and independently) into m bins. Techniques for

analyzing the coupon collector problem (see. e.g., [40]) can be used to obtain sharp

estimates on f(m,a, b). However, the following simple upper bound is sufficient for

our purposes.

Lemma 4.3.1 For any positive real ε, there exists a positive real λ such that for

all positive integers m and any real b ≥ m, we have f(m, ε, λb) ≤ e−b.

Proof: Note that a crude upper bound on f(m, ε, λb) is given by the probabil-

ity of obtaining at most (1 − ε)m successes in dλbe Bernoulli trials, each of which

has success probability ε. The claim then follows by choosing λ sufficiently large

and applying a standard Chernoff bound. (We have in mind the following tail

bound: If X is a random variable drawn from a Bernoulli distribution with n tri-

als and each trial has success probability p, then for all δ such that 0 ≤ δ ≤ 1,

Pr {X ≤ (1− δ)np} ≤ e−δ2np/2; see [1, Appendix A] for a derivation.)

We now develop a weighted generalization of the preceding lemma. For any

positive integer m, nonnegative reals a and b, and m-vector v = (r0, . . . , rm−1) of

nonnegative reals ri, we define define g(m,a, b, v) as follows. Consider a set of m

bins numbered from 0 to m− 1 where bin i has associated weight ri. Let R denote

the total weight of the bins. Assume that each of dbe balls is thrown independently

at random into one of the m bins, where bin i is chosen with probability ri/R,

0 ≤ i < m. We define g(m,a, b, v) as the probability that the total weight of the
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empty bins after all of the balls have been thrown is more than aR.

Lemma 4.3.2 For any positive real ε there exists a positive real λ such that for

all positive integers m and any real b ≥ m, we have g(m, ε, λb, v) ≤ e−b for all

m-vectors v of nonnegative reals.

Proof: Fix ε, b, m, and v. As in the paragraph preceding the lemma statement in

Section 4.2, let v = (r0, . . . , ri) and let R denote the sum of the ri’s.

We will use Lemma 4.3.1 to deduce the existence of a suitable choice of λ that

depends only on ε. Our strategy for reducing the claim to its unweighted counterpart

will be to partition almost all of the weight associated with the m weighted bins

into Θ(m) “sub-bins” of equal weight. Specifically, we let s denote εR
2m and for each

i we partition the weight ri associated with bin i into
⌊ ri

s

⌋
complete sub-bins of

weight s and one incomplete sub-bin of weight less than s. Furthermore, when a

ball is thrown into a particular bin, we imagine that the throw is further refined to

a particular sub-bin of that bin, where the probability that a particular sub-bin is

chosen is proportional to its weight.

Note that the total weight of the incomplete sub-bins is less than εR/2.

Furthermore, we can assume without loss of generality that ε ≤ 1, since the claim

holds vacuously for ε > 1. It follows that less than half of the total weight R lies

in incomplete sub-bins. Thus, by a standard Chernoff bound argument, for any

positive real λ′ we can choose λ sufficiently large to ensure that the following claim

holds with probability of failure at most e−b/2 (i.e., half the desired failure threshold

appearing in the statement of the lemma): At least λ′b of the dλbe balls are thrown

into complete sub-bins.

Let m′ denote the number of complete sub-bins. Since at least half of the total

weight R belongs to complete sub-bins, we have m/ε ≤ m′ ≤ 2m/ε. Accordingly, by

a suitable application of Lemma 4.3.1, we can establish the existence of a positive

real λ′ (depending only on ε) such that, after at least λ′b balls have landed in
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complete sub-bins, the probability that the number of empty complete sub-bins

exceeds εm′/2 is at most e−b/2.

From the claims of the two preceding paragraphs, we can conclude that

there exists a λ (depending only on ε) such that the following statement holds

with probability of failure at most e−b: The number of empty complete sub-bins

is at most εm′/2. Note that the total weight of the complete sub-bins is at most

s · ε
2 ·

2t
ε = εR/2. As argued earlier, the total weight of the incomplete sub-bins is

also at most εR/2. Thus, there exists a positive real λ such that after dλbe ball

tosses, the probability that the total weight of the empty bins is more than εR is at

most e−b.

For the remainder of this section, we fix a positive real γ such that β < γ < 1.

For 0 ≤ i ≤ t, let µi denote a nonnegative real such that there exists a k-configuration

X for which the following properties hold: (1) the total weight of all points x in Ui

such that d(x,X) ≤ µi is at least γw(Ui); (2) the total weight of all points x in Ui

such that d(x, X) ≥ µi is at least (1− γ)w(Ui). (Note that such a µi is guaranteed

to exist.) Lemma 4.3.3 below establishes the main probabilistic claim used in our

analysis of the algorithm of Section 4.2.1. We note that the lemma holds with high

probability by taking k′ = max{k, dlog ne} and α and β appropriately large.

Lemma 4.3.3 For any positive real ξ, there exists a sufficiently large choice of α

such that νi ≤ 2µi for all i, 0 ≤ i ≤ t, with probability of failure at most e−ξk′.

Proof: Fix i and let X denote a k-configuration such that w(Balls(X, µi)) ≥

γw(Ui). Let us define each point y in Ui to be good if it belongs to Balls(X, µi),

and bad otherwise. Let G denote the set of good points. We associate each good

point y with its closest point in X, breaking ties arbitrarily. For each point x in X,

let Ax denote the set of good points associated with x; note that the sets Ax form

a partition of G. Recall that Si denotes the ith set of sample points chosen by the
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algorithm. For any x in X, we say that Si covers Ax iff Si ∩ Ax is nonempty. For

any point y, we say that Si covers y iff there exists an x in X such that y belongs

to Ax and Si covers Ax. Let G′ denote the set of points covered by Si; note that

G′ ⊆ G.

We will establish the lemma by proving the following claim: For any positive

reals ε and ξ, there exists a sufficiently large choice of α such that w(G′) ≥ (1 −

ε)w(G) with probability of failure at most e−ξk′ . This claim then implies the lemma

because β (the factor appearing in the definition of νi) is less than γ (the factor

appearing in the definition of µi) and for all points y covered by Si, d(y, Si) ≤ 2µi.

It remains to prove the preceding claim. First, note that the definition of µi

implies that at least a γ fraction of the total weight is associated with good points.

Thus, a standard Chernoff bound argument implies that for any positive reals λ

and ξ, there exists a sufficiently large choice of α such that at least λk′ of the bαk′c

samples associated with the construction of Si are good with probability of failure

at most e−ξk′/2.

To ensure that w(G′) is at least (1− ε)w(G) with failure probability e−ξk′/2,

we can apply Lemma 4.3.2 by viewing each sample associated with a good point

in Si as a ball toss and each set Ax as a bin with weight w(Ax). The claim then

follows.

4.3.2 Upper and Lower Bounds on Cost

In this section we provide an upper bound on the cost of the assignment σ as well

a lower bound on the cost of an optimal k-configuration. Lemmas 4.3.4 and 4.3.5

establish the upper bound on c (σ), while the rest of the section is dedicated to

establishing the lower bound on the cost of an optimal k-configuration.

Lemma 4.3.4 For all i such that 0 ≤ i ≤ t, c (σ,Ci) ≤ νiw(Ci).
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Proof: Observe that

c (σ,Ci) =
∑
x∈Ci

d(x, σ(x)) · w(x)

≤
∑
x∈Ci

νi · w(x)

= νiw(Ci),

where the second step follows from the definition of Ci and the construction of σ(x).

Lemma 4.3.5

c (σ) ≤
∑

0≤i≤t

νiw(Ci)

Proof: Observe that c (σ) =
∑

0≤i≤t c (σ,Ci) ≤
∑

0≤i≤t νiw(Ci). The first step

follows since the sets Ci, 0 ≤ i ≤ t, form a partition of U . The second step follows

from Lemma 4.3.4.

We now focus on establishing a lower bound on the cost of an optimal k-

configuration. Throughout the remainder of this section we fix an arbitrary k-

configuration X. For all i such that 0 ≤ i ≤ t, we let Fi denote the set {x ∈ Ui |

d(x,X) ≥ µi}, and for any integer m > 0, we let Fm
i denote Fi \ (∪j>0Fi+jm) and

we let Gi,m denote the set of all integers j such that 0 ≤ j ≤ t and j is congruent

to i modulo m.

Lemma 4.3.6 Let i, j, `, and m be integers such that 0 ≤ ` ≤ t, m > 0, i 6= j, and

i and j belong to G`,m. Then Fm
i ∩ Fm

j = ∅.

Proof: Without loss of generality, assume that i < j. Then, by definition, Fm
i =

Fi \ (∪s>0Fi+sm). Since Fm
j ⊆ Fj and j = i + sm for some positive integer s, it

follows that Fm
i and Fm

j do not intersect.
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Lemma 4.3.7 Let i be an integer such that 0 ≤ i ≤ t and let Y be a subset of Fi.

Then w(Fi) ≥ (1− γ)w(Ui) and cost (X, Y ) ≥ µiw(Y ).

Proof: First, note that by the definition of µi, w(Fi) is at least (1 − γ)w(Ui). By

the definition of Fi, d(y, X) ≥ µi for any y in Fi. Thus cost (X, Y ) =
∑

y∈Y d(y, X) ·

w(y) ≥ µiw(Y ).

Lemma 4.3.8 For all integers ` and m such that 0 ≤ ` ≤ t and m > 0,

cost
(
X,∪i∈G`,m

Fm
i

)
≥

∑
i∈G`,m

µiw(Fm
i ).

Proof: By Lemma 4.3.6, for all ` and m such that 0 ≤ ` ≤ t and m > 0,

cost
(
X,∪i∈G`,m

Fm
i

)
=

∑
i∈G`,m

cost (X, Fm
i ) .

By Lemma 4.3.7, cost (X, Fm
i ) ≥ µiw(Fm

i ), and the claim follows.

For the remainder of the section, let r = dlog(1−β) ((1− γ)/3)e.

Lemma 4.3.9 For all i such that 0 ≤ i ≤ t, w(Fi+r) ≤ 1
3w(Fi).

Proof: Note that w(Fi+r) ≤ w(Ui+r) ≤ (1 − β)rw(Ui) ≤ (1−β)r

1−γ w(Fi), where the

last step follows from Lemma 4.3.7. The claim then follows by the definition of

r.

Lemma 4.3.10 For all i such that 0 ≤ i ≤ t, w(F r
i ) ≥ w(Fi)

2 .

Proof: Observe that

w(F r
i ) = w(Fi \ ∪j>0Fi+jr)

≥ w(Fi)−
∑
j>0

w(Fi)
3j

≥ w(Fi)
2

,

where the second step follows from Lemma 4.3.9.
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Lemma 4.3.11 For any k-configuration X,

cost (X) ≥ 1− γ

2r

∑
0≤i≤t

µiw(Ci).

Proof: Let ` = arg max0≤`<r{
∑

i∈G`,r
w(F r

i )} and fix a k-configuration X. Then

cost (X) is at least

cost
(
X,∪i∈G`,r

F r
i

)
≥

∑
i∈G`,r

µiw(F r
i )

≥ 1
r

∑
0≤i≤t

µiw(F r
i )

≥ 1
2r

∑
0≤i≤t

µiw(Fi)

≥ 1− γ

2r

∑
0≤i≤t

µiw(Ui)

≥ 1− γ

2r

∑
0≤i≤t

µiw(Ci),

where the first step follows from Lemma 4.3.8, the second step follows from averaging

and the choice of `, the third step follows from Lemma 4.3.10, the fourth step follows

from Lemma 4.3.7, and the last step follows since Ci ⊆ U .

4.4 An Efficient Algorithm for the Case of Uniform

Weights

In this section we use the sampling algorithm of Section 4.2, a black-box k-median

algorithm and algorithm Modified-Small-Space of Appendix A to obtain a fast k-

median algorithm for the case of uniform weights. We note that algorithm Modified-

Small-Space and the accompanying analysis is a slight generalization of results ob-

tained by Guha et al. [16]. Informally speaking, algorithm Modified-Small-Space

works in two phases. First, we use an (a, O(1))-approximate k-median algorithm on

the input to compute ` (a, O(1))-configurations. Then, we construct a new k-median
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problem instance from these (a, O(1))-configurations and use an O(1)-approximate

k-median algorithm to compute a k-configuration. We are able to show that this

k-configuration is actually a (k, O(1))-configuration.

We obtain our uniform weights k-median algorithm by applying our sam-

pling algorithm in Step 2 of algorithm Modified-Small-Space and the online median

algorithm of Chapter 5 in Step 4. (Remark: Although the online median prob-

lem is a generalization of the k-median problem, the O(n2)-time online median

algorithm of Chapter 5 is still the fastest deterministic algorithm for the k-median

problem.) We set the parameter ` of algorithm Modified-Small-Space to 1 and pa-

rameter k′ of our sampling algorithm to max{k, log n}. By Theorem 2, the output

of our sampling algorithm is an (m, O(1))-assignment with high probability, where

m = O(max{k, log n} log (n/k)). Thus, by Theorem 6, the resulting k-median algo-

rithm is O(1)-approximate with high probability.

We now analyze the running time of the above algorithm on inputs with

uniform weights. The time required to compute the output assignment σ in Step

2 is O(n max{k, log n}). We note that the weight function required in Step 3 of

Modified-Small-Space can be computed during the execution of the sampling algo-

rithm without increasing its running time. The deterministic online median algo-

rithm of Chapter 5 requires O(|σ(U)|2 + |σ(U)| rd) time. The total time taken by

the algorithm is therefore

O(nk′ + |σ(U)|2 + |σ(U)| rd)

= O(nk′ + k′2 log2 (n/k) + rdk
′ log (n/k))

= O(nk′ + rdk
′ log (n/k)),

where the first step follows from the analysis of our sampling algorithm for the

case of uniform weights. By the choice of k′, the overall running time is O((n +

rd log (n/k))max{k, log n}). Note that if k = Ω(log n) and rd log (n/k) = O(n), this

time bound simplifies to O(nk).
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4.5 An Efficient Algorithm for the Case of Arbitrary

Weights

The algorithm developed in Sections 4.2 and 4.4 is O(1)-approximate for the k-

median problem with arbitrary weights. However, the time bound established for

the case of uniform weights does not apply to the case of arbitrary weights because

the running time of the successive sampling procedure is slightly higher in the latter

case. (More precisely, the running time of the sampling algorithm of Section 4.2

is O(nk′ log w(U)
k′ ) for the case of arbitrary weights.) In this section, we use the

uniform-weight algorithm developed in Sections 4.2 and 4.4 to develop a k-median

algorithm for the case of arbitrary weights that is time optimal for a certain range

of k. We first give an informal description of the algorithm, which consists of three

main steps. First, we partition the input points according to weight into rw sets.

Next, we run our uniform weights k-median algorithm on each of the resulting sets,

and show that the union of the resulting outputs is an (O(krw), O(1))-configuration.

We then obtain a (k, O(1))-configuration by creating a problem instance from the

(O(krw), O(1))-configuration computed in the previous step and then feeding this

problem instance as input to an O(1)-approximate k-median algorithm.

We now give a precise description of our k-median algorithm. Let A be

the uniform weights k-median algorithm of Sections 4.2 and 4.4, and let B be an

O(1)-approximate k-median algorithm.

• Compute sets Bi for 0 ≤ i < rw such that for all x ∈ Bi, 2i ≤ w(x) ≤ 2i+1.

• For i = 0, 1 . . . rw − 1: Run A with Bi as the set of input points, d as

the distance function, 2i+1 as the fixed weight, and the parameter k′ =

max{k, dlog ne}; let Zi denote the output. Let φi denote the assignment in-

duced by Zi, that is, φi(x) = y iff y is in Zi and d(x,Zi) = d(x, y). For a point

x, if x ∈ Zi, let wφi
(x) = w(φ−1

i (x)), otherwise let wφi
(x) = 0.
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• Let φ be the assignment corresponding to the union of the assignments φi de-

fined in the previous step, and let wφ denote the weight function corresponding

to the union of the weight functions wφi
. Run B with φ(U) as the set of input

points, d as the distance function, and wφ as the weight function. Output the

resulting k-configuration.

Note that in the second step, k′ is defined in terms of n (i.e., |U |) and not

|Bi|. Thus, the argument of the proof of Theorem 2 implies that A succeeds with

high probability in terms of n. Assuming that rw is polynomially bounded in n,

with high probability we have that every invocation of A is successful.

We now observe that the above algorithm corresponds to algorithm Modified-

Small-Space with the parameter ` is set to rw, the uniform weights algorithm of

Section 4.4 is used in step 2 of Small-Space, and the online median algorithm pre-

sented in Chapter 5 is used in step 4 of Small-Space. Thus,Theorem 6 implies that

the output of B is a (k, O(1))-configuration with high probability.

We now discuss the running time of the above algorithm. It is straightforward

to compute the sets Bi in O(n) time. Our uniform weights k-median algorithm

requires O((|Bi| + rd log |Bi|
k )k′) time to compute Zi, so the time required for all

invocations of A is

O

 ∑
0≤i<rw

(|Bi|+ rd log (|Bi| /k)) k′


= O

(
rw

(
nk′

rw
+ rdk

′ log
(

n

krw

)))
= O

((
n + rdrw log

n

krw

)
k′
)

.

(The first step follows from the fact that the sum is maximized when |Bi| = n/rw.)

Note that each weight function wφi
can be computed in O(|Bi| k) time; it follows

that wφ can be computed in O(nk) time. We employ the online median algorithm

of Chapter 5 as the black-box k-median algorithm B. Since |φ(U)| is at most krw,
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the time required for the invocation of B is O((krw)2 + krwrd). It follows that the

overall running time of the algorithm is as stated in Equation (4.1).

4.6 Lower Bounds

In this section, we give lower bounds for the k-median problem and its clustering

variant. Throughout the section, we refer to the clustering variant as the k-clustering

problem. Recall that the k-clustering problem asks us to partition the input points

such that the sum, over all sets in the partition, of the weight of a point times

the distance to the median of its set, is minimized. Since any k-median solution

can be converted into a solution for the k-clustering problem in O(nk) time, in

developing our upper bounds it was sufficient to consider only the k-median problem.

Unfortunately this reduction is not useful for the present purpose of establishing

Ω(nk) lower bounds; accordingly, in this section we consider the problems separately.

For both the k-clustering problem and the k-median problem, we establish a

lower bound of Ω(nk) time on any randomized algorithm that is O(1)-approximate

with even a negligible probability. Since the overall objective of this paper is to

study the complexity of approximate clustering in terms of the four parameters n,

k, Rd, and Rw, it is desirable for the metric spaces associated with our lower bound

arguments to have small values for both Rd and Rw. In terms of Rw, we achieve

this goal completely, since all of the input distributions that we consider below have

uniform weights, that is, Rw = 1. For the k-clustering problem, our lower bounds

are established with Rd equal to a constant (sufficiently large relative to the desired

approximation ratio); this is clearly best possible up to a constant factor. For the

k-median problem, our lower bound requires Rd to exceed n/k by a sufficiently large

constant factor relative to the desired approximation ratio.

In our proofs, we assume an oracle model of computation in which the algo-

rithm is charged only for asking the oracle the distance between a pair of points.
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We refer to each call to the oracle as a probe. By a generalization of Yao’s tech-

nique [46] due to Mackenzie [34], we can establish a lower bound of p on the success

probability of a randomized algorithm by exhibiting an input distribution for which

every deterministic algorithm has a success probability of at most p. (The intuition

underlying this reduction is that the success probability of a randomized algorithm

is just a convex combination of the success probabilities of a number of deterministic

algorithms.) Thus in what follows, we restrict our attention to exhibiting “hard”

distributions for determinstic algorithms. All of the problems considered in this sec-

tion take the same input as the k-median problem. Our lower bounds also hold for

the non-uniform case since for each choice of n and k, we exhibit a probability dis-

tribution over the set of n-point metric spaces on which no deterministic algorithm

making a sufficiently small number of probes can achieve more than a negligible

probability of success.

For any positive real ` > 1, it is convenient to define a metric space to be

`-simple if the following conditions hold: (1) all of the points have unit weight; (2)

the points of the metric space can be partitioned into equivalence classes such that

the distance between any pair of distinct points is 1 if the points belong to the same

equivalence class, and ` otherwise. Thus, any `-simple metric space has Rd = ` and

Rw = 1. Our lower bounds are all based on `-simple input distributions for some

appropriately chosen value of `.

In order to establish a lower bound for the k-clustering problem, we find it

convenient to introduce a problem that we call the k-matching problem. The input

to the k-matching problem is the same as the input to the k-clustering problem.

The output is a partition of the n input points into a collection of disjoint pairs and

singletons, subject to the constraint that there are at most k singletons. We refer

to such an output as a k-matching. The cost of a k-matching is defined as the sum,

over all output pairs of points (x, y), of d(x, y) · min{w(x), w(y)}. The goal of the
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k-matching problem is to compute a minimum-cost k-matching.

Given an algorithm for the k-clustering problem, consider the associated

k-matching algorithm defined as follows: (1) run the k-clustering algorithm to par-

tition the n input points into at most k clusters; (2) arbitrarily partition each even-

sized cluster into a number of pairs; (3) arbitrarily partition each odd-sized cluster

into a singleton and a number of pairs; (4) return the k-matching formed by the sin-

gletons and pairs computed in the previous two steps. Using the triangle inequality,

it is straightforward to prove that the cost of the k-matching produced by this algo-

rithm is at most the cost of the k-clustering computed in step (1) (i.e., the sum over

all points x of the weight of x multiplied by the distance from x to the medoid of

its cluster). Furthermore, this k-matching algorithm uses exactly the same number

of probes as the associated k-clustering algorithm. Below we will exhibit an input

distribution with respect to which any deterministic k-matching algorithm making

a sufficiently small number of probes has only a negligible probability of computing

a k-matching with cost within a constant factor of the cost of the optimal cluster-

ing. By the foregoing reduction from the k-matching problem to the k-clustering

problem, such a result implies that any deterministic k-clustering algorithm running

on the same input distribution and making the same small number of probes has

only the same negligible probability of computing a k-clustering with cost within a

constant factor of optimal.

In order to state and prove our lower bounds it is convenient to introduce a

shorthand notation for expressing certain kinds of statements. In particular, for any

statement S, we define an associated statement, which we refer to as the P -claim

S, as follows: For all positive reals ε and c, there exist positive reals δ and γ and

positive integers n0 and a such that for all positive integers n and k for which n ≥ n0

and 1 < k < n, there exists a probability distribution D over the set of `-simple

n-point metric spaces where ` = γ such that any deterministic k-matching algorithm
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A making at most δnk probes on an input drawn uniformly at random from D, the

statement S holds with probability at least 1− ε. (We remark that a given P -claim

S need not contain the parameter c. We also remark that if the P -claims S and T

hold, then the P -claim S ∧ T holds.)

We define a P ′-claim in the same way as a P -claim except that the restriction

on k is strengthened to 1 < k < n
2 . Similarly, a P ′′-claim is a variant of a P -claim

in which the restriction on k is n
2 ≤ k < n. Note that for any statement S, the

P ′-claim S and the P ′′-claim S imply the P -claim S.

Finally, for addressing the k-median problem we define Q-, Q′-, and Q′′-

claims in an analogous manner, where the algorithm A is assumed to be a k-median

algorithm rather than a k-matching algorithm, and ` is defined to be γn
k instead of

γ.

The rest of this section is devoted to proving the following two theorems.

Theorem 3 The P -claim “the cost of the k-matching solution computed by A is

more than c times the cost of an optimal k-clustering solution” holds.

Theorem 4 The Q-claim “the cost of the k-median solution computed by A is more

than c times the cost of an optimal k-median solution” holds.

The proof of the first theorem follows from Lemmas 4.6.1 and 4.6.2 below.

The proof of the second theorem follows from Lemmas 4.6.3 and 4.6.4.

Lemma 4.6.1 The P ′-claim “the cost of the k-matching solution computed by A is

more than c times the cost of an optimal k-clustering solution” holds.

Proof Sketch: Let D denote the distribution of `-simple n-point metric spaces where

each point is independently placed into one of k equivalence classes uniformly at

random. Given an input instance drawn from D, the cost of an optimal k-clustering

solution is easily seen to be n− k.
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Let us define a point x to be clean with respect to an execution of algorithm

A if the following two conditions are satisfied: (1) there is no point y such that

d(x, y) = 1 and A has probed d(x, y); (2) A has probed the distance between x and

at most εk other points.

It is not difficult to establish the following P ′-claim: “At least (1−ε)n points

are clean”. Since A is a k-matching algorithm it outputs at least n− k ≥ n/2 pairs.

This observation, together with the preceding P ′-claim, implies the P ′-claim “At

least n/3 of the pairs produced by A consist of two clean points.” Note that each

such output pair of clean points independently contributes a cost of ` to the cost

of the k-matching produced by A with probability at least 1− 1
k(1−ε) , since a clean

point is equally likely to belong to any of the at least k(1 − ε) equivalence classes

(those for which A has not probed a distance between the given clean point and some

point in the equivalence class). The claim of the lemma now follows by choosing

constants appropriately (i.e., by setting δ, γ, and n0 to appropriate functions of ε

and c) and applying a standard Chernoff bound argument.

Lemma 4.6.2 The P ′′-claim “the cost of the k-matching solution computed by A

is more than c times the cost of an optimal k-clustering solution” holds.

Proof Sketch: The proof of the preceding lemma does not readily extend to large

values of k, so we employ a somewhat different approach. In this case we define

the input distribution D by randomly partitioning the n points into k clusters (i.e.,

equivalence classes), n−k of which are pairs, and 2k−n of which are singletons. As

in the proof of Lemma 4.6.1, the cost of an optimal k-clustering solution is n− k.

Let us assume for the sake of simplicity that n is a multiple of 2a. (Remark:

It is not difficult to modify our argument to handle general n.) For the sake of the

analysis, it is useful to think of sampling from the input distribution D via the fol-

lowing three-stage process: (1) randomly partition the n points into n
2a supergroups
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of size 2a; (2) randomly partition each supergroup into a pairs; (3) pick a random

set of k − n
2 pairs and split them to obtain 2k − n singletons. In what follows we

refer to these pairs and singletons as input-pairs and input-singletons, in order to

avoid confusion with the pairs and singletons computed by algorithm A, which we

refer to as output-pairs and output-singletons.

We define a supergroup to be interesting if it contains at least one input-pair.

Note that there are at least n−k
a interesting supergroups. Let us define a supergroup

to be red if it contains at least one output-pair; otherwise, it is blue.

If there are i blue supergroups then at least i output-pairs either span distinct

supergroups or contain at least one input-singleton; it follows that the cost of the

k-matching produced by A is at least i`. If at least half (say) of the interesting

supergroups are blue, this argument is sufficient to establish the lemma. Thus, in

what follows, we may assume that at least half of the interesting supergroups are

red.

Let us define a supergroup to be clean with respect to an execution of algo-

rithm A if A does not probe the distance between any two points in the supergroup.

It is not difficult to establish the following P ′′-claim: “At least a 1 − ε fraction of

the interesting supergroups are clean.” By this P ′′-claim and the assumption of the

previous paragraph, we establish the P ′′-claim “at least one-third of the interesting

supergroups are clean and red”.

Let G denote a clean interesting red supergroup and let (x, y) denote an

output-pair that belongs to G (such a pair exists since G is red). If x is an input-

singleton then the cost of pair (x, y) is `, and we can attribute this cost to G.

Otherwise, x belongs to some input-pair (x, z), and algorithm A pays ` for the

pair (x, y) unless y = z. But the probability that y = z is 1
2a−1 since G is clean.

Furthermore, the event that y = z is independent of the analogous events defined for

other clean interesting red supergroups. Thus each clean interesting red supergroup

47



independently contributes, with probability at least 1 − 1
2a−1 , a cost of at least `

to the total cost of the k-matching produced by A. The claim of the lemma now

follows by choosing constants appropriately and applying a standard Chernoff bound

argument.

Lemma 4.6.3 The Q′-claim “the cost of the k-median solution computed by A is

more than c times the cost of an optimal k-median solution” holds.

Proof Sketch: Let D denote the distribution of `-simple n-point metric spaces as-

sociated with the following partitioning scheme: (1) independently place each of the

n points into one of bk/2c tentative equivalence classes uniformly at random; (2)

randomly select dk/2e special points and move each of these special points into a

singleton equivalence class. Note that for any such instance, the cost of an optimal

k-median solution is n− k.

We define a point x to be clean with respect to an execution of algorithm

A if there is no point y belonging to the same tentative equivalence class as x for

which A has probed d(x, y).

It is not difficult to establish the following pair of Q′-claims: (1) at least

(1− ε)n points are clean; (2) at least (1− ε) dk/2e of the special points are clean.

Let X denote the random variable corresponding to the set of clean points,

and let Y denote the remaining points. Let Z denote the random variable cor-

responding to the set of special clean points. We now argue that the conditional

distribution of Z given X and |Z| has a simple structure, namely, Z is a uniformly

random subset of X of size |Z|. This claim holds because the definition of a clean

point implies that the behavior of algorithm A is the same no matter which size-|Z|

subset of X is equal to Z. Combining this claim with the results of the preceding

paragraph, it is straightforward to establish the Q′-claim “A fails to output 1
4 (say)

of the clean special points.”
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Note that each special point that does not appear in the output of A con-

tributes ` to the cost of the k-median solution computed by A. Thus we obtain the

Q′-claim “the cost of the solution computed by A is at least (1 − ε)k`/8”. Choos-

ing γ sufficiently large (depending on c), the claim of the lemma then follows since

` = γn/k.

Lemma 4.6.4 The Q′′-claim “the cost of the k-median solution computed by A is

more than c times optimal” holds.

Proof Sketch: This proof is similar to that of Lemma 4.6.2 above. We define the

input distribution D in the same manner, as well as the following terms: supergroup,

clean supergroup, interesting supergroup, input-pair, input-singleton. As before,

note that at least n−k
a of the supergroups are interesting.

We define the input-weight of a supergroup as the number of input-pairs and

input-singletons that it contains. We define the output-weight of a supergroup as

the size of its intersection with the k-median solution computed by A. We define the

discrepancy of a supergroup as its input-weight minus its output-weight. Note that

the sum of the discrepancies of all supergroups is zero since the total input-weight

and the total output-weight are both equal to k. A supergroup is balanced if it has

discrepancy 0.

If the total discrepancy of the supergroups with positive discrepancy is s then

it is straightforward to prove that the cost of the k-median solution computed by A

is at least s`. If s is at least one-quarter of the number of interesting supergroups

then this argument is sufficient to establish the claim of the lemma. Thus in what

follows we may assume that s is less than one-quarter of the number of interesting

supergroups. Under this assumption, at least half of the interesting supergroups are

balanced (since at most one-quarter of them can have negative discrepancy).

It is not difficult to establish the following Q′′-claim: “At least a 1−ε fraction

of the interesting supergroups are clean.” Combining this with the conclusion of the
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preceding paragraph we obtain the Q′′-claim “at least one-third of the interesting

supergroups are clean and balanced”.

Let G denote a clean interesting balanced supergroup with i input-pairs and

j input-singletons. Thus the input-weight and output-weight of G is i + j (since

G is balanced), and i > 0 (since G is interesting). In order to avoid paying a cost

of ` for servicing any of the points in supergroup G, the subset of G of size i + j

contained in the output of A has to include exactly one point out of each of the

i input-pairs, and all of the j input-singletons. Since G is clean, the probability

that A produces such an output is 2i divided by
(2a

i

)
. Given the constraints on i,

namely, 1 ≤ i ≤ a, this probability is at most 1/a. Furthermore, the event that A

produces such an output is independent the analogous events defined for other clean

interesting balanced supergroups. Thus each clean interesting balanced supergroup

independently contributes, with probability at least 1/a, a cost of at least ` to the

total cost of the k-median solution produced by A. The claim of the lemma now

follows by choosing constants appropriately and applying a standard Chernoff bound

argument.
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Chapter 5

The Online Median Problem

In this chapter, we formulate and study the online median problem, our general-

ization of the k-median problem. To give some intuition behind the online median

problem, we first present it as a problem of resource location and show how it gen-

eralizes the k-median problem. Recall that the k-median problem was originally

studied in the context of facility placement [38]. Given a set of n cities and the

intercity distances, the k-median problem addressed the problem of how to open

k facilities for a certain resource while minimizing the average distance from any

city to its closest facility. To see how the online median problem generalizes the k-

median problem in the context of facility placement, consider the following scenario.

Suppose we wish to open a new chain of stores in a city with n neighborhoods, and

that we have a good estimate of the demand for our product in each neighborhood.

In determining where to locate the stores, our high-level strategy is to minimize the

the demand-weighted average distance from a customer to the nearest store. Our

business plan is to start with one store, and then to gradually add new stores as

allowed by our profits. (Remark: We will never move a previously established store.)

Thus our configuration of stores may change over time, and hence the ratio between

the service cost of our configuration and that of an optimal same-size configuration
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may also change. The goal of the online median problem is to choose a site for each

new store so that the maximum value of this ratio is minimized.

In the context of clustering, the k-median problem asks us to identify k cluster

centers so that the average cluster diameters is minimized. In many settings, it is

desirable to browse a given data set at differing levels of granularity (i.e., number

of clusters). Additionally, it may be the case that the ideal value of k is not known

a priori. A naive approach to this problem would be to simply run a k-median

algorithm for all values of k such that 1 ≤ k < n. However, by the lower bound

of Chapter 4, such an approach has a running time of Ω(n3). We show that it is

possible to do significantly better. In the context of clustering, the online median

problem asks us to compute an ordering of the points such that if we take a prefix

of length k of the ordering as a set of k cluster centers, the ratio between the cost

of these cluster centers and the optimal i cluster centers is minimized. We give an

algorithm for the online median problem that is constant-competitive and runs in

O(n2) time. Thus, in O(n2) our algorithm allows us, for all values of i, to obtain a set

of i cluster centers whose cost is within a constant factor of optimal. We note that

any constant-competitive algorithm for the online median problem requires Ω(n2)

time. (The proof of this fact follows by applying the lower bound of Chapter 4 for

the case k = n
2 .) Thus, our online median algorithm is time-optimal.

Recall that we have fixed a set of points U with an associated distance

function d : U × U → IR and nonnegative function w : U → IR. For the on-

line median problem, it will prove to be useful to consider a slightly more general

class of distance functions in which the triangle inequality is relaxed to the follow-

ing “λ-approximate” triangle inequality, where λ ≥ 1: For any sequence of points

〈x0, . . . , xm〉, d(x0, xm) ≤ λ·
∑

0≤i<m d(xi, xi+1). We refer to such a distance function

as a λ-approximate metric. We will assume that d is a λ-approximate metric.
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5.1 A Hierarchically Greedy Strategy

In Chapter 3, we found that a simple greedy algorithm yields interesting results

for the facility location problem. The most obvious greedy algorithm for the online

median problem is to select as the next point in the ordering the one that minimizes

the objective function. Unfortunately, this algorithm gives an unbounded compet-

itive (resp., approximation) ratio for the online median (resp., k-median) problem.

To see this, consider an instance consisting of n > 3 points, one “red” and the rest

“blue”, such that the following conditions are satisfied: the red point has weight 0;

each blue point has weight 1; the distance from the red point to any blue point is 1,

and the distance between any pair of distinct blue points is 2. The aforementioned

greedy algorithm chooses the red point first in the ordering, since that gives a cost

of n−1 while choosing any other point gives a cost of 2n−4. But then the ratio for

a configuration of size n−1 is unbounded since the greedy cost is 1 and the optimal

cost is 0. (This example also shows that no online median algorithm can achieve a

competitive ratio below 2− 2
n−1 .)

We show that a more careful choice of the point, which we call hierarchically

greedy, works well. Let ∆ (resp., δ) denote the largest (resp., smallest) distance

between two distinct points in the metric space. We define a certain ball about each

point, and select a ball A of maximum value. But rather than simply choosing the

center of ball A as the next point in the ordering, we apply the approach recursively

to select a point within a region defined by A. At each successive level of recur-

sion, we consider geometrically smaller balls about the remaining candidate points.

Within O(log ∆
δ ) levels of recursion, we arrive at a ball containing a single point,

and we return this point as the next one in the ordering. Note that whereas the

greedy algorithm discussed in the previous paragraph makes a single greedy choice

to select a point, the hierarchically greedy algorithm makes O(log ∆
δ ) greedy choices

per point.
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Throughout this chapter, let λ, α, β, and γ denote real numbers satisfying

the following inequalities.

λ ≥ 1 (5.1)

α > 1 + λ (5.2)

β ≥ λ(α− 1)
α− 1− λ

(5.3)

γ ≥
(

α2β + αβ

α− 1
+ α

)
λ (5.4)

The online median algorithm of Section 5.2 below makes use of the following

additional definitions.

• A child of a ball (x, r) is any ball (y, r
α) where d(x, y) ≤ βr.

• For any point x and any configuration X, let isolated(x, X) denote the ball

(x, d(x,X)
γ ). We let isolated(x, ∅) denote the ball (x,maxy∈U d(x, y)).

• For any nonempty sequence %, we let head(%) (resp., tail(%)) denote the first

(resp., last) element of %.

5.2 Algorithm

Let Z0 = ∅. For i = 0 to n− 1, execute the following steps:

• Let σi denote the singleton sequence 〈A〉 where A is a maximum value ball in

{isolated(x,Zi) | x ∈ U \ Zi}.

• While the ball tail(σi) has more than one child, append a maximum value

child of tail(σi) to σi.

• Let Zi+1 = Zi ∪ {center(tail(σi))}.

The output of the online median algorithm is a collection of point sets Zi

such that |Zi| = i, 0 ≤ i ≤ n, and Zi ⊆ Zi+1, 0 ≤ i < n. Note that it is sufficient
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for an implementation of the algorithm to maintain the ball tail(σi), as opposed to

the entire sequence σi. The sequence σi has been introduced in order to facilitate

the analysis.

We discuss two implementations of the online median algorithm in Sec-

tion 5.5. The first implementation has a running time that is slightly superlinear

in the input size. The second implementation has a running time that is linear in

the input size, but assumes a (linear) preprocessing phase in which all distances are

rounded down to the nearest integral power of λ. (Note that for the preprocessing

phase to be well-defined, we require λ > 1.) If the input distance function is a

metric, it is straightforward to see that such rounding produces a λ-approximate

metric.

5.3 Competitive Ratio

Before proceeding with the analysis, we introduce a number of additional definitions.

• Let zi denote the unique point in Zi+1 \ Zi, 0 ≤ i < n.

• For any configuration X and set of points Y , let cost (X, Y ) =
∑

y∈Y d(y, X) ·

w(y).

• For any configuration X, we partition U into |X| sets {cell(x,X) | x ∈ X} as

follows: For each point y in U , we choose a point x in X such that d(y, X) =

d(y, x) and add y to cell(x,X).

• For any configuration X, point x in X, and set of points Y , we let in(x,X, Y )

denote cell(x,X)∩ isolated(x, Y ) and out(x,X, Y ) as cell(x,X) \ in(x, X, Y ).

• For any configuration X and set of points Y , we let in(X, Y ) denote the set

∪x∈X in(x,X, Y ) and we let out(X, Y ) denote the set U \ in(X, Y ).
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We now give some intuition underlying the definitions of the sets cell(x, X),

in(x,X, Y ), and out(x,X, Y ). The sets cell(x, X) partition the input points; for

each point x in X, cell(x,X) contains the points with x as a closest neighbor in

X (with ties broken arbitrarily). The sets in(x,X, Y ) and out(x,X, Y ) partition

the set cell(x,X) into two disjoint sets. In our arguments, we will consider the

sets in(x,X, Y ) and out(x,X, Y ) with X as an arbitrary configuration, and Y as

Z|X|. Then the set out(x,X, Z|X|) is defined as the complement of in(x,X, Z|X|) in

cell(x, X)). Thus, we can interpret the points in out(x,X, Z|X|) to be the points

that are “near” Z|X|. For any point y in out(X, Z|X|), it is relatively straightfor-

ward (see Lemma 5.3.1) to show that d(y, Z|X|) (i.e., the distance to the configura-

tion Z|X| computed by our online median algorithm) is within a constant factor of

d(y, X). We devote considerably more effort to show that the cost incurred by Z|X|

for the points in in(x,X, Z|X|) is within a constant factor of optimal. Recall that

in(x,X, Z|X|) corresponds to the points in cell(x,X) that are contained in the ball

isolated(x,Z|X|). Suppose that isolated(x,Z|X|) has radius r. Then, by the defini-

tion of isolated(x,Z|X|), the points contained in in(x,X, Z|X|) are exactly the points

in cell(x,X) that are in the ball (x, r) but have distance strictly greater than γr to

any point in Z|X|. Thus, the points in in(x,X, Z|X|) are those points in cell(x,X)

that are “far” from Z|X|. Accounting for the cost incurred by Z|X| for the points

in(X, Z|X|) will comprise the majority of the proofs in this section and the following

section.

We now present our main result, Theorem 5 below. In order to minimize

the competitive ratio of 2λ(γ + 1) implied by the theorem, we set λ to 1, set α

to 2 +
√

3 and set β and γ to the right-hand sides of Equations (5.3) and (5.4),

respectively. We thereby establish a competitive ratio of below 29.86 for the online

median problem. In Section 5.5 we describe an implementation of the online median

algorithm for which the parameter λ is required to be strictly greater than 1. The
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degradation in the competitive ratio that results by setting λ greater than 1 can be

made arbitrarily small by choosing λ sufficiently close to 1.

Theorem 5 For any configuration X, cost
(
Z|X|

)
≤ 2λ(γ + 1) · cost (X).

Proof: Let Y = in(X, Z|X|) and let Y ′ = out(X, Z|X|) = U \ Y . Then, by

definition, we have cost (X) = cost (X, Y ) + cost (X, Y ′) and that cost
(
Z|X|

)
=

cost
(
Z|X|, Y

)
+ cost

(
Z|X|, Y

′
)
. Thus the theorem follows immediately from Lem-

mas 5.3.2, 5.3.4, and 5.3.5 below.

Lemma 5.3.1 For any configuration X, point x in X, and point y in

out(x,X, Z|X|),

d(y, Z|X|) ≤ λ(γ + 1) · d(y, X).

Proof: Let isolated(x,Z|X|) = (x, r). Note that d(x, y) > r. Also, by the definition

of isolated(x,Z|X|), there is a point z in Z|X| such that d(x, z) = γr. Hence d(y, z) ≤

λ[d(x, y) + d(x, z)] = λ[d(x, y) + γr] < λ[d(x, y) + γ · d(x, y)] = λ(γ + 1) · d(x, y) =

λ(γ + 1) · d(y, X), where the last step follows since y is in cell(x,X). The claim

follows since d(y, z) ≥ d(y, Z|X|).

Lemma 5.3.2 For any configuration X,

cost
(
Z|X|, out(X, Z|X|)

)
≤ λ(γ + 1) · cost

(
X, out(X, Z|X|)

)
.

Proof: Summing the inequality of Lemma 5.3.1 over all y in out(x,X, Z|X|), we

obtain

cost
(
Z|X|, out(x,X, Z|X|)

)
≤ λ(γ + 1) · cost

(
X, out(x,X, Z|X|)

)
.

The claim now follows by summing the above inequality over all x in X.
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Lemma 5.3.3 For any configuration X and point x in X, we have that

cost
(
Z|X|, in(x,X, Z|X|)

)
is at most

λ(γ + 1)[cost
(
X, in(x,X, Z|X|)

)
+ value(isolated(x,Z|X|))].

Proof: Assume that isolated(x, Z|X|) = (x, r). Note that d(x, y) = γr for some

y in Z|X|. Thus, for any z in isolated(x, Z|X|), d(y, z) ≤ λ[d(y, x) + d(x, z)] ≤

λ(γ + 1)r, where the last step follows from our bound on d(x, y) and the definition

of isolated(x, Z|X|). It follows that cost
(
Z|X|, in(x,X, Z|X|)

)
is at most λ(γ + 1)

times

∑
z∈in(x,X,Z|X|)

r · w(z) ≤
∑

z∈in(x,X,Z|X|)

d(x, z) · w(z) +

∑
z∈isolated(x,Z|X|)

(r − d(x, z)) · w(z)

= cost
(
X, in(x, X, Z|X|)

)
+ value(isolated(x,Z|X|)).

Lemma 5.3.4 For any configuration X and point x in X, we have that

cost
(
Z|X|, in(X, Z|X|)

)
is at most

λ(γ + 1)[cost
(
X, in(X, Z|X|)

)
+
∑
x∈X

value(isolated(x,Z|X|))].

Proof: The claim follows by summing the inequality of Lemma 5.3.3 over all x in

X.

Our main technical lemma is stated below. The proof is given in the next

section.

Lemma 5.3.5 For any configuration X,
∑

x∈X value(isolated(x,Z|X|)) ≤ cost (X).
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5.4 Proof of Lemma 5.3.5

In this section we establish our main technical lemma, Lemma 5.3.5. Before pro-

ceeding we give some intuition behind Lemma 5.3.5 and the supporting lemmas.

Informally, Lemma 5.3.5 yields an upper bound on the value of certain balls that

contain points that are “far” from Z|X|, where X is an arbitrary configuration. The

upper bound we obtain states that the value associated with these points is at most

cost (X). Thus, in combination with Lemmas 5.3.2 and 5.3.4 we can conclude that

cost
(
Z|X|

)
is O(cost (X)). To prove Lemma 5.3.5 we argue that for each ball that

contains points “far” from Z|X| (i.e., isolated(x,Z|X|) for each x in X), it is possible

to identify a ball with commensurately high value that is “far” from X. More pre-

cisely, we construct a matching between the points in Z|X| and X and show that for

each point x in X \Z|X| (i.e., points in X which were considered but not chosen by

our online median algorithm), we can identify a ball Ax appearing in some sequence

σi < |X| such that (i) value(Ax) ≥ isolated(x,Z|X|), (ii) cost (X, Ax) ≥ value(Ax),

and (iii) all such balls Ax are disjoint. Intuitively, we will identify these balls by

making use of the greedy manner in which our online median algorithm chooses the

balls in the sequences σi, 0 ≤ i < |X|.

Lemma 5.4.1 Let A = (x, r) belong to σi. Then d(x, Zi) ≥ γr.

Proof: Let z be a point in Zi such that d(x, z) = d(x,Zi). If A = head(σi) then

A = isolated(x, Zi) and the result is immediate. Otherwise, let B = (y, s) denote the

predecessor of A in σi and assume inductively that d(y, Zi) ≥ γs. Note that d(x, y) ≤

βs and s = αr. Thus d(x,Zi) = d(x, z) ≥ d(y, z)/λ − d(x, y) ≥ (γ/λ − β)αr ≥ γr,

where the last step follows from Equation (5.4).

Lemma 5.4.2 Let A = (x, r) belong to σi and let B = (y, s) belong to σj. If i < j

and d(x, y) ≤ r + s, then the following claims hold: (i) radius(head(σj)) ≤ r
α ;
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(ii) A 6= tail(σi); (iii) the successor of A in σi, call it C, satisfies value(C) ≥

value(head(σj)).

Proof: Let head(σj) = (y′, s′). For part (i), we begin by deriving upper and lower

bounds on d(y′, zi). For a lower bound on d(y′, zi), note that d(y′, zi) ≥ d(y′, Zj)

(since i < j) and d(y′, Zj) ≥ γs′ by Lemma 5.4.1. To derive an upper bound on

d(y′, zi), we first let P denote the prefix of sequence σj ending with ball B, and let

S denote the suffix of sequence σi beginning with ball A. We then apply the λ-

approximate triangle inequality to the sequence of points 〈y′, . . . , y, x, . . . , zi〉 where

the prefix 〈y′, . . . , y〉 corresponds to the centers of the balls in P , and the suffix

〈x, . . . , zi〉 corresponds to the centers of the balls in S. By repeated application of

the definition of a child, and using the given upper bound on d(x, y), we obtain

d(y′, zi) ≤ λ

[
β

(
s′ +

s′

α
+ · · ·+ αs

)
+ s + r + β

(
r +

r

α
+ · · ·

)]
≤

[
αβ

α− 1
· (r + s′) + r

]
λ.

Combining the bounds on d(y′, zi) and applying Equation (5.4), we obtain(
α2β + αβ

α− 1
+ α

)
λs′ ≤

[
αβ

α− 1
· (r + s′) + r

]
λ.

Multiplying through by (α− 1)/λ and rearranging, we get r ≥ α2β+α2−α
αβ+α−1 · s′ = αs′,

establishing the claim.

For part (ii), note that d(x, y) ≤ r + r
α < βr by part (i) and Equation (5.3).

Thus A has at least two children; the claim follows.

For part (iii), we obtain an upper bound on d(x, y′) by applying the λ-

approximate triangle inequality to the sequence of points 〈y′, . . . , y, x〉, where the

prefix 〈y′, . . . , y〉 corresponds to the centers of the balls in P (as defined in part (i)

above). By repeated application of the definition of a child and by the given upper

bound on d(x, y), we observe that

d(x, y′) ≤ λ
[
r + s +

(
αs + α2s + · · ·+ s′

)
β
]
.
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Then, by using Equations (5.2) and (5.3) and part (i), we observe that

λ
[
r + s +

(
αs + α2s + · · ·+ s′

)
β
]

≤ λr +
αβλ

α− 1
· s′

≤ λr +
αβλ

α− 1
· r

α

≤
(

β

α− 1
+ 1

)
λr.

Observe that
(

β
α−1 + 1

)
λr is at most βr by Equation (5.3). It then follows that

head(σj) is contained in a child of A. Thus value(C) ≥ value(head(σj)).

For ease of notation, throughout the remainder of this section we fix a config-

uration X, and let k denote |X|. We now describe a pruning procedure that we use

for the purpose of analyzing our online median algorithm. The pruning procedure

takes as input the k sequences σi, 0 ≤ i < k, and produces as output k sequences

τi, 0 ≤ i < k. The sequence τi is initialized to σi, 0 ≤ i < k. The (nondeterministic)

pruning procedure then performs a number of iterations. In a general iteration, the

pruning procedure checks whether there exist two balls A = (x, r) and B = (y, s)

in distinct sequences τi and τj , respectively, such that i < j and d(x, y) ≤ r + s.

If not, the pruning procedure terminates. If so, the sequence τi is redefined as the

proper suffix of (the current) τi beginning at the successor of A. Note that part (ii)

of Lemma 5.4.2 ensures that the pruning procedure is well-defined. Furthermore,

the procedure is guaranteed to terminate since each iteration reduces the length of

some sequence τi.

Lemma 5.4.3 Let A = (x, r) belong to τi and let B = (y, s) belong to τj. If i < j

then d(x, y) > r + s.

Proof: Immediate from the definition of the pruning procedure.

Lemma 5.4.4 Each sequence τi is nonempty.
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Proof: Immediate from part (ii) of Lemma 5.4.2 and the definition of the pruning

procedure.

Lemma 5.4.5 Let x be a point and assume that 0 ≤ i < j ≤ n. Then

value(isolated(x, Zi)) ≥ value(isolated(x,Zj)).

Proof: Since Zi is contained in Zj , we have that radius(isolated(x,Zi)) is at least

radius(isolated(x,Zj)). The claim follows.

Lemma 5.4.6 Let x be a point and assume that 0 ≤ i < k. Then

value(head(σi)) ≥ value(isolated(x,Zk)).

Proof: First, suppose that x belongs to Zi. In this case there is nothing to prove

since radius(isolated(x,Zi)) = 0, and thus value(isolated(x,Zi)) = 0. If x is not

in Zi, then value(head(σi)) ≥ value(isolated(x,Zi)) by the definition of the online

median algorithm, and the claim follows by Lemma 5.4.5.

Lemma 5.4.7 Let x be a point and assume that 0 ≤ i < k. Then

value(head(τi)) ≥ value(isolated(x,Zk)).

Proof: We prove that the claim holds before and after each iteration of the pruning

procedure. Initially, τi = σi and the claim holds by Lemma 5.4.6. If the claim holds

before an iteration of the pruning procedure, then it holds after the iteration by

part (iii) of Lemma 5.4.2.

A ball A = (x, r) is defined to be covered iff d(x,X) < r. A ball is uncov-

ered iff it is not covered.

Lemma 5.4.8 For any uncovered ball A = (x, r), cost (X, A) ≥ value(A).
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Proof: Note that cost (X, A) ≥
∑

y∈A d(y, X) · w(y) ≥
∑

y∈A(r − d(y, x)) · w(y) =

value(A).

Let I denote the set of all indices i in [k] such that some ball in τi is covered.

We now construct a matching between the sets [k] and X as follows. First, for each

i in I, we match i with a point x in X that belongs to the last covered ball in the

sequence τi. (Note that such a point x is guaranteed to exist by the definition of I.

Furthermore, Lemma 5.4.3 ensures that we do not match the same point with more

than one index.) Second, for each i in [k] \ I in turn, we match i with an arbitrary

unmatched point x in X.

We now construct a function % mapping each point x in X to an uncovered

ball. For each x in X that is matched with an index i in [k] \ I, we set %(x) to

head(τi). For each x in X that is matched with an index i in I, we set %(x) to the

successor of the last covered ball in τi unless tail(τi) is covered, in which case we set

%(x) to the ball (x, 0).

Lemma 5.4.9 For any pair of distinct points x and y in X, %(x) ∩ %(y) = ∅.

Proof: Immediate from Lemma 5.4.3 and the fact that the ball (x, 0) is contained

in tail(τi).

Lemma 5.4.10 For any point x in X, value(%(x)) ≥ value(isolated(x,Zk)).

Proof: If x is matched with an index i in [k] \ I, the claim follows by Lemma 5.4.7.

If x is matched with an index i in I, we consider two cases. If tail(τi) is covered,

then x = zi since tail(τi) has exactly one child. The claim follows since %(x) =

isolated(x,Zk) = (x, 0). If tail(τi) is uncovered, then the predecessor of %(x) in τi,

call it A = (y, r), exists and contains x. It follows that value(%(x)) ≥ value(B),

where B = (x, r/α) is the child of A centered at x. Let C = (x, s) denote the ball

isolated(x,Zk). Below we complete the proof of the claim by showing that r/α ≥ s,

which implies that B ⊇ C and hence value(B) ≥ value(C).
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It remains to prove that r/α ≥ s in the final case considered above. We

prove the claim by deriving upper and lower bounds on d(x, zi). Let S be the suffix

of the sequence τi beginning with the ball A. For the upper bound, we apply the

triangle inequality to the sequence of points 〈x, y, . . . , zi〉, where the suffix 〈y, . . . , zi〉

consists of the centers of the balls in S. We then obtain that

d(x, zi) ≤ λ

(
r + β

(
r +

r

α
+ · · ·

))
≤

(
1 +

αβ

α− 1

)
λr,

which is less than γr/α by Equation (5.4). The desired inequality follows since

d(x, zi) ≥ γs by the definition of C.

Lemmas 5.4.8, 5.4.9, and 5.4.10 together yield a proof of Lemma 5.3.5.

5.5 Time Complexity

In this section we describe two implementations of the online median algorithm

given in Section 5.2. Throughout this section, let ` denote the quantity log ∆
δ . The

first implementation runs in O((n + `) · n log n) time. The second implementation

runs in O(n2 + `n) time and assumes an O(n2)-time preprocessing phase in which

all distances are rounded down to the nearest integral power of λ. To analyze the

running time of the implementations given below, we make use of the following

lemma.

Lemma 5.5.1 Let A = (x, r) be a child of a ball B in sequence σi and let A′ = (x, r′)

be a child of a ball B′ in sequence σj. If i < j then r ≥ (α + 1 + 1
β )r′.

Proof: We first obtain an upper bound on d(x, zi) by applying the λ-approximate

triangle inequality to a sequence of points consisting of the centers of the balls

in the suffix of σi beginning with ball A. Thus d(x, zi) ≤ λβ (r + r/α + · · ·) ≤
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λαβr/(α−1). By Lemma 5.4.1 and since j > i, we get that γr′ ≤ d(x,Zj) ≤ d(x, zi).

Combining these inequalities and using Equation (5.4), we obtain

r ≥ (α− 1)γ
λαβ

· r′

≥ α− 1
αβ

·
(

α2β + αβ

α− 1
+ α

)
λ · r′

= (α + 1 +
1
β

)r′.

In the first implementation, for each point x in U , we sort the remaining

points by their distance from x. The total sorting time is O(n2 log n). Using these

sorted arrays, we can compute the value of any given ball in O(log n) time. We also

maintain the distance from x to the nearest point in Zi. Note that d(x,Zi+1) can

be determined in constant time given d(x,Zi) and zi. The total time to maintain

such distances is thus O(n2). It follows that the first step of each iteration can be

implemented in O(n) time. The total time for the second step is O(log n) times the

sum over all balls A appearing in some sequence σi, 0 ≤ i < n, of the number of

children of A. By Lemma 5.5.1, it is straightforward to see that the latter sum is

O(`n), and thus the total time for the second step is O(`n log n). The running time

of the third step is negligible. Thus the running time of the first implementation is

O((n + `) · n log n), as claimed above.

For the second implementation, note that after the preprocessing phase, there

are O(`) distinct distances. Thus, for each point x, O(n + `) time is sufficient to

construct an O(`)-sized table that can be used to compute the value of any ball (x, r)

in O(1) time. It follows that the total time for the second step can be improved

to O(`n). The running time of the second implementation is therefore O(n2 + `n),

which is linear in the size of the input (in bits).
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5.6 Weakly λ-Approximate Metrics

The analysis in this chapter assumes that the (nonnegative, symmetric) distance

function d approximately satisfies the triangle inequality. Recall that we defined a

“λ-approximate” triangle inequality for λ ≥ 1 as follows: For any sequence of points

x0, . . . , xm in U , d(x0, xm) ≤ λ ·
∑

0≤i<m d(xi, xi+1). We refer to such a distance

function as a λ-approximate metric.

In this section, we show that the results in this chapters as well as Chapters

3 and 4 hold to within constant factors for an even weaker form of the triangle

inequality. We say that a distance function d satisfies a “weakly λ-approximate”

triangle inequality if for any x, y, and z, d(x, z) ≤ λ(d(x, y) + d(y, z)). We will say

that such a (nonnegative, symmetric) distance function is a weakly λ-approximate

metric. Such distance functions are of use in extending our results to other objective

functions. For example, the well-known k-means heuristic [9] has a sum of squared

distances in its objective function. It is straightforward to show that squaring the

distances in a metric yields a weakly 2-approximate metric. Thus, the results in this

section show that our analysis also holds, to within constant factors, with respect

to the k-means objective function. (Remark: More generally, it is not hard to

show that raising the distances in a metric to any constant power yields a weakly

O(1)-approximate metric.)

Lemmas 5.6.1 and 5.6.2 below establish that the approximation results in this

paper hold, up to constant factors, even for weakly λ-approximate metrics. Recall

that in Chapter 3, we make use of the triangle inequality and the λ-approximate

triangle inequality on sequences of points to derive upper bounds on the distances

between pairs of points. In most cases, we consider constant-length sequences of

points to derive our upper bounds. In such cases Lemma 5.6.1 below shows that a

weakly λ-approximate metric is sufficient to guarantee that our upper bounds hold

to within constant factors. Unfortunately, Lemma 5.6.1 alone is not sufficient to
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generalize our upper bounds based on nonconstant-length sequences of points, which

arise in Lemmas 5.4.2, 5.4.10, and 5.5.1. For these cases we require Lemma 5.6.2

below. Lemmas 5.6.1 and 5.6.2 together show that the upper bounds derived in

Lemmas 5.4.2, 5.4.10, and 5.5.1 still hold up to constant factors given only a weakly

λ-approximate triangle inequality.

Lemma 5.6.1 Let d be a weakly λ-approximate metric, and let x0, x1, . . . , xm be

points with m ≥ 1. Then, d(x0, xm) ≤ λdlog2 me ·
∑

0≤i<m d(xi, xi+1).

Proof: We will prove the lemma by induction. The base case, m = 1, is trivial. For

the induction step, assume that for any sequence of points y0, . . ., yi, 1 ≤ i < m,

d(y0, yi) ≤ λdlog2 ie∑
0≤j<i d(yj , yj+1). Then,

d(x0, xm) ≤ λ
(
d(x0, xdm

2 e) + d(xdm
2 e, xm)

)
≤ λ

λdlog2 dm
2 ee

 ∑
0≤j<dm

2 e
d(xj , xj+1)

+

λdlog2 bm
2 ce

 ∑
dm

2 e≤j<m

d(xj , xj+1)




≤ λ · λdlog2 me−1
∑

0≤j<m

d(xj , xj+1)

= λdlog2 me ∑
0≤j<m

d(xj , xj+1).

The first step follows from the weakly λ-approximate triangle inequality. The second

step follows by applying the induction hypothesis twice (note that m ≥ 2 implies

that 0 <
⌈

m
2

⌉
< m, so the induction hypothesis is applicable). The last step follows

from the fact that
⌈
log2

⌈
m
2

⌉⌉
= dlog2 me − 1.

If λ and m are constant, then by Lemma 5.6.1 we have that d(x0, xm) is

Θ(
∑

0≤i<m d(xi, xi+1)). Thus, Lemma 5.6.1 is sufficient to show that the upper

bounds derived in Chapter 3 using the triangle inequality hold to within a constant

67



factor given only a weakly λ-approximate metric. Similarly, the upper bounds de-

rived Chapter 4 and in this chapter using the λ-approximate triangle inequality on

constant-length sequences of points also hold to within constant factors given only

a weakly λ-approximate metric. (Remark: Lemma 5.6.2 is needed since our online

median algorithm is used as a subroutine in the algorithms presented in Chapter 4.)

However, in Lemmas 5.4.2, 5.4.10, and 5.5.1 we derive upper bounds on distances by

applying the λ-approximate triangle inequality to non-constant length sequences of

points that appear in the sequences σi associated with our online median algorithm.

In these cases, the nonconstant-length sequences of points we consider have the

property that they are composed of a constant number of contiguous subsequences

in which distances between successive points are either geometrically increasing or

geometrically decreasing. Lemma 5.6.2 below shows that the upper bounds derived

using these sequences hold to within a constant factor assuming only a weakly λ-

approximate metric.

Lemma 5.6.2 Let d be a weakly λ-approximate metric, and let x0, x1, . . . , xm be

points such that for 1 ≤ i ≤ m, d(xi, xi+1) ≤ d(xi−1, xi)/ξ for a positive real ξ > λ.

Then, d(x0, xm) ≤ λξ
ξ−λd(x0, x1).

Proof: We first prove by induction that d(x0, xm) ≤
∑

0≤i<m λi+1d(xi, xi+1). For

the base case, take m = 1. Then, d(x0, x1) ≤ λd(x0, x1) since λ ≥ 1. For the

induction step, assume that for any sequence of points y0, . . ., yi, 1 ≤ i < m,

d(y0, yi) ≤
∑

0≤j<i λ
j+1d(yj , yj+1). Observe that

d(x0, xm) ≤ λ (d(x0, x1) + d(x1, xm))

≤ λd(x0, x1) + λ

 ∑
1≤i<m

λid(xi, xi+1)


≤

∑
0≤i<m

λi+1d(xi, xi+1),

where the first step follows from the weakly λ-approximate triangle inequality, and
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the second step follows from the induction hypothesis. Then,

d(x0, xm) ≤
∑

0≤i<m

λi+1d(xi, xi+1)

≤
∑

0≤i<m

λi+1

ξi
d(x0, x1)

≤ ξλ

ξ − λ
d(x0, x1),

where the second step follows from the assumption that d(xi, xi+1) ≤ d(xi−1, xi)/ξ

for 0 ≤ i < m, and the third step follows from the assumption that ξ > λ.

As stated above, Lemma 5.6.2 is needed in addition to Lemma 5.6.1 to show

that the upper bounds derived in Lemmas 5.4.2, 5.4.10, and 5.5.1 hold to within

a constant factor given only a weakly λ-approximate metric. We now explain how

Lemmas 5.6.1 and 5.6.2 may be used to show that the upper bound obtained in part

(i) of Lemma 5.4.2 holds to within a constant factor given a weakly λ-approximate

metric. Recall that in part (i) of Lemma 5.4.2, we derive an upper bound on the

distance d(y′, zi). For the arugment, we apply the λ-approximate triangle inequality

to the sequence of points 〈y′, . . . , y, x, . . . , zi〉 and show that d(y′, zi) is within a

constant factor of the sum of the distances between successive points in this sequence.

The prefix 〈y′, . . . , y〉 of this sequence appears in the sequence of balls σj associated

with our online median algorithm. By the definition of our online median algorithm,

the distances between successive points in 〈y′, . . . , y〉 decrease by a factor of β.

Since β and λ are constants, and since β > λ, we can apply Lemma 5.6.2 with

ξ = β to conclude that d(y′, y) is within a constant factor of the sum of distances

between successive points in 〈y′, . . . , y〉 given only a weakly λ-approximate metric.

By a similar application of Lemma 5.6.2 to d(x, zi) with 〈x, . . . , zi〉 as the sequence

of points, we can conclude that d(x, zi) is within a constant factor of the sum of

distances between successive points in 〈x, . . . , zi〉 given only a weakly λ-approximate

metric. With upper bounds on d(y′, y) and d(x, zi), we can then apply Lemma 5.6.1
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to the constant-length sequence 〈y′, y, x, zi〉 to conclude that, given only a weakly

λ-approximate metric, d(y′, zi) is within a constant factor of the sum of distances

between successive points in the sequence 〈y′, . . . , y, x, . . . , zi〉. Using Lemmas 5.6.1

and 5.6.2 in this manner, the bounds derived in part (iii) of Lemma 5.4.2 and in

Lemmas 5.4.10 and 5.5.1 can also be shown to hold to within constant factors given

only a weakly λ-approximate metric.
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Chapter 6

Experimental Work

In Chapters 3, 4 and 5, we presented simple and fast approximation algorithms for

the facility location, k-median, and online median problems. In analyzing these

algorithms, we showed that each was guaranteed to produce a solution within a

constant factor of optimal. In this chapter, we study the performance of Java

implementations of our k-median and online median algorithms. We compare their

performance to that of the widely-used k-means heuristic on a variety of synthetically

generated inputs. We also apply our online median algorithm to the problem of

particle recognition in electron microscopy images.

6.1 Discussion of Implementation

We implemented our uniform weights k-median algorithm and our online median

algorithm in Java. For the purposes of comparison, we also implemented a fairly

standard version of the k-means heuristic that works as follows. Given a set of n

points, we first take the mean ~m of the n points. Our initial solution of k points

consists of k random perturbations (in every dimension) of ~m. We will refer to this

initialization procedure as the centroid-based initialization procedure. We then run
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the k-means iterative improvement step (see Section 2.1 for further discussion) as

long as the improvement in solution cost at least 1% of the current cost. (Remark:

We observed in our experiments that k-means typically took under 10 iterations to

satisfy this stopping condition.) Each iteration of our implementation of k-means

has an asymptotic running time of O(nkd), where d is the dimensionality of the

points in the input. Although our algorithms are applicable in any metric space,

all of our implementations were tested with inputs containing Euclidean points. We

also implemented a data structure for the storage of sparse Euclidean points that

was used in all three implementations. (We note that our k-median and online

median implementation are actually implemented using an abstract point set class

so that they can be used without modification with more general data structures.)

We note that our implementations were relatively concise. Our implementa-

tion of a point set data structure required 542 lines of code. Our implementation of

the k-means heuristic only took 218 lines of code. In comparison, the implementa-

tion of our k-median algorithm required 726 lines of code. The implementation of

our online median algorithm took 800 lines of code.

Recall that the running times derived in Chapters 4 and 5 assumed that the

interpoint distances were available in O(1) time. Since we apply our algorithms

specifically to the case of Euclidean points, we restate the time bounds of our algo-

rithms with respect to the Euclidean case. Our uniform-weights k-median algorithm

runs in O(nk) time for k ≥ log n if the distances are given in the input. Since the dis-

tance between two d-dimensional Euclidean points can be computed in O(d) time,

the running of our k-median algorithm is then O(nkd) for k ≥ log n. Similarly,

the running time of our online median algorithm is O(n2d + n`d) for the case of

Euclidean points.
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6.2 Experiments with Synthetic Inputs

We performed two experiments with our k-means and k-median implementations.

The first is a scalability experiment that is designed to test the perfomance of our

algorithms as the number of points is increasing. The second experiment is a dimen-

sionality experiment ; it is designed to test the performance of our algorithms when

the dimensionality of the input is increasing. For both experiments, we compare

the running time and solution cost of k-means with centroid-based initialization,

and k-means heuristic with our k-median algorithm as an initialization procedure.

For both implementations, we measure the cost of a solution to be the sum, over

all points x, of the weight of x times the distance from x to its closest point in the

solution. For an alternate assessment of solution quality, we also report the aver-

age distance to the nearest cluster center. The purpose of these experiments is to

assess the practicality of our k-median algorithm as an initialization procedure for

k-means.

6.2.1 Methodology

For both experiments, we use randomly generated mixtures of Gaussians as the

inputs. As mentioned above, we perform experiments for a variety of input param-

eters. Given the desired number of d-dimensional points and number of Gaussians

c, we generate the inputs as follows. For each Gaussian, we randomly generate

a d-dimensional point and take it as the mean of the Gaussian. Then, we gen-

erate
⌊

n
c

⌋
unit-weight points associated with this Gaussian as follows. Given the

desired radius r of the Gaussian, we draw d random numbers independently from

a Gaussian distribution with mean 0 and standard deviation r and add the result-

ing d-dimensional vector to the mean. Repeating this procedure
⌊

n
c

⌋
times yields a

d-dimensional Gaussian with
⌊

n
c

⌋
points (i.e., mixing weight roughly 1

c ). To ensure

that there are exactly n points in the input, we generate n− (n− 1)
⌊

n
c

⌋
points for
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Figure 6.1: A mixture of 10 2-dimensional Gaussians with n = 500.

the last Gaussian. We make use of a single value of r for all of our experiments. For

an example of our synthetically generated inputs, we refer the reader to Figure 6.1.

For our experiments, we set the α and β parameters for our k-median algorithm to

1 and .5, respectively. We ran our experiments on an Intel Pentium 4 workstation

with a clock speed of 996 megaHertz running Debian Linux 2.4.10 with 2 gigabytes

of main memory. For all of our experiments, we used Java 1.3.1 compiler with the

-O switch and the Java 1.3.1 interpreter with the -hotspot optimization enabled.
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Figure 6.2: Solution costs for our scalability experiment.

The minimum and maximum heap sizes for the interpreter were both set to 600

megabytes.

6.2.2 Scalability Experiment

For our scalability experiment, we ran our implementations with test inputs with

c = 10, d = 2, and n ranging from 100 to 10, 000 in increments of 500. For k-means

and our k-median implementations, we set the parameter k equal to c. The running

times of our implementations is given in Figure 6.3, the solution costs are reported

in Figure 6.2, and the average distances to the nearest cluster center are given in

Figure 6.4. The results of this experiment show that the approximation guarantees

of our k-median algorithm are noticeable for the synthetic inputs we consider. When
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Figure 6.3: Running times for our scalability experiment.
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Figure 6.4: Average distance to the nearest cluster center for our scalability exper-
iment.
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our k-median algorithm is used as an initialization procedure, the resulting solution

costs were, on average, roughly 40% lower than those produced by the centroid-based

k-means implementation. Similarly, the average distance to the nearest cluster cen-

ter is roughly 25% lower when our k-median algorithm is used as an initialization

procedure. In contrast, the running time of k-means with the centroid-based initial-

ization procedure was about 40% faster than with our k-median algorithm as the

initialization procedure. We note however that our approach is qualitatively still

quite fast. When our k-median algorithm is used as the initialization procedure, the

slowest running time was just 1.13 seconds for n = 10, 000.

6.2.3 Dimensionality Experiment

For our dimensionality experiments, we considered inputs with c = 10, n = 500, and

d ranging from 100 to 1000 in increments of 100. As in the scalability experiment, we

set the parameter k equal to c. The running times of our implementations are given

in Figure 6.6, and the associated solution costs are given in Figure 6.5 The results of

our dimensionality experiment suggest that our using our k-median implementation

as an initialization procedure is still beneficial. As in our scalability experiment, we

noticed that when our k-median algorithm is used as an initialization procedure,

the resulting solution costs are much lower. In this experiment, using our k-median

algorithm to initialize k-means yielded solution costs that were, on average, 175%

lower than when the centroid-based initialization procedure was used to initialize

k-means; the average distance to the nearest cluster center was about 100% lower.

As in the scalability experiment, our k-median algorithm yielded slower running

times; k-means with centroid-based initialization was on average only 20% faster

than k-means with our k-median algorithm as an initialization procedure. Given

the results of our scalability experiment, the results of our dimensionality experiment

seem to indicate that the approximation guarantees of our k-median algorithm are
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Figure 6.5: Solution costs for our dimensionality experiment.
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Figure 6.6: Running times for our dimensionality experiment.
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Figure 6.7: Average distance to the nearest cluster center for our dimensionality
experiment.
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even more useful as the dimensionality of the input is increasing.

6.2.4 Discussion

In both of the experiments above, using our k-median implementation as an ini-

tialization procedure for k-means reduced the solution cost significantly without a

prohibitive time penalty. Thus, it appears that the approximation guarantees of

our k-median algorithm translate to low solution costs in practice, especially for

high-dimensional inputs. However, these reduced solution costs are accompanied

by increased running times for the k-means heuristic with a k-median initialization

procedure. Although our k-median algorithm has the same asymptotic running time

(for a wide range of value of k) as just one iteration of k-means, this gap is likely

due to the fact that the centroid-based initialization procedure has a running time

of just O(n + dk).

It would be interesting to see if the overall gap in running times can at least

be made smaller with improvements to the implementation. For example, there

is still much room for optimization of the α and β parameters of our k-median

algorithm. We note that we only lowered the α parameter to a reasonable value

with a few experiments. With more empirical data, it may be possible to find

values of α and β that yield lower running times without a significant increase in

solution cost. A more sophisticated optimization would be to make both the α

and β parameters adapt to the number of remaining points in each iteration of the

successive sampling algorithm. Additionally, our k-median algorithm uses much

more memory than the simple centroid-based initialization procedure. Thus, with

an optimized implementation of our k-median algorithm in another language, for

example, C++, that has significantly less memory overhead, it may be possible to

obtain more competitive running times.
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6.3 Clustering in Electron Microscopy

In this section, we explore the applicability of our online median algorithm to the

problem of particle selection in electron microscopy. Given a two-dimensional elec-

tron microscopy image, the problem of particle selection asks us to identify the loca-

tion of the particles present in the source of the image. The main difficulty in attack-

ing this problem is the characteristically low signal-to-noise ratio of the images ob-

tained from electron microscopy. However, accurate algorithms for this problem have

significant practical application, since, for example, algorithms for particle selection

in two dimensions are crucial to determining the three-dimensional reconstruction of

electron microscopy images [48]. This problem was first studied by [45] and has sub-

sequently been studied by many researchers(see, e.g., [12, 17, 29, 37, 41, 44], and [11]

for further references). Typical approaches to this problem make use of heuristics,

although there are also approaches that make use of edge-detection algorithms [17].

For the particle selection problem, although the approximate size of the par-

ticles is known, it is common that the number of particles in the given input image

is unknown. Given the low signal-to-noise ratio of the images, it may be desirable to

view the image at various levels of granularity to determine the number and location

of the particles. As mentioned in Chapter 5, our online median algorithm could be

of practical use for such a problem. To study the performance of our online me-

dian algorithm for the purpose of particle selection, we applied our implementation

to several sample images obtained from electron micrographs. These images were

obtained from the experiments of Yu and Bajaj [48].

6.3.1 Results

We ran our online median implementation on four test images, each of which was

simply a set of weighted two-dimensional points. We set the α parameter of our

online median algorithm to 3.732. This value was chosen since it is approximately
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2+
√

3, the value of α that minimizes the competitive constant of our online median

algorithm (see Section 5.1 for further discussion). For each image, we computed the

the twenty cluster centers of an online median ordering for a set of points associated

with each image. We examined our results to see if the cluster centers obtained

corresponded to possible particles in the source image and guessed the number

of particles in the image by inspection. We note that this procedure could be

partially automated by using existing heuristics to estimate the number of clusters

(see e.g. [10] for pointers to the literature). Figures 6.8, 6.10, 6.12, and 6.14 show the

four electron microscopy images that we worked with. For each image, we obtained

a set of weighted two-dimensional points from the work of [48] which we used as an

input to our online median algorithm. These inputs were obtained by thresholding

the pixels in the source image; this thresholding is based on the minimum and

maximum intensities that occur in the image (see [48] for further discussion). For

reference, we will label the images as Image 0, 1, 2, and 3 and the inputs associated

with Image 0, 1, 2, and 3 as Input 0, 1, 2, and 3, respectively. Input 0 contains

376 points, input 1 contains 828 points, and inputs 2 and 3 each contain 822 points.

Figures 6.9, 6.11, 6.13, and 6.15 show these four inputs. In each figure, points are

represented by circles whose area is proportional to the point weight.

Figure 6.16 shows the manner in which our online median implementation

successively adds cluster centers for Input 0. Each cluster center is indicated by a box

whose lower left corner is the location of the chosen cluster center. The number inside

the box indicates when a given cluster center was chosen. For example, the lower

left corner of the box labelled 0 shows the location of the first cluster center chosen

by our online median implementation. Our results are below in Figures 6.17, 6.19,

6.21, and 6.23. For each image, we chose the number of cluster centers interactively.

The cluster centers are numbered in the order in which they were computed by our

online median implementation. For comparison, the results of Yu and Bajaj [48] are
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Figure 6.8: Image 0
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Figure 6.9: Input 0
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Figure 6.10: Image 1
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Figure 6.12: Image 2
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Figure 6.14: Image 3
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Figure 6.16: A sample execution of our online median implementation for Image 0.
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c

c

a

a

b

c

b

c

b

b

`

`

b

c

c

`

`

`
a

b

c

`

`

a

a

c

b

`

b

c

c

`

a

a

d

a

b

b

`

a

a

b

a

b

c

b

c

`

`

a

a

c

`

d

a

b

a

a

d

c

a

b̀

c

a

d

e

aa

c

a

b

a

b

d

a

b

b

a

a

`

b

a

b

c

b

`

b

`

b

a

`

`

`

`

`

c

`

a

d

b

c

`

c

a

a

b

b

b

`

a

d

c

c

a

`

a

c

c

`

``

a

b

b

e

ab

a

d

`

`

a

`

`

c `

c

b

`

a

`

`

a

a

b

b

a

c

b

c

b

a

d

`

`

b

c

d

a

db

a

c

c

`d

b

`
a

c

`

c

a

b
b

b

a

b

a
c

b

b

d

b

b

b

b

dc

a

a

`

a

`

`

c

a

a

`

c

a

c

b

a

a

b

b

b

b

`

a

b

b

b

b

a
c

`

`

d

d

`

d

a

b

b
`

a

e

b

a

b

f

b

c

`

`

`

a

`

c

a

b

`

b
b

b

a

b

c

a

a

a

b

b

a

c

`

a

a

b

`

a

a

d

`

`

`

b

`

b

a

b

0

1

2

3

4

5

6
7

8

Figure 6.17: Results for Image 0.

in Figures 6.18, 6.20, 6.22, and 6.24 for Images 0 through 3. In these figures, the

selected particles are indicated by white boxes. We note that Bajaj and Yu use the

same point sets as input to their particle selection technique.

6.3.2 Discussion

The results in Figures 6.17 through 6.23 seem to indicate that our online median

algorithm could have practical use for the problem of particle selection. For each

input, our online median algorithm identified what seemed to be particles in the
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Figure 6.18: Results of Yu and Bajaj [48] for Image 0
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Figure 6.19: Results for Image 1
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Figure 6.20: Results of Yu and Bajaj [48] for Image 1
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Figure 6.21: Results for Image 2
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Figure 6.22: Results of Yu and Bajaj [48] for Image 2
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Figure 6.23: Results for Image 3
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Figure 6.24: Results of Yu and Bajaj [48] for Image 3
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source image. When compared to the results of Yu and Bajaj, our implementation

identifies nearly the same set of particles. Qualitatively, our approach seems to

identify interesting regions in all four of the inputs. Overall, our online median

algorithm seemed to cope well with the low signal-to-noise ratio in the inputs.

Although we have obtained qualitatively good results, we note that our im-

ages are quite small. Our largest image was 377 pixels by 342 pixels, but in practice

images could be much larger. A drawback of our algorithm is that the preprocessing

time of our algorithm is quadratic in the number of input points. We note that this

property of our algorithm makes it very sensitive to the thresholding procedure used

to translate the source image to a point set. One simple way to cope with this limi-

tation would be to simply split up a large source image and treat it as a number of

smaller images. After the initialization procedure, however, our algorithm requires

just O(`) amortized time to identify the next cluster center. (Recall that the param-

eter ` was roughly the number of bits needed to represent distances in the input.)

Thus, our algorithm would be well-suited for use in an interactive environment in

which a large number of relatively small images must be processed quickly.

We note that the online property of our online median algorithm seemed to

bias the choice of cluster centers (see, e.g., Figure 6.16). In our results, the cluster

centers that were computed by our online median implementation did not always

correspond to the center of a region that could be a particle. It would be interesting

to see if we could use a postprocessing step to refine the cluster centers computed by

our online median algorithm. We saw in Section 6.2 that the k-means heuristic runs

very quickly even for large values of n. It would be interesting to see, for example,

if the k-means heuristic could be combined with our online median algorithm to

iteratively refine the cluster centers each time a new cluster center is computed.

102



Chapter 7

Concluding Remarks

In this dissertation, we have presented fast constant-factor approximation algorithms

for the facility location, k-median and online median problems. We show that our

facility location and online median algorithms are time-optimal and that our k-

median algorithm is time-optimal for a wide range of values of k. Our k-median

and online median algorithms are based on two algorithmic techniques, successive

sampling, and the hierarchically greedy strategy, that could be of independent inter-

est. Additionally, we show that all of our approximation results hold for objective

functions other than the k-median objective function. Specifically, we show that

all of our approximation results hold, to within constant factors, for the k-means

objective function. We also show that the approximation guarantees of our algo-

rithms could have significant practical benefit as well. When used as an initialization

procedure for k-means, our k-median algorithm seems to achieve a very reasonable

tradeoff between running time and solution quality. In addition, our online median

algorithm seems to have practical benefit for the problem of particle selection in

electron microscopy. Our preliminary results indicate that it may be useful in an

interactive setting.

In Chapter 2 we mentioned that the facility location and k-median problem
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were formulated, and are still being studied, in the context of resource placement.

It would be interesting to see if the hierarchically greedy strategy employed in our

online median algorithm is useful for problems in resource placement on a network.

For example, Korupolu et al. give a simple constant-factor approximation algorithm

for the problem of hierarchical cooperative caching on a network. For the version

of the problem they study, it is assumed that the given distance function is a tree

metric. That is, distances between nodes are defined by a tree underlying the net-

work. (Remark: This type of distance function is also referred to as an ultrametric.)

The algorithm of Korupolu et al. is based on a variation of the naive greedy strat-

egy; it would be interesting to see if our generalization of the naive greedy strategy

could be used to obtain a constant-factor approximation algorithm for the problem

of cooperative caching in an arbitrary metric space.

We showed in Chapter 4 that our successive sampling algorithm captures the

essence of the input for the purpose of clustering with a very small set of sampled

points (i.e., a subset of size roughly O(k log n/k)). Our approach to the k-median

problem was to first use our successive sampling procedure to distill the input points

and then to solve a small problem instance constructed from the sampled points us-

ing existing techniques. It would be interesting to see if we could apply this two-step

approach to obtain fast approximation algorithm for other NP-hard optimization

problems.
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Appendix A

Algorithm

Modified-Small-Space

The main goal of this section is to establish that a modified version of algorithm

Small-Space of Guha et al. [16] is O(1)-approximate. Our version of algorithm

Small-Space, which we refer to as Modified-Small-Space, and its analysis are used

to establish the results in Sections 4.4 and 4.5. We note that the changes to the

algorithm of Guha et al. are trivial; the discussion in this section is included for

completeness only.

We now discuss the modification to algorithm Small-Space of Guha et al. [16]

and the changes required in the analysis. In Step 2 of algorithm Small-Space of Guha

et al. [16], ` O(k)-configurations are computed. Then, in Step 3, a weight function

is constructed based on these configurations. In algorithm Modified-Small-Space,

we instead compute ` assignments in Step 2 and use them in Step 3 to construct a

weight function. Theorem 2.4 of Guha et al. [16] proves the approximation bound

for algorithm Small-Space. In order to prove the same approximation bound for

algorithm Modified-Small-Space, a slight generalization of [16, Theorem 2.3] (which

is used in the proof of [16, Theorem 2.4]) is needed. The rest of their analysis,
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including the proof of Theorem 2.4, remains unchanged.

This section is organized as follows. We first present algorithm Modified-

Small-Space. We then restate Theorem 2.4 of Guha et al. [16] as Theorem 6 below.

We then give the required generalization of Theorem 2.3 of Guha et al. [16] with

Lemma A.0.1 below.

We also make use of some additional definitions in this section. For any as-

signment τ , we define wτ as follows: For a point x in τ(U), wτ (x) =
∑

y∈τ−1(x) w(y).

For any assignment τ and set of points X, we let cτ (X) =
∑

x∈τ(U) d(x,X) · wτ (x).

Algorithm Modified-Small-Space(U)

1. Divide U into ` disjoint pieces, U0, . . . , U`−1.

2. For each i, 0 ≤ i < `, compute an assignment τi : Ui → Ui. Let τ be an

assignment that is defined as follows: If x is in Ui, then τ(x) = τi(x).

3. Let U ′ denote τ(U) and let wτ be the weight function on U ′.

4. Compute a k-configuration using U ′ as the set of points, wτ as the weight

function, and d as the distance function.

Theorem 6 (Guha et al. [16]) If an (a, b)-approximate k-median algorithm is

used in Step 2 of algorithm Modified-Small-Space, and a c-approximate k-median

algorithm is used in Step 4 of algorithm Modified-Small-Space, then algorithm

Modified-Small-Space is (2c(1 + 2b) + 2b)-approximate.

Lemma A.0.1 Let the sets Ui, 0 ≤ i < `, be a partition of U . Let τi, 0 ≤ i < `, be

assignments such that τi(U) ⊆ Ui and τ−1
i (U) = Ui. Let τ be an assignment that is

defined as follows: for x in Ui, then τ(x) = τi(x). Let X be a configuration such

that X ⊆ τ(U). Then,

cτ (X) ≤ cost (X) +
∑

0≤i<`

c (τi) .
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Proof: Observe that

cτ (X) =
∑

x∈τ(U)

d(x,X) · wτ (x)

=
∑

x∈τ(U)

d(x,X)

 ∑
y∈τ−1(x)

w(y)


≤

∑
x∈τ(U)

∑
y∈τ−1(x)

(d(y, τ(y)) + d(y, X)) · w(y)

=
∑
y∈U

(d(y, τ(y)) + d(y, X)) · w(y)

= c (τ) + cost (X)

= cost (X) +
∑

0≤i<`

c (τi) ,

where the third step follows from Lemma A.0.2 and the last step follows from the

definition of τ .

Lemma A.0.2 Let τ be an assignment, let X be a configuration such that

X ⊆ τ(U), let x be a point in τ(U), and let y be a point in τ−1(x). Then

d(x,X) ≤ d(y, τ(y)) + d(y, X).

Proof: Let z be a point in X such that d(y, X) = d(y, z). Observe that

d(x,X) ≤ d(x, z) ≤ d(x, y) + d(y, z) = d(y, τ(y)) + d(y, X).

107



Bibliography

[1] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, New York, NY,

1991.

[2] S. Arora and R. Kannan. Learning mixtures of arbitrary Gaussians. In

Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,

pages 247–257, July 2001.

[3] V. Arya, N. Garg, R. Kandhekar, V. Pandit, A. Meyerson, and K. Munagala.

Local search heuristics for k-median and facility location problems. In

Proceedings of the 31st Annual ACM Symposium on Theory of Computing,

pages 21–29, July 2001.

[4] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, Cambridge, UK, 1998.

[5] M. Charikar and S. Guha. Improved combinatorial algorithms for facility

location and k-median problems. In Proceedings of the 40th Annual IEEE

Symposium on Foundations of Computer Science, pages 378–388, October

1999.

[6] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant-factor

approximation algorithm for the k-median problem. In Proceedings of the 31st

Annual ACM Symposium on Theory of Computing, pages 1–10, May 1999.

108



[7] F. A. Chudak. Improved approximation algorithms for uncapacitated facility

location. In R. E. Bixby, E. A. Boyd, and R. Z. Ŕıos-Mercado, editors, Integer
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