
Optimal Time Bounds for Approximate Clustering∗

Ramgopal R. Mettu C. Greg Plaxton

Abstract

We give randomized constant-factor approximation algorithms for thek-median problem
and an intimately related clustering problem. The input to each of these problems is a metric
space withn weighted points and an integerk, 0 < k ≤ n. For any such input, letRd denote
the ratio between the maximum and minimum nonzero interpoint distances, and letRw denote
the ratio between the maximum and minimum nonzero point weights. We analyze the running
time of our algorithms in terms of the parametersn, k, Rd, andRw. We prove that over a wide
range of parameter settings, the complexity of both problems isΘ(nk).

∗Department of Computer Science, University of Texas at Austin, Austin, TX 78712. This research was supported
by NSF Grant CCR–9821053. Email:{ramgopal , plaxton }@cs.utexas.edu . The second author is presently
on leave at Akamai Techologies, Inc., Cambridge, MA 02139.

1 Introduction

Given a set of points and pairwise distances between the points, the goal ofclusteringproblems
is to partition the points into a number of sets such that points in each set are “close” with respect
to some objective function. Clustering algorithms are widely used to organize large data sets in
areas such as data mining and information retrieval. For example, we may wish to partition a set
of web logs to infer certain usage patterns, or divide a corpus of documents into a small number
of related groups. Given a set of points and associated interpoint distances, let themedian of
the set be the point in the set that minimizes the sum of distances to all other points in the set.
(Remark: The median is essentially the discrete analog of the centroid, and is also called the
medoid[9].) The clustering problem we consider asks us to partitionn weighted points intok sets
such that the sum, over all sets, of the weight of a point times the distance to the median of its
set is minimized. Approaches to this type of clustering problem, such as thek-means heuristic,
have been well-studied [4, 9]. We refer to this problem as theclustering variantof the classic
k-median problem; thek-median problem asks us to markk of the points such that the sum over
all pointsx of the weight ofx times the distance fromx to the nearest marked point is minimized.
It is straightforward to see that we can convert a solution to thek-median problem into a solution
for its clustering variant inO(nk) time; thus we focus on thek-median problem when developing
our upper bounds. We also restrict our attention to themetric version of the problems throughout
this paper; the given distance matrix defines a metric space over the set of input points, that is,
the distances are nonnegative, symmetric, satisfy the triangle inequality, and the distance between
pointsx andy is zero if and only ifx = y. (Remark: For the sake of brevity we write “k-median
problem” to mean “metrick-median problem” throughout the remainder of the paper.)

Since problem instances in the application areas mentioned above tend to be large, we are mo-
tivated to ask how input characteristics such as the point weights and interpoint distances affect
the complexity of thek-median problem and its clustering variant. Weighted points are useful in a
number of applications; for example, we may wish to prioritize the objects in the input. We ask the
following natural question: Does allowing inputs with arbitrary point weights incur a substantial
time penalty? We note that even for moderate weights, sayO(n2), the naive approach of viewing
a weighted point as a collection of unit-weight points increases the input size dramatically. For
certain applications, the interpoint distances may lie in a relatively small range. Thus we are mo-
tivated to ask: Does constraining distances to a small range admit substantially faster algorithms?
We resolve both of the above questions for a wide range of input parameters by establishing a time
bound ofΘ(nk) for thek-median problem and its clustering variant. Thus, we show that in many
cases, having large point weights does not incur a substantial time penalty, and, that we cannot
hope to develop substantially faster algorithms even when the interpoint distances lie in a small
range.

Before stating our results we introduce some useful terminology that we use throughout this pa-
per. LetU denote the set of all points in a given instance of thek-median problem; we assume that
U is nonempty. Aconfiguration is a nonempty subset ofU . An m-configuration is a configuration
of size at mostm. For any pointsx andy in U , letw(x) denote the nonnegative weight ofx, and let
d(x, y) denote the distance betweenx andy. Thecostof any configurationX, denotedcost (X), is
defined as

∑
x∈U d(x, X) · w(x). We denote the minimum cost of anym-configuration byOPTm.

For brevity, we say that anm-configuration with cost at mosta ·OPT k is an(m, a)-configuration.

1

A k-median algorithm is(m, a)-approximateif it produces an(m, a)-configuration. Ak-median
algorithm isa-approximateif it is (k, a)-approximate. LetRd denote the ratio of the diameter of
U (i.e., the maximum distance between any pair of points inU) to the minimum distance between
any pair of distinct points inU . Let Rw denote the ratio of the maximum weight of any point in
U to the minimum nonzero weight of any point inU . (Remark: We can assume without loss of
generality that at least one point inU has nonzero weight since the problem is trivial otherwise.)
Let rd = 1 + blog Rdc andrw = 1 + blog Rwc.

Our main result is a randomizedO(1)-approximatek-median algorithm that runs inO(nk) time
subject to the constraintsk = Ω(log n), kr2

w = O(n), andrdrw log(n
krw

) = O(n). The algorithm
succeedswith high probability, that is, for any positive constantξ, we can adjust constant factors
in the definition of the algorithm to achieve a failure probability less thann−ξ. We establish a
matchingΩ(nk) lower bound on the running time of any randomizedO(1)-approximatek-median
algorithm with a nonnegligible success probability (e.g., at least1

100
), subject to the requirement

that Rd exceedsn/k by a sufficiently large constant factor relative to the desired approximation
ratio. To obtain tight bounds for the clustering variant, we also prove anΩ(nk) time lower bound
for anyO(1)-approximate algorithm, but we only require thatRd be a sufficiently large constant
relative to the desired approximation ratio. Additionally, our lower bounds assume only thatRw =
O(1).

Our main technical result is a successive sampling technique that we use in all of our algo-
rithms. The basic idea behind the technique is to take a random sample of the points, set aside a
constant fraction of then points that are “close” to the sample, and recurse on the remaining points.
We show that this technique rapidly produces a configuration whose cost is within a constant factor
of optimal. Specifically, for the case of uniform weights, our successive sampling algorithm yields
a (k log (n/k), O(1))-configuration with high probability inO(n max{k, log n}) time.

In addition to this sampling result, our algorithms rely on an extraction technique due to Guha
et al. [5] that uses a black boxO(1)-approximatek-median algorithm to compute a(k, O(1))-
configuration from any(m, O(1))-assignment. The black box algorithm that we use is the linear-
time deterministic online median algorithm of Mettu and Plaxton [10].

In developing our randomized algorithm for thek-median problem we first consider the special
case of uniform weights, that is, whereRw = rw = 1. For this special case we provide a random-
ized algorithm running inO(n max{k, log n}) time subject to the constraintrd log n

k
= O(n). The

uniform-weights algorithm is based directly on the two building blocks discussed above: We apply
the successive sampling algorithm to obtain(k log (n/k), O(1))-configuration and then use the
extraction technique to obtain a(k, O(1))-configuration. We then use this algorithm to develop
a k-median algorithm for the case of arbitrary weights. Our algorithm begins by partitioning the
n points intorw power-of-2 weight classes and applying the uniform-weights algorithm within
each weight class (i.e., we ignore the differences between weights belonging to the same weight
class, which are less than a factor of2 apart). The union of therw k-configurations thus obtained
is an (rwk, O(1))-configuration. We then make use of our extraction technique to obtain a(k,
O(1))-configuration from this(rwk, O(1))-configuration.

2

1.1 Problem Definitions

Without loss of generality, throughout this paper we consider a fixed set ofn points,U , with an
associated distance functiond : U × U → IR and an associated nonnegative demand function
w : U → IR. We assume thatd is a metric, that is,d is nonnegative, symmetric, satisfies the
triangle inequality, andd(x, y) = 0 iff x = y. For a configurationX and a set of pointsY , we let
cost (X, Y) =

∑
x∈Y d(x, X) · w(x). For any set of pointsX, we letw(X) denoteΣx∈Xw(x).

We define anassignmentas a function fromU to U . For any assignmentτ , we letτ(U) denote
the set{τ(x) | x ∈ U}. We refer to an assignmentτ with |τ(U)| ≤ m as am-assignment.
Given an assignmentτ , we define the cost ofτ , denotedc (τ), as

∑
x∈U d(x, τ(x)) · w(x). It is

straighforward to see that for any assignmentτ , cost (τ(U)) ≤ c (τ). For brevity, we say that
an assignmentτ with |τ(U)| ≤ m and cost at mosta · OPT k is an(m, a)-assignment. For an
assignmentτ and a set of pointsX, we letc (τ,X) =

∑
x∈X d(x, τ(x)) · w(x).

The input to thek-median problem is(U, d, w) and an integerk, 0 < k ≤ n. Since our goal is
to obtain a(k, O(1))-configuration, we can assume without loss of generality that all input points
have nonzero weight. We note that for allm, 0 < m ≤ n, removing zero weight points from
anm-configuration at most doubles its cost. To see this, consider anm-configurationX; we can
obtain anm-configurationX ′ by replacing each zero weight point with its closest nonzero weight
point. Using the triangle inequality, it is straightforward to see thatcost (X ′) ≤ 2cost (X). This
argument can be used to show that any minimum-cost set of sizem contained in the set of nonzero
weight input points has cost at most twiceOPTm. We also assume that the input weights are scaled
such that the smallest weight is1; thus the input weights lie in the range[1, Rw]. For output, the
k-median problem requires us to compute a minimum-costk-configuration. Theuniform weights
k-median problem is the special case in whichw(x) is a fixed real for all pointsx. The output is
also a minimum-costk-configuration.

1.2 Comparison to Previous Work

The firstO(1)-approximatek-median algorithm was given by Charikaret al. [3]. Subsequently,
there have been several improvements to the approximation ratio (see, e.g., [2] for results and ci-
tations). In this section, we focus on the results that are most relevant to the present paper; we
compare our results with other recent sublinear-time algorithms for thek-median problem. The
first of these results is due to Indyk, who gives a randomized (O(k), O(1))-approximate algo-
rithm for the uniform weightsk-median problem [6]. Indyk’s algorithm combines random sam-
pling of the input points with a black-box (αk, β)-approximatek-median algorithm to achieve a
((1+δ)(6+3α)k, 2β)-approximate algorithm, whereδ is the desired success probability. Given an
Õ(n2)-time1 black-boxk-median algorithm, Indyk’s algorithm runs iñO(nk/δ2) time. (The poly-
logarithmic factor in the running time isΩ(log2 k).) Indyk’s algorithm takesO(

√
nk log k) sample

points and then runs the black-boxk-median algorithm on those points to obtain a configuration
X. The black-box algorithm is then run again on a set of points that are distant from points inX
to produce another configurationY . The final output is the union ofX andY , which is shown to
be an(O(k), O(1))-configuration.

Thorup [13] gives a randomizedO(1)-approximate algorithms for thek-median,k-center, and
1TheÕ-notation omits polylogarithmic factors inn andk.

3

facility location problems in a graph. For these problems, we are not given a metric distance
function but rather a graph on the input points withm positively weighted edges from which
the distances must be computed; all of the algorithms in [13] run inÕ(m) time. Thorup [13]
also gives anÕ(nk) time randomized constant-factor approximation algorithm for thek-median
problem that we consider. (The polylogarithmic factor in the running time isΩ(log4 n).) As part
of this k-median algorithm, Thorup gives a successive sampling technique that also consists of a
series of sampling steps but produces an(O((k log2 n)/ε), 2 + ε)-configuration for any positive
realε with 0 < ε < 0.4 with probability1/2.

Our successive sampling technique is similar in spirit to both of the above algorithms, but we
take a total ofO(log (n/k)) samples, each of sizeO(k), and construct an(O(k log (n/k), O(1))-
assignment from the union of the samples. Overall, our sample size is much smaller than in Indyk’s
algorithm (O(k log (n/k)) points versusO(

√
nk log k) points) and smaller than the sample size in

Thorup’s algorithm by a logarithmic factor. However, our algorithm produces an(O(k log (n/k),
O(1))-assignment whereas Indyk’s algorithm produces an(O(k), O(1))-configuration. Addition-
ally, the algorithms of Indyk and Thorup both succeed with a constant probability, while our sam-
pling algorithm is guaranteed to succeed with high probability.

Guhaet al. [5] give k-median algorithms for the data stream model of computation. Under the
data stream model of computation, input data is processed sequentially, and the performance of an
algorithm is measured by how many passes it makes over the input and by its space requirements.
Guhaet al. [5] give a single-passO(1)-approximate algorithm for thek-median problem that runs
in Õ(nk) time and requiresO(nε) space for a positive constantε. (Their algorithm uses Indyk’s
k-median algorithm as a black box and hence the polylogarithmic factor in the running time is also
Ω(log2 k).)

Mishra et al. [11] show that in order to find a(k, O(1))-configuration, it is enough to take a
sufficiently large sample of the input points and use it as input to a black-boxO(1)-approximate
k-median algorithm. To compute a(k, O(1))-configuration with an arbitrarily high constant prob-
ability, the required sample size is̃O(R2

dk). The running time of this technique depends on the
black-box algorithm used. In the general case, the size of the sample may be as large asn, but
depending on the diameter of the input metric space, this technique can yield running times of
o(n2) (e.g., if the diameter iso(n2/k)).

As noted earlier, we also make use of a technique due to Guhaet al. [5] that takes an(m,
O(1))-configuration and extracts a(k, O(1))-configuration; they use this technique in isolation
in a divide-and-conquer fashion to develop theirk-median algorithms. We view the extraction
technique as a postprocessing step that yields a (k, O(1))-approximatek-median algorithm given
an (m, O(1))-approximatek-median algorithm. In our algorithms, we take advantage of the fact
that this postprocessing step can be performed rapidly. For example, ifm = O(k) and the black-
box algorithm requiresO(n2) time, the time required for postprocessing is justO(k2).

Guhaet al. [5] establish a lower bound ofΩ(nk) for deterministicO(1)-approximatek-median
algorithms. We note that they work with a slightly different definition of thek-median problem in
which the distance between two distinct points is allowed to be0. We adopt the view that points
at distance zero are represented by a single point with commensurately higher weight; this view
avoids having an infinite value forRd. For the proof of the lower bound, Guhaet al. [5] construct
a problem instance for which optimal solution has cost0 and reduce the problem to a graphk-
partitioning problem [7]. The intuition is that any algorithm producing ak-configuration with

4

nonzero cost is notO(1)-approximate. Although their problem instance contains distinct points at
distance0 (i.e., an infiniteRd), with a slight modification their proof only requires thatRd exceed
n by a sufficiently large constant factor relative to the desired approximation ratio. Intuitively, with
such a large setting ofRd, a deterministick-median algorithm takingo(nk) time and making just
one “mistake” has fails to achieve the desired approximation ratio. Our lower bounds are stronger
in the sense that we focus on constructing problem instances that have small values ofRd, and
then show that any randomizedk-median algorithms running ino(nk) time is likely to make many
“mistakes” on these instances.

1.3 Outline

The rest of this paper is organized as follows. In Section 2, we present and analyze our successive
sampling algorithm. In Section 3, we make use of our sampling algorithm, in conjunction with an
extraction result, to develop anO(1)-approximate uniform weightsk-median algorithm. Then, in
Section 4, we use the uniform weights algorithm as a subroutine to develop anO(1)-approximate
k-median algorithm for the case of arbitrary weights. We present our lower bounds for thek-
median problem and its clustering variant in Appendix A.

2 Approximate Clustering via Successive Sampling

Our first result is a successive sampling algorithm that constructs an assignment that has cost
O(OPT k) with high probability. We make use of this algorithm to develop our uniform weights
k-median algorithm. (Remark: We assume arbitrary weights for our proofs since the arguments
generalize easily to the weighted case; furthermore, the weighted result may be of independent
interest.) Informally speaking, the algorithm works in sampling steps. In each step we take a small
sample of the points, set aside a constant fraction the weight whose constituent points are each
close to the sample, and recurse on the remaining points. Since we eliminate a constant fraction of
the weight at each sampling step, the number of samples taken is logarithmic in the total weight.
We are able to show that using the samples taken, it is possible to construct an assignment whose
cost is within a constant factor of optimal with high probability. For the uniform weightsk-median
problem, our sampling algorithm runs inO(n max{k, log n}) time. (We give ak-median algorithm
for the case of arbitrary weights in Section 4.)

Throughout this section, we use the symbolsα, β, andk′ to denote real numbers appearing in
the definition and analysis of our successive sampling algorithm. The value ofα andk′ should be
chosen to ensure that the failure probability of the algorithm meets the desired threshold. (See the
paragraph preceding Lemma 2.3 for discussion of the choice ofα andk′.) The asymptotic bounds
established in this paper are valid for any choice ofβ such that0 < β < 1.

We also make use of the following definitions:

• A ball A is a pair(x, r), where thecenterx of A belongs toU , and theradius r of A is a
nonnegative real.

• Given a ballA = (x, r), we letPoints(A) denote the set{y ∈ U | d(x, y) ≤ r}. However,
for the sake of brevity, we tend to writeA instead ofPoints(A). For example, we write “x ∈
A” and “A ∪B” instead of “x ∈ Points(A)” and “Points(A) ∪ Points(B)”, respectively.

5

• For any setX and nonnegative realr, we defineBalls(X, r) as the set∪x∈XAx whereAx =
(x, r).

2.1 Algorithm

The following algorithm takes as input an instance of thek-median problem and produces an
assignmentσ such that with high probability,c (σ) = O(cost (X)) for anyk-configurationX.

Let U0 = U , and letS0 = ∅. While |Ui| > αk′:

• Construct a set of pointsSi by sampling (with replacement)bαk′c times fromUi, where at
each sampling step the probability of selecting a given point is proportional to its weight.

• For each point inUi, compute the distance to the nearest point inSi.

• Using linear-time selection on the distances computed in the previous step, compute the
smallest realνi such thatw(Balls(Si, νi)) ≥ βw(Ui). Let Ci = Balls(Si, νi).

• For eachx in Ci, choose a pointy in Si such thatd(x, y) ≤ νi and letσ(x) = y.

• Let Ui+1 = Ui \ Ci.

Note that the loop terminates sincew(Ui) < w(Ui+1) for all i ≥ 0. Let t be the total number
of iterations of the loop. LetCt = St = Ut. By the choice ofCi in each iteration and the loop
termination condition,t is O(log (w(U)/k′)). For the uniform demandsk-median problem,t is
simplyO(log (n/k′)). From the first step it follows that|σ(U)| is O(tk′).

The first step of the algorithm can be performed inO(nk′) time over all iterations. In each
iteration the second and third steps can be performed in timeO(|Ui| k′) by using a (weighted) linear
time selection algorithm. For the uniform demandsk-median problem, this computation requires
O(nk′) time over all iterations. The running times of the third and fourth steps are negligible.
Thus, for the uniform demandsk-median problem, the total running time of the above algorithm is
O(nk′).

2.2 Approximation Bound

The goal of this section is to establish Theorem 1. The proof of the theorem makes use of Lemmas
2.3, 2.5, and 2.11, which are established below. We remark that Theorem 1 is used in Sections 3
and 4.

Theorem 1 With high probability,c (σ) = O(cost (X)) for anyk-configurationX.

Proof: The claim of Lemma 2.3 holds with high probability if we setk′ = max{k, log n} andα
andβ appropriately large. The theorem then follows from Lemmas 2.3, 2.5, and 2.11.

The proof of Lemma 2.3 below relies on bounding the failure probability of a certain family of
random experiments. We begin by bounding the failure probability of a simpler family of random
experiments related to the well-known coupon collector problem. For any positive integerm and
any nonnegative realsa andb, let us definef(m, a, b) as the probability that more thanam bins
remain empty afterdbe balls are thrown at random (uniformly and independently) intom bins.

6

Techniques for analyzing the coupon collector problem (see. e.g., [12]) can be used to obtain sharp
estimates onf(m, a, b). However, the following simple upper bound is sufficient for our purposes.

Lemma 2.1 For any positive realε, there exists a positive realλ such that for all positive integers
m and any realb ≥ m, we havef(m, ε, λb) ≤ e−b.

Proof: Note that a crude upper bound onf(m, ε, λb) is given by the probability of obtaining
at most(1 − ε)m successes indλbe Bernoulli trials, each of which has success probabilityε.
The claim then follows by choosingλ sufficiently large and applying a standard Chernoff bound.
(We have in mind the following tail bound: IfX is a random variable drawn from a Bernoulli
distribution withn trials and each trial has success probabilityp, then for allδ such that0 ≤ δ ≤ 1,
Pr {X ≤ (1− δ)np} ≤ e−δ2np/2; see [1, Appendix A] for a derivation.)

We now develop a weighted generalization of the preceding lemma. For any positive integer
m, nonnegative realsa andb, andm-vectorv = (r0, . . . , rm−1) of nonnegative realsri, we define
defineg(m, a, b, v) as follows. Consider a set ofm bins numbered from0 to m − 1 where bini
has associated weightri. Let R denote the total weight of the bins. Assume that each ofdbe balls
is thrown independently at random into one of them bins, where bini is chosen with probability
ri/R, 0 ≤ i < m. We defineg(m, a, b, v) as the probability that the total weight of the empty bins
after all of the balls have been thrown is more thanaR.

Lemma 2.2 For any positive realε there exists a positive realλ such that for all positive integers
m and any realb ≥ m, we haveg(m, ε, λb, v) ≤ e−b for all m-vectorsv of nonnegative reals.

Proof: Fix ε, b, m, andv. We will use Lemma 2.1 to deduce the existence of a suitable choice of
λ that depends only onε. Our strategy for reducing the claim to its unweighted counterpart will be
to partition almost all of the weight associated with them weighted bins intoΘ(m) “sub-bins” of
equal weight. Specifically, we lets denoteεR

2m
and for eachi we partition the weightri associated

with bin i into
⌊

ri

s

⌋
completesub-bins of weights and oneincompletesub-bin of weight less than

s. Furthermore, when a ball is thrown into a particular bin, we imagine that the throw is further
refined to a particular sub-bin of that bin, where the probability that a particular sub-bin is chosen
is proportional to its weight.

Note that the total weight of the incomplete sub-bins is less thanεR/2. Furthermore, we can
assume without loss of generality thatε ≤ 1, since the claim holds vacuously forε > 1. It
follows that less than half of the total weightR lies in incomplete sub-bins. Thus, by a standard
Chernoff bound argument, for any positive realλ′ we can chooseλ sufficiently large to ensure that
the following claim holds with probability of failure at moste−b/2 (i.e., half the desired failure
threshold appearing in the statement of the lemma): At leastλ′b of thedλbe balls are thrown into
complete sub-bins.

Let m′ denote the number of complete sub-bins. Since at least half of the total weightR
belongs to complete sub-bins, we havem/ε ≤ m′ ≤ 2m/ε. Accordingly, by a suitable application
of Lemma 2.1, we can establish the existence of a positive realλ′ (depending only onε) such that,
after at leastλ′b balls have landed in complete sub-bins, the probability that the number of empty
complete sub-bins exceedsεm′/2 is at moste−b/2.

From the claims of the two preceding paragraphs, we can conclude that there exists aλ (de-
pending only onε) such that the following statement holds with probability of failure at moste−b:

7

The number of empty complete sub-bins is at mostεm′/2. Note that the total weight of the com-
plete sub-bins is at mosts · ε

2
· 2t

ε
= εR/2. As argued earlier, the total weight of the incomplete

sub-bins is also at mostεR/2. Thus, there exists a positive realλ such that afterdλbe ball tosses,
the probability that the total weight of the empty bins is more thanεR is at moste−b.

For the remainder of this section, we fix a positive realγ such thatβ < γ < 1. We also
let µi denote the minimum real such that there exists ak-configurationX with the property that
w(Balls(X, µi)) ≥ γw(Ui). Lemma 2.3 below establishes the main probabilistic claim used in our
analysis of the algorithm of Section 2.1. We note that the lemma holds with high probability by
takingk′ = max{k, dlog ne} andα andβ appropriately large.

Lemma 2.3 For any positive realξ, there exists a sufficiently large choice ofα such thatνi ≤ 2µi

for all i, 0 ≤ i ≤ t, with probability of failure at moste−ξk′
.

Proof: Fix i and letX denote ak-configuration such thatw(Balls(X, µi)) ≥ γw(Ui). Let us
define each pointy in Ui to begoodif it belongs toBalls(X, µi), andbadotherwise. LetG denote
the set of good points. We associate each good pointy with its closest point inX, breaking ties
arbitrarily. For each pointx in X, let Ax denote the set of good points associated withx; note that
the setsAx form a partition ofG. Recall thatSi denotes theith set of sample points chosen by the
algorithm. For anyx in X, we say thatSi coversAx iff Si ∩ Ax is nonempty. For any pointy, we
say thatSi coversy iff there exists anx in X such thaty belongs toAx andSi coversAx. Let G′

denote the set of points covered bySi; note thatG′ ⊆ G.
We will establish the lemma by proving the following claim: For any positive realsε andξ,

there exists a sufficiently large choice ofα such thatw(G′) ≥ (1 − ε)w(G) with probability of
failure at moste−ξk′

. This claim then implies the lemma becauseβ (the factor appearing in the
definition of νi) is less thanγ (the factor appearing in the definition ofµi) and for all pointsy
covered bySi, d(y, Si) ≤ 2µi.

It remains to prove the preceding claim. First, note that the definition ofµi implies that at least
a γ fraction of the total weight is associated with good points. Thus, a standard Chernoff bound
argument implies that for any positive realsλ andξ, there exists a sufficiently large choice ofα
such that at leastλk′ of the bαk′c samples associated with the construction ofSi are good with
probability of failure at moste−ξk′

/2.
To ensure thatw(G′) is at least(1 − ε)w(G) with failure probabilitye−ξk′

/2, we can apply
Lemma 2.2 by viewing each sample associated with a good point inSi as a ball toss and each set
Ax as a bin with weightw(Ax). The claim then follows.

Lemma 2.4 For all i such that0 ≤ i ≤ t, c (σ, Ci) ≤ νiw(Ci).

Proof: Observe that

c(σ, Ci) =
∑
x∈Ci

d(x, σ(x)) · w(x)

≤
∑
x∈Ci

νi · w(x)

= νiw(Ci),

where the second step follows from the definition ofCi and the construction ofσ(x).

8

Lemma 2.5

c(σ) ≤
∑

0≤i≤t

νiw(Ci).

Proof: Observe that

c(σ) =
∑

0≤i≤t

c (σ, Ci)

≤
∑

0≤i≤t

νiw(Ci).

The first step follows since the setsCi, 0 ≤ i ≤ t, form a partition ofU . The second step follows
from Lemma 2.4.

Throughout the remainder of this section we fix an arbitraryk-configurationX. For all i such
that0 ≤ i ≤ t, we letFi denote the set{x ∈ Ui | d(x, X) ≥ µi}, and for any integerm > 0, we
let Fm

i denoteFi \ (∪j>0Fi+jm).

Lemma 2.6 Let i, j, and m be integers such that0 ≤ i ≤ t, 0 ≤ j ≤ t, m > 0, and (i −
j) mod m = 0. ThenFm

i ∩ Fm
j = ∅.

Proof: Without loss of generality, assume thati < j. Then, by definition,Fm
i = Fi\(∪s>0Fi+sm).

SinceFm
j ⊆ Fj and(i− j) mod m = 0, it follows thatFm

i andFm
j do not intersect.

Lemma 2.7 Let i be an integer such that0 ≤ i ≤ t and letY be a subset ofFi. Thenw(Fi) ≥
(1− γ)w(Ui) andcost (X,Y) ≥ µiw(Y).

Proof: First, note that by the definition ofµi, w(Fi) is at least(1− γ)w(Ui). By the definition of
Fi, d(y, X) ≥ µi for anyy in Fi. Thuscost (X, Y) =

∑
y∈Y d(y, X) · w(y) ≥ µiw(Y).

Lemma 2.8 For all i, j, andm such that0 ≤ i ≤ t, 0 ≤ j ≤ t, andm > 0,

cost
(
X,∪(i−j) mod m=0F

m
i

)
≥

∑
(i−j) mod m=0

µiw(Fm
i).

Proof: By Lemma 2.6, for alli, j, andm such that0 ≤ i ≤ t,0 ≤ j ≤ t, andm > 0,

cost
(
X,∪(i−j) mod m=0F

m
i

)
=

∑
(i−j) mod m=0

cost (X, Fm
i) .

By Lemma 2.7,cost (X, Fm
i) ≥ µiw(Fm

i), and the claim follows.

For the remainder of the section, letr = dlog(1−β) ((1− γ)/3)e.

Lemma 2.9 For all i such that0 ≤ i ≤ t, w(Fi+r) ≤ 1
3
w(Fi).

Proof: Note thatw(Fi+r) ≤ w(Ui+r) ≤ (1 − β)rw(Ui) ≤ (1−β)r

1−γ
w(Fi), where the last step

follows from Lemma 2.7. The claim then follows by the definition ofr.

9

Lemma 2.10 For all i such that0 ≤ i ≤ t, w(F r
i) ≥ w(Fi)

2
.

Proof: Observe that

w(F r
i) = w(Fi \ ∪j>0Fi+jr)

≥ w(Fi)−
∑
j>0

w(Fi)

3j

≥ w(Fi)

2
,

where the second step follows from Lemma 2.9.

Lemma 2.11 For anyk-configurationX,

cost(X) ≥ 1− γ

2r

∑
0≤i≤t

µiw(Ci).

Proof: Let j = arg max0≤j<r{
∑

(i−j) mod r=0 w(F r
i)} and fix ak-configurationX. Thencost (X)

is at least

cost
(
X,∪(i−j) mod r=0F

r
i

)
≥

∑
(i−j) mod r=0

µiw(F r
i)

≥ 1

r

∑
0≤i≤t

µiw(F r
i)

≥ 1

2r

∑
0≤i≤t

µiw(Fi)

≥ 1− γ

2r

∑
0≤i≤t

µiw(Ui)

≥ 1− γ

2r

∑
0≤i≤t

µiw(Ci),

where the first step follows from Lemma 2.8, the second step follows from averaging and the
choice ofj, the third step follows from Lemma 2.10, the fourth step follows from Lemma 2.7, and
the last step follows sinceCi ⊆ U .

3 An Efficient Algorithm for the Case of Uniform Weights

Theorem 2.4 of Guhaet al. [5] implies that for any given(m, O(1))-configurationX, we can
compute a(k, O(1))-configuration by simply running anO(1)-approximatek-median algorithm
on the modified problem instance obtained by redistributing the point weights as follows: The
weight of any given pointx is moved to a pointy in X such thatd(x, y) = d(x, X). (This result
follows from the analysis of algorithm Small-Space of Guhaet al. [5], since it corresponds to the
case in which̀ = 1 in step 1 and the(m, O(1))-configuration is the output in step 2. It should be

10

remarked that although algorithm Small-Space is presented in a manner that assumes the output
of step 2 to bè (O(k), O(1))-configurations, the analysis of Small-Space given in [5] is easily
seen to hold for the more general case in which the output of step 2 is a collection of` (m, O(1))-
configurations.)

By Theorem 1, the output of our sampling algorithm is an(m, O(1))-assignment with high
probability, wherem = O(max{k, log n} log (n/k)) in the case of uniform weights. Thusσ(U)
is an(m, O(1))-configuration with high probability, and we can directly apply the Guhaet al. [5]
technique to extract a(k, O(1))-configuration fromσ(U). The only trouble with this approach is
that a direct application of their technique expendsΘ(mn) = ω(nk) time in computing the closest
point in σ(U) to each point inU . Fortunately, it is straightforward to verify that the following
variation of the Guhaet al. [5] technique is also valid. Given an(m, O(1))-assignment, we can
redistribute the weight of each pointx to σ(x) and then run anO(1)-approximatek-median algo-
rithm on the modified problem instance. (Remark: In [5, Section 2], the pointi′ is defined to be
the median closest to the pointi. For the purposes of our variation, the pointi′ should instead be
defined asσ(i).)

We now analyze the running time of the above algorithm. To compute the assignmentσ, we
use our sampling algorithm with the parameterk′ set toO(max{k, log n}). The time required to
computeσ is thenO(n max{k, log n}). We note that the required weight function can be com-
puted during the execution of the sampling algorithm without increasing its running time. The
deterministic online median algorithm of Mettu and Plaxton [10] can then be used to complete the
extraction step inO(|σ(U)|2 + |σ(U)| rd) time. The total time taken by the algorithm is therefore

O(nk′ + |σ(U)|2 + |σ(U)| rd) = O(nk′ + k′2 log2 (n/k) + rdk
′ log (n/k))

= O(nk′ + rdk
′ log (n/k)),

where the first step follows from the analysis of our sampling algorithm for the case of uniform
weights. By the choice ofk′, the overall running time isO((n + rd log (n/k)) max{k, log n}).
Note that ifk = Ω(log n) andkr2

w = O(n), this time bound simplifies toO(nk).

4 An Efficient Algorithm for the Case of Arbitrary Weights

The algorithm developed in Sections 2 and 3 isO(1)-approximate for thek-median problem with
arbitrary weights. However, the time bound established for the case of uniform weights does
not apply to the case of arbitrary weights because the running time of the successive sampling
procedure is slightly higher in the latter case. (More precisely, the running time of the sampling
algorithm of Section 2 isO(nk′ log w(U)

k′) for the case of arbitrary weights.) In this section, we
use the uniform-weight algorithm developed in Sections 2 and 3 to develop ak-median algorithm
for the case of arbitrary weights that is time optimal for a certain range ofk.

We first give an informal description of the algorithm, which consists of three main steps. First,
we partition the input points according to weight intorw sets. Next, we run our uniform weights
k-median algorithm on each of the resulting sets, and show that the union of the resulting outputs is
an(O(krw), O(1))-configuration. We then obtain a(k, O(1))-configuration by creating a problem
instance from the(O(krw), O(1))-configuration computed in the previous step and then feeding
this problem instance as input to anO(1)-approximatek-median algorithm.

11

We now give a more precise description of ourk-median algorithm. LetA be the uniform
weightsk-median algorithm of Sections 2 and 3, and letB be anO(1)-approximatek-median
algorithm.

• Compute setsBi for 0 ≤ i < rw such that for allx ∈ Bi, 2i ≤ w(x) ≤ 2i+1.

• For i = 0, 1 . . . rw − 1: RunA with Bi as the set of input points,d as the distance function,
2i+1 as the fixed weight, and the parameterk′ = max{k, dlog ne}; let Zi denote the output.
Let φi denote the assignment induced byZi, that is,φi(x) = y iff y is in Zi andd(x, Zi) =
d(x, y). For a pointx, if x ∈ Zi, let w̃φi

(x) = w(φ−1
i (x)), otherwise letw̃φi

(x) = 0.

• Let φ be the assignment corresponding to the union of the assignmentsφi defined in the
previous step, and let̃wφ denote the weight function corresponding to the union of the weight
functionsw̃φi

. RunB with φ(U) as the set of input points,d as the distance function, and̃wφ

as the weight function. Output the resultingk-configuration.

Note that in the second step,k′ is defined in terms ofn (i.e., |U |) and not|Bi|. Thus, the
argument of the proof of Theorem 1 implies thatA succeeds with high probability in terms of
n. Assuming thatrw is polynomially bounded inn, with high probability we have that every
invocation ofA is successful.

We now observe that the above algorithm corresponds to the special case of algorithm Small-
Space of [5] in which the parameter` is set torw, the uniform weights algorithm of Section 3 is
used in step 2 of Small-Space, and the online median algorithm of [10] is used in step 4 of Small-
Space. Thus, [5, Theorem 2.4] implies that the output ofB is a(k, O(1))-configuration with high
probability.

We now discuss the running time of the above algorithm. It is straightforward to compute the
setsBi in O(n) time. Our uniform weightsk-median algorithm requiresO((|Bi| + rd log |Bi|

k
)k′)

time to computeZi, so the time required for all invocations ofA is

O

 ∑
0≤i<rw

(|Bi|+ rd log (|Bi| /k)) k′

 = O

(
rw

(
nk′

rw

+ rdk
′ log

(
n

krw

)))

= O
((

n + rdrw log
n

krw

)
k′
)

.

(The first step follows from the fact that the sum is maximized when|Bi| = n/rw.) Note that each
weight functionw̃φi

can be computed inO(|Bi| k) time; it follows thatw̃φ can be computed in
O(nk) time. We employ the online median algorithm of [10] as the black-boxk-median algorithm
B. Since|φ(U)| is at mostkrw, the time required for the invocation ofB is O((krw)2+krwrd). The
overall time required for ourk-median algorithm is thereforeO((n + rdrw log(n

krw
))k′ + (krw)2 +

krwrd). Note that ifk = Ω(log n), kr2
w = O(n), andrdrw log(n

krw
) = O(n), this time bound

simplifies toO(nk).

References

[1] N. Alon and J. H. Spencer.The Probabilistic Method. Wiley, New York, NY, 1991.

12

[2] M. Charikar and S. Guha. Improved combinatorial algorithms for facility location andk-
median problems. InProceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science, pages 378–388, October 1999.

[3] M. Charikar, S. Guha,́E. Tardos, and D. B. Shmoys. A constant-factor approximation al-
gorithm for thek-median problem. InProceedings of the 31st Annual ACM Symposium on
Theory of Computing, pages 1–10, May 1999.

[4] R. O. Duda and P. E. Hart.Pattern Classification and Scene Analysis. John Wiley and Sons,
New York, 1973.

[5] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams. InPro-
ceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, pages
359–366, November 2000.

[6] P. Indyk. Sublinear time algorithms for metric space problems. InProceedings of the 31st
Annual ACM Symposium on Theory of Computing, pages 428–434, May 1999. See also the
revised version at http://theory.stanford.edu/˜indyk.

[7] L. Kavraki, J-C. Latombe, and P. Raghavan. Randomized query processing in robot path
planning.Journal of Computer and System Sciences, 57:50–60, 1998.

[8] P. D. Mackenzie. Lower bounds for randomized exclusive write PRAMs. InProceeding of
the 7th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 254–263,
July 1995.

[9] C. D. Manning and H. Scḧutze. Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, 1999.

[10] R. R. Mettu and C. G. Plaxton. The online median problem. InProceedings of the 41st
Annual IEEE Symposium on Foundations of Computer Science, pages 339–348, November
2000.

[11] N. Mishra, D. Oblinger, and L. Pitt. Sublinear time approximate clustering. InProceedings
of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 439–447, January
2001.

[12] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, Cam-
bridge, UK, 1995.

[13] M. Thorup. Quickk-medians,k-center, and facility location for sparse graphs. InProceed-
ings of the 28th International Colloquium on Automata, Languages, and Programming, July
2001. To appear.

[14] A. Yao. Probabilistic computations: Toward a unified measure of complexity. InProceedings
of the 18th IEEE Symposium on Foundations of Computer Science, pages 222–227, 1977.

13

A Lower Bounds

In this section, we give lower bounds for thek-median problem and its clustering variant. Through-
out the section, we refer to the clustering variant as thek-clustering problem. Recall that the
k-clustering problem asks us to partition the input points such that the sum, over all sets in the
partition, of the weight of a point times the distance to the median of its set, is minimized. Since
anyk-median solution can be converted into a solution for thek-clustering problem inO(nk) time,
in developing our upper bounds it was sufficient to consider only thek-median problem. Unfor-
tunately this reduction is not useful for the present purpose of establishingΩ(nk) lower bounds;
accordingly, in this section we consider the problems separately.

For both thek-clustering problem and thek-median problem, we establish a lower bound of
Ω(nk) time on any randomized algorithm that isO(1)-approximate with even a negligible proba-
bility. Since the overall objective of this paper is to study the complexity of approximate clustering
in terms of the four parametersn, k, Rd, andRw, it is desirable for the metric spaces associated
with our lower bound arguments to have small values for bothRd andRw. In terms ofRw, we
achieve this goal completely, since all of the input distributions that we consider below have uni-
form weights, that is,Rw = 1. For thek-clustering problem, our lower bounds are established with
Rd equal to a constant (sufficiently large relative to the desired approximation ratio); this is clearly
best possible up to a constant factor. For thek-median problem, our lower bound requiresRd to
exceedn/k by a sufficiently large constant factor relative to the desired approximation ratio.

In our proofs, we assume an oracle model of computation in which the algorithm is charged
only for asking the oracle the distance between a pair of points. We refer to each call to the oracle as
aprobe. By a generalization of Yao’s technique [14] due to Mackenzie [8], we can establish a lower
bound ofp on the success probability of a randomized algorithm by exhibiting an input distribution
for which every deterministic algorithm has a success probability of at mostp. (The intuition
underlying this reduction is that the success probability of a randomized algorithm is just a convex
combination of the success probabilities of a number of deterministic algorithms.) Thus in what
follows, we restrict our attention to exhibiting “hard” distributions for determinstic algorithms.
All of the problems considered in this section take the same input as thek-median problem. Our
lower bounds also hold for the non-uniform case since for each choice ofn andk, we exhibit a
probability distribution over the set ofn-point metric spaces on which no deterministic algorithm
making a sufficiently small number of probes can achieve more than a negligible probability of
success.

For any positive real̀ > 1, it is convenient to define a metric space to be`-simple if the
following conditions hold: (1) all of the points have unit weight; (2) the points of the metric space
can be partitioned into equivalence classes such that the distance between any pair of distinct points
is 1 if the points belong to the same equivalence class, and` otherwise. Thus, anỳ-simple metric
space hasRd = ` andRw = 1. Our lower bounds are all based on`-simple input distributions for
some appropriately chosen value of`.

In order to establish a lower bound for thek-clustering problem, we find it convenient to in-
troduce a problem that we call thek-matching problem. The input to thek-matching problem is
the same as the input to thek-clustering problem. The output is a partition of then input points
into a collection of disjoint pairs and singletons, subject to the constraint that there are at most
k singletons. We refer to such an output as ak-matching. The costof a k-matching is defined

14

as the sum, over all output pairs of points(x, y), of d(x, y) · min{w(x), w(y)}. The goal of the
k-matching problem is to compute a minimum-costk-matching.

Given an algorithm for thek-clustering problem, consider the associatedk-matching algorithm
defined as follows: (1) run thek-clustering algorithm to partition then input points into at most
k clusters; (2) arbitrarily partition each even-sized cluster into a number of pairs; (3) arbitrarily
partition each odd-sized cluster into a singleton and a number of pairs; (4) return thek-matching
formed by the singletons and pairs computed in the previous two steps. Using the triangle inequal-
ity, it is straightforward to prove that the cost of thek-matching produced by this algorithm is at
most the cost of thek-clustering computed in step (1) (i.e., the sum over all pointsx of the weight
of x multiplied by the distance fromx to the medoid of its cluster). Furthermore, thisk-matching
algorithm uses exactly the same number of probes as the associatedk-clustering algorithm. Below
we will exhibit an input distribution with respect to which any deterministick-matching algorithm
making a sufficiently small number of probes has only a negligible probability of computing ak-
matching with cost within a constant factor of the cost of the optimal clustering. By the foregoing
reduction from thek-matching problem to thek-clustering problem, such a result implies that any
deterministick-clustering algorithm running on the same input distribution and making the same
small number of probes has only the same negligible probability of computing ak-clustering with
cost within a constant factor of optimal.

In order to state and prove our lower bounds it is convenient to introduce a shorthand notation
for expressing certain kinds of statements. In particular, for any statementS, we define an associ-
ated statement, which we refer to as theP -claimS, as follows: For all positive realsε andc, there
exist positive realsδ andγ and positive integersn0 anda such that for all positive integersn andk
for whichn ≥ n0 and1 < k < n, there exists a probability distributionD over the set of̀ -simple
n-point metric spaces wherè= γ such that any deterministick-matching algorithmA making
at mostδnk probes on an input drawn uniformly at random fromD, the statementS holds with
probability at least1− ε. (We remark that a givenP -claimS need not contain the parameterc. We
also remark that if theP -claimsS andT hold, then theP -claimS ∧ T holds.)

We define aP ′-claim in the same way as aP -claim except that the restriction onk is strength-
ened to1 < k < n

2
. Similarly, aP ′′-claim is a variant of aP -claim in which the restriction onk is

n
2
≤ k < n. Note that for any statementS, theP ′-claimS and theP ′′-claimS imply theP -claim

S.
Finally, for addressing thek-median problem we defineQ-, Q′-, andQ′′-claims in an analogous

manner, where the algorithmA is assumed to be ak-median algorithm rather than ak-matching
algorithm, and̀ is defined to beγn

k
instead ofγ.

The rest of this section is devoted to proving the following two theorems.

Theorem 2 TheP -claim “the cost of thek-matching solution computed byA is more thanc times
the cost of an optimalk-clustering solution” holds.

Theorem 3 TheQ-claim “the cost of thek-median solution computed byA is more thanc times
the cost of an optimalk-median solution” holds.

The proof of the first theorem follows from Lemmas A.1 and A.2 below. The proof of the
second theorem follows from Lemmas A.3 and A.4.

15

Lemma A.1 TheP ′-claim “the cost of thek-matching solution computed byA is more thanc
times the cost of an optimalk-clustering solution” holds.

Proof Sketch: Let D denote the distribution of̀-simplen-point metric spaces where each point
is independently placed into one ofk equivalence classes uniformly at random. Given an input
instance drawn fromD, the cost of an optimalk-clustering solution is easily seen to ben− k.

Let us define a pointx to becleanwith respect to an execution of algorithmA if the following
two conditions are satisfied: (1) there is no pointy such thatd(x, y) = 1 andA has probedd(x, y);
(2)A has probed the distance betweenx and at mostεk other points.

It is not difficult to establish the followingP ′-claim: “At least(1−ε)n points are clean”. Since
A is ak-matching algorithm it outputs at leastn− k ≥ n/2 pairs. This observation, together with
the precedingP ′-claim, implies theP ′-claim “At leastn/3 of the pairs produced byA consist of
two clean points.” Note that each such output pair of clean points independently contributes a cost
of ` to the cost of thek-matching produced byA with probability at least1− 1

k(1−ε)
, since a clean

point is equally likely to belong to any of the at leastk(1− ε) equivalence classes (those for which
A has not probed a distance between the given clean point and some point in the equivalence class).
The claim of the lemma now follows by choosing constants appropriately (i.e., by settingδ, γ, and
n0 to appropriate functions ofε andc) and applying a standard Chernoff bound argument.

Lemma A.2 TheP ′′-claim “the cost of thek-matching solution computed byA is more thanc
times the cost of an optimalk-clustering solution” holds.

Proof Sketch: The proof of the preceding lemma does not readily extend to large values ofk,
so we employ a somewhat different approach. In this case we define the input distributionD by
randomly partitioning then points intok clusters (i.e., equivalence classes),n − k of which are
pairs, and2k − n of which are singletons. As in the proof of Lemma A.1, the cost of an optimal
k-clustering solution isn− k.

Let us assume for the sake of simplicity thatn is a multiple of2a. (Remark: It is not difficult
to modify our argument to handle generaln.) For the sake of the analysis, it is useful to think
of sampling from the input distributionD via the following three-stage process: (1) randomly
partition then points into n

2a
supergroupsof size2a; (2) randomly partition each supergroup into

a pairs; (3) pick a random set ofk − n
2

pairs and split them to obtain2k − n singletons. In
what follows we refer to these pairs and singletons asinput-pairsand input-singletons, in order
to avoid confusion with the pairs and singletons computed by algorithmA, which we refer to as
output-pairsandoutput-singletons.

We define a supergroup to beinterestingif it contains at least one input-pair. Note that there
are at leastn−k

a
interesting supergroups. Let us define a supergroup to bered if it contains at least

one output-pair; otherwise, it isblue.
If there arei blue supergroups then at leasti output-pairs either span distinct supergroups or

contain at least one input-singleton; it follows that the cost of thek-matching produced byA is
at leasti`. If at least half (say) of the interesting supergroups are blue, this argument is sufficient
to establish the lemma. Thus, in what follows, we may assume that at least half of the interesting
supergroups are red.

Let us define a supergroup to becleanwith respect to an execution of algorithmA if A does
not probe the distance between any two points in the supergroup. It is not difficult to establish

16

the followingP ′′-claim: “At least a1 − ε fraction of the interesting supergroups are clean.” By
this P ′′-claim and the assumption of the previous paragraph, we establish theP ′′-claim “at least
one-third of the interesting supergroups are clean and red”.

LetG denote a clean interesting red supergroup and let(x, y) denote an output-pair that belongs
to G (such a pair exists sinceG is red). Ifx is an input-singleton then the cost of pair(x, y) is `,
and we can attribute this cost toG. Otherwise,x belongs to some input-pair(x, z), and algorithm
A pays` for the pair(x, y) unlessy = z. But the probability thaty = z is 1

2a−1
sinceG is clean.

Furthermore, the event thaty = z is independent of the analogous events defined for other clean
interesting red supergroups. Thus each clean interesting red supergroup independently contributes,
with probability at least1 − 1

2a−1
, a cost of at least̀ to the total cost of thek-matching produced

by A. The claim of the lemma now follows by choosing constants appropriately and applying a
standard Chernoff bound argument.

Lemma A.3 TheQ′-claim “the cost of thek-median solution computed byA is more thanc times
the cost of an optimalk-median solution” holds.

Proof Sketch: Let D denote the distribution of̀-simplen-point metric spaces associated with the
following partitioning scheme: (1) independently place each of then points into one ofbk/2c ten-
tative equivalence classesuniformly at random; (2) randomly selectdk/2e specialpoints and move
each of these special points into a singleton equivalence class. Note that for any such instance, the
cost of an optimalk-median solution isn− k.

We define a pointx to becleanwith respect to an execution of algorithmA if there is no point
y belonging to the same tentative equivalence class asx for whichA has probedd(x, y).

It is not difficult to establish the following pair ofQ′-claims: (1) at least(1 − ε)n points are
clean; (2) at least(1− ε) dk/2e of the special points are clean.

Let X denote the random variable corresponding to the set of clean points, and letY denote
the remaining points. LetZ denote the random variable corresponding to the set of special clean
points. We now argue that the conditional distribution ofZ givenX and|Z| has a simple structure,
namely,Z is a uniformly random subset ofX of size|Z|. This claim holds because the definition
of a clean point implies that the behavior of algorithmA is the same no matter which size-|Z|
subset ofX is equal toZ. Combining this claim with the results of the preceding paragraph, it is
straightforward to establish theQ′-claim “A fails to output1

4
(say) of the clean special points.”

Note that each special point that does not appear in the output ofA contributes̀ to the cost
of thek-median solution computed byA. Thus we obtain theQ′-claim “the cost of the solution
computed byA is at least(1− ε)k`/8”. Choosingγ sufficiently large (depending onc), the claim
of the lemma then follows sincè= γn/k.

Lemma A.4 TheQ′′-claim “the cost of thek-median solution computed byA is more thanc times
optimal” holds.

Proof Sketch: This proof is similar to that of Lemma A.2 above. We define the input distribution
D in the same manner, as well as the following terms: supergroup, clean supergroup, interesting
supergroup, input-pair, input-singleton. As before, note that at leastn−k

a
of the supergroups are

interesting.

17

We define theinput-weightof a supergroup as the number of input-pairs and input-singletons
that it contains. We define theoutput-weightof a supergroup as the size of its intersection with the
k-median solution computed byA. We define thediscrepancyof a supergroup as its input-weight
minus its output-weight. Note that the sum of the discrepancies of all supergroups is zero since the
total input-weight and the total output-weight are both equal tok. A supergroup isbalancedif it
has discrepancy 0.

If the total discrepancy of the supergroups with positive discrepancy iss then it is straightfor-
ward to prove that the cost of thek-median solution computed byA is at leasts`. If s is at least
one-quarter of the number of interesting supergroups then this argument is sufficient to establish
the claim of the lemma. Thus in what follows we may assume thats is less than one-quarter
of the number of interesting supergroups. Under this assumption, at least half of the interesting
supergroups are balanced (since at most one-quarter of them can have negative discrepancy).

It is not difficult to establish the followingQ′′-claim: “At least a1−ε fraction of the interesting
supergroups are clean.” Combining this with the conclusion of the preceding paragraph we obtain
theQ′′-claim “at least one-third of the interesting supergroups are clean and balanced”.

Let G denote a clean interesting balanced supergroup withi input-pairs andj input-singletons.
Thus the input-weight and output-weight ofG is i + j (sinceG is balanced), andi > 0 (sinceG
is interesting). In order to avoid paying a cost of` for servicing any of the points in supergroupG,
the subset ofG of sizei + j contained in the output ofA has to include exactly one point out of
each of thei input-pairs, and all of thej input-singletons. SinceG is clean, the probability thatA
produces such an output is2i divided by

(
2a
i

)
. Given the constraints oni, namely,1 ≤ i ≤ a, this

probability is at most1/a. Furthermore, the event thatA produces such an output is independent
the analogous events defined for other clean interesting balanced supergroups. Thus each clean
interesting balanced supergroup independently contributes, with probability at least1/a, a cost of
at least̀ to the total cost of thek-median solution produced byA. The claim of the lemma now
follows by choosing constants appropriately and applying a standard Chernoff bound argument.

18

