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Abstract

We give randomized constant-factor approximation algorithms foktheedian problem
and an intimately related clustering problem. The input to each of these problems is a metric
space withn weighted points and an integey0 < k£ < n. For any such input, lek; denote
the ratio between the maximum and minimum nonzero interpoint distances, did detnote
the ratio between the maximum and minimum nonzero point weights. We analyze the running
time of our algorithms in terms of the parameters, R4, andR,,. We prove that over a wide
range of parameter settings, the complexity of both probler@gis:).
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1 Introduction

Given a set of points and pairwise distances between the points, the gdabtaringproblems

is to partition the points into a number of sets such that points in each set are “close” with respect
to some objective function. Clustering algorithms are widely used to organize large data sets in
areas such as data mining and information retrieval. For example, we may wish to partition a set
of web logs to infer certain usage patterns, or divide a corpus of documents into a small number
of related groups. Given a set of points and associated interpoint distances, me¢dien of

the set be the point in the set that minimizes the sum of distances to all other points in the set.
(Remark: The median is essentially the discrete analog of the centroid, and is also called the
medoid[9].) The clustering problem we consider asks us to partitieveighted points inté& sets

such that the sum, over all sets, of the weight of a point times the distance to the median of its
set is minimized. Approaches to this type of clustering problem, such astheans heuristic,

have been well-studied [4, 9]. We refer to this problem asclhstering variantof the classic
k-median problemthe k-median problem asks us to maklof the points such that the sum over

all pointsz of the weight ofz times the distance from to the nearest marked point is minimized.

It is straightforward to see that we can convert a solution to-theedian problem into a solution

for its clustering variant ifD(nk) time; thus we focus on thie-median problem when developing

our upper bounds. We also restrict our attention tontketric version of the problems throughout

this paper; the given distance matrix defines a metric space over the set of input points, that is,
the distances are nonnegative, symmetric, satisfy the triangle inequality, and the distance between
pointsx andy is zero if and only ifz = y. (Remark: For the sake of brevity we writé-fmedian
problem” to mean “metrié-median problem” throughout the remainder of the paper.)

Since problem instances in the application areas mentioned above tend to be large, we are mo-
tivated to ask how input characteristics such as the point weights and interpoint distances affect
the complexity of the.-median problem and its clustering variant. Weighted points are useful in a
number of applications; for example, we may wish to prioritize the objects in the input. We ask the
following natural question: Does allowing inputs with arbitrary point weights incur a substantial
time penalty? We note that even for moderate weights(¥ay ), the naive approach of viewing
a weighted point as a collection of unit-weight points increases the input size dramatically. For
certain applications, the interpoint distances may lie in a relatively small range. Thus we are mo-
tivated to ask: Does constraining distances to a small range admit substantially faster algorithms?
We resolve both of the above questions for a wide range of input parameters by establishing a time
bound of©(nk) for the k-median problem and its clustering variant. Thus, we show that in many
cases, having large point weights does not incur a substantial time penalty, and, that we cannot
hope to develop substantially faster algorithms even when the interpoint distances lie in a small
range.

Before stating our results we introduce some useful terminology that we use throughout this pa-
per. LetU denote the set of all points in a given instance of#thaedian problem; we assume that
U is nonempty. Aconfigurationis a nonempty subset 6f. An m-configurationis a configuration
of size at mostn. For any points: andy in U, letw(z) denote the nonnegative weightafand let
d(x,y) denote the distance betweeandy. Thecostof any configuration\, denotedcost (X ), is
defined a$", .y d(z, X) - w(x). We denote the minimum cost of any-configuration byOPT,,,.

For brevity, we say that am-configuration with cost at most OP T is an(m, a)-configuration.



A k-median algorithm igm, a)-approximateif it produces an'm, a)-configuration. Ak-median
algorithm isa-approximateif it is (%, a)-approximate. Let?; denote the ratio of the diameter of
U (i.e., the maximum distance between any pair of poinfs)no the minimum distance between
any pair of distinct points i/. Let R, denote the ratio of the maximum weight of any point in
U to the minimum nonzero weight of any pointin (Remark: We can assume without loss of
generality that at least one pointih has nonzero weight since the problem is trivial otherwise.)
Letr; =1+ |log Ry] andr,, = 1 + |log R, .

Our main resultis a randomizé& 1)-approximate:-median algorithm that runs @ (nk) time
subject to the constraints= Q(logn), kri = O(n), andrgr, log(z-) = O(n). The algorithm
succeedsvith high probability that is, for any positive constaff we can adjust constant factors
in the definition of the algorithm to achieve a failure probability less thah We establish a
matching2(nk) lower bound on the running time of any randomized )-approximatec-median
algorithm with a nonnegligible success probability (e.g., at Iq@@t subject to the requirement
that R, exceeds:/k by a sufficiently large constant factor relative to the desired approximation
ratio. To obtain tight bounds for the clustering variant, we also prove (a) time lower bound
for any O(1)-approximate algorithm, but we only require that be a sufficiently large constant
relative to the desired approximation ratio. Additionally, our lower bounds assume onlg that
o(1).

Our main technical result is a successive sampling technique that we use in all of our algo-
rithms. The basic idea behind the technique is to take a random sample of the points, set aside a
constant fraction of the points that are “close” to the sample, and recurse on the remaining points.
We show that this technique rapidly produces a configuration whose cost is within a constant factor
of optimal. Specifically, for the case of uniform weights, our successive sampling algorithm yields
a(klog (n/k), O(1))-configuration with high probability i (n max{k,logn}) time.

In addition to this sampling result, our algorithms rely on an extraction technique due to Guha
et al. [5] that uses a black bo®(1)-approximatek-median algorithm to compute @&, O(1))-
configuration from anym, O(1))-assignment. The black box algorithm that we use is the linear-
time deterministic online median algorithm of Mettu and Plaxton [10].

In developing our randomized algorithm for thenedian problem we first consider the special
case of uniform weights, that is, whekg, = r,, = 1. For this special case we provide a random-
ized algorithm running i) (n max{k, log n}) time subject to the constrainglog 7 = O(n). The
uniform-weights algorithm is based directly on the two building blocks discussed above: We apply
the successive sampling algorithm to obtéiriog (n/k), O(1))-configuration and then use the
extraction technique to obtain(&, O(1))-configuration. We then use this algorithm to develop
a k-median algorithm for the case of arbitrary weights. Our algorithm begins by partitioning the
n points intor,, power-of2 weight classes and applying the uniform-weights algorithm within
each weight class (i.e., we ignore the differences between weights belonging to the same weight
class, which are less than a factor2adipart). The union of the,, k-configurations thus obtained
is an (r,k, O(1))-configuration. We then make use of our extraction technique to obtéin a
O(1))-configuration from thigr,, k£, O(1))-configuration.



1.1 Problem Definitions

Without loss of generality, throughout this paper we consider a fixed setpoints, U, with an
associated distance functiah: U x U — IR and an associated nonnegative demand function
w : U — IR. We assume that is a metric, that isd is nonnegative, symmetric, satisfies the
triangle inequality, and(x,y) = 0 iff = = y. For a configurationY and a set of point¥’, we let
cost (X,Y) =3,y d(z, X) - w(z). For any set of pointX, we letw(X) denoteX,c yw(z).

We define armssignments a function froni/ to U. For any assignment we let7(U) denote
the set{r(z) | = € U}. We refer to an assignmentwith |7(U)| < m as am-assignment
Given an assignment, we define the cost of, denotedc (7), as> ¢y d(z, 7(x)) - w(zx). Itis
straighforward to see that for any assignmentost (7(U)) < c (7). For brevity, we say that
an assignment with |7(U)| < m and cost at most - OPT), is an(m, a)-assignment For an
assignment and a set of point&’, we letc (7, X) = >, cx d(z, 7(x)) - w(x).

The input to thek-median problem i$U, d, w) and an integek, 0 < k£ < n. Since our goal is
to obtain a(k, O(1))-configuration, we can assume without loss of generality that all input points
have nonzero weight. We note that for all 0 < m < n, removing zero weight points from
anm-configuration at most doubles its cost. To see this, considet-annfigurationX’; we can
obtain anm-configurationX’ by replacing each zero weight point with its closest nonzero weight
point. Using the triangle inequality, it is straightforward to see tat (X') < 2cost (X). This
argument can be used to show that any minimum-cost set ofisctained in the set of nonzero
weight input points has cost at most twio&T',,,. We also assume that the input weights are scaled
such that the smallest weight is thus the input weights lie in the range R,]. For output, the
k-median problem requires us to compute a minimum-gasinfiguration. Thauniform weights
k-median problem is the special case in whicfx) is a fixed real for all points.. The output is
also a minimum-cost-configuration.

1.2 Comparison to Previous Work

The firstO(1)-approximatek-median algorithm was given by Chariker al. [3]. Subsequently,
there have been several improvements to the approximation ratio (see, e.g., [2] for results and ci-
tations). In this section, we focus on the results that are most relevant to the present paper; we
compare our results with other recent sublinear-time algorithms fok-tmedian problem. The
first of these results is due to Indyk, who gives a randomizegd:), O(1))-approximate algo-
rithm for the uniform weights:-median problem [6]. Indyk’s algorithm combines random sam-
pling of the input points with a black-boxv, (5)-approximatek-median algorithm to achieve a
((1 +6)(6+3a)k 23)-approximate algorithm, whereis the desired success probability. Given an
O(n?)-time! black-boxk-median algorithm, Indyks algorithm runs @(nk/62) time. (The poly-
logarithmic factor in the running time (log” k).) Indyk’s algorithm take®)(,/nk log k) sample
points and then runs the black-béxmedian algorithm on those points to obtain a configuration
X. The black-box algorithm is then run again on a set of points that are distant from poixts in
to produce another configuratidh The final output is the union of andY’, which is shown to
be an(O(k), O(1))-configuration.

Thorup [13] gives a randomized(1)-approximate algorithms for themedian k-center, and

1The O-notation omits polylogarithmic factors mandk.



facility location problems in a graph. For these problems, we are not given a metric distance
function but rather a graph on the input points withpositively weighted edges from which

the distances must be computed; all of the algorithms in [13] ru@(im) time. Thorup [13]

also gives arO(nk) time randomized constant-factor approximation algorithm forktmeedian
problem that we consider. (The polylogarithmic factor in the running tinfe(isg* n).) As part

of this k-median algorithm, Thorup gives a successive sampling technique that also consists of a
series of sampling steps but produces(@f(k log” n) /<), 2 + ¢)-configuration for any positive

reale with 0 < € < 0.4 with probability 1/2.

Our successive sampling technique is similar in spirit to both of the above algorithms, but we
take a total o0 (log (n/k)) samples, each of size(k), and construct afiO(k log (n/k), O(1))-
assignment from the union of the samples. Overall, our sample size is much smaller than in Indyk’s
algorithm O (k log (n/k)) points versug (y/nk log k) points) and smaller than the sample size in
Thorup’s algorithm by a logarithmic factor. However, our algorithm producegdh log (n/k),
O(1))-assignment whereas Indyk’s algorithm produces$@f¥), O(1))-configuration. Addition-
ally, the algorithms of Indyk and Thorup both succeed with a constant probability, while our sam-
pling algorithm is guaranteed to succeed with high probability.

Guhaet al.[5] give k-median algorithms for the data stream model of computation. Under the
data stream model of computation, input data is processed sequentially, and the performance of an
algorithm is measured by how many passes it makes over the input and by its space requirements.
Guhaet al.[5] give a single-pas®(1)-approximate algorithm for the-median problem that runs
in O(nk) time and require®)(n°) space for a positive constant (Their algorithm uses Indyk’s
k-median algorithm as a black box and hence the polylogarithmic factor in the running time is also
Q(log?k).)

Mishraet al.[11] show that in order to find &, O(1))-configuration, it is enough to take a
sufficiently large sample of the input points and use it as input to a blaclcGljoxapproximate
k-median algorithm. To compute(&, O(1))-configuration with an arbitrarily high constant prob-
ability, the required sample size &(Rﬁk). The running time of this technique depends on the
black-box algorithm used. In the general case, the size of the sample may be as laydritas
depending on the diameter of the input metric space, this technique can yield running times of
o(n?) (e.g., if the diameter is(n?/k)).

As noted earlier, we also make use of a technique due to ®ubA [5] that takes an(m,
O(1))-configuration and extracts (@, O(1))-configuration; they use this technique in isolation
in a divide-and-conquer fashion to develop theimedian algorithms. We view the extraction
technique as a postprocessing step that yields @(1))-approximatek-median algorithm given
an (n, O(1))-approximatek-median algorithm. In our algorithms, we take advantage of the fact
that this postprocessing step can be performed rapidly. For example=ifO(k) and the black-
box algorithm require®(n?) time, the time required for postprocessing is jo$t?).

Guhaet al.[5] establish a lower bound 6i(nk) for deterministicO(1)-approximate:-median
algorithms. We note that they work with a slightly different definition of theedian problem in
which the distance between two distinct points is allowed t0.b#/e adopt the view that points
at distance zero are represented by a single point with commensurately higher weight; this view
avoids having an infinite value fa,. For the proof of the lower bound, Guleaal. [5] construct
a problem instance for which optimal solution has dosind reduce the problem to a graph
partitioning problem [7]. The intuition is that any algorithm producing-aonfiguration with



nonzero cost is nad(1)-approximate. Although their problem instance contains distinct points at
distance) (i.e., an infiniteR,;), with a slight modification their proof only requires tha; exceed

n by a sufficiently large constant factor relative to the desired approximation ratio. Intuitively, with
such a large setting ak;, a deterministid:-median algorithm taking(nk) time and making just

one “mistake” has fails to achieve the desired approximation ratio. Our lower bounds are stronger
in the sense that we focus on constructing problem instances that have small vaRjgsantl

then show that any randomizéemedian algorithms running in(nk) time is likely to make many
“mistakes” on these instances.

1.3 Outline

The rest of this paper is organized as follows. In Section 2, we present and analyze our successive
sampling algorithm. In Section 3, we make use of our sampling algorithm, in conjunction with an
extraction result, to develop a&n(1)-approximate uniform weights-median algorithm. Then, in
Section 4, we use the uniform weights algorithm as a subroutine to developlamapproximate
k-median algorithm for the case of arbitrary weights. We present our lower bounds fér the
median problem and its clustering variant in Appendix A.

2 Approximate Clustering via Successive Sampling

Our first result is a successive sampling algorithm that constructs an assignment that has cost
O(OPT}) with high probability. We make use of this algorithm to develop our uniform weights
k-median algorithm. (Remark: We assume arbitrary weights for our proofs since the arguments
generalize easily to the weighted case; furthermore, the weighted result may be of independent
interest.) Informally speaking, the algorithm works in sampling steps. In each step we take a small
sample of the points, set aside a constant fraction the weight whose constituent points are each
close to the sample, and recurse on the remaining points. Since we eliminate a constant fraction of
the weight at each sampling step, the number of samples taken is logarithmic in the total weight.
We are able to show that using the samples taken, it is possible to construct an assignment whose
cost is within a constant factor of optimal with high probability. For the uniform weightgedian
problem, our sampling algorithm runsdnn max{k,logn}) time. (We give &-median algorithm
for the case of arbitrary weights in Section 4.)

Throughout this section, we use the symhe|s;, andk’ to denote real numbers appearing in
the definition and analysis of our successive sampling algorithm. The vatuarmd 4’ should be
chosen to ensure that the failure probability of the algorithm meets the desired threshold. (See the
paragraph preceding Lemma 2.3 for discussion of the choiceanid%’.) The asymptotic bounds
established in this paper are valid for any choicg slich that) < 5 < 1.

We also make use of the following definitions:

e A ball A is a pair(z,r), where thecenterz of A belongs tol/, and theradius r of A is a
nonnegative real.

e Given aballA = (z,r), we let Points(A) denote the sety € U | d(z,y) < r}. However,
for the sake of brevity, we tend to writéinstead ofPoints(A). For example, we writed €
A”and “A U B” instead of ¢ € Points(A)” and “Points(A) U Points(B)”, respectively.
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e For any setX and nonnegative real we defineBalls(.X,r) as the set,cx A, whereA, =
(x,7).

2.1 Algorithm

The following algorithm takes as input an instance of thmedian problem and produces an
assignment such that with high probability; (o) = O(cost (X)) for any k-configurationX .
LetU, = U, and letS, = (). While |U;| > ak':

e Construct a set of pointS; by sampling (with replacementyk’| times fromU;, where at
each sampling step the probability of selecting a given point is proportional to its weight.

e For each point ir/;, compute the distance to the nearest poirfi;in

e Using linear-time selection on the distances computed in the previous step, compute the
smallest real;; such thato(Balls(S;, v;)) > pw(U;). LetC; = Balls(S;, v;).

e For eachr in C;, choose a poing in S; such thati(z, y) < v; and leto(z) = y.
o Let Uz'+1 =U; \ CZ

Note that the loop terminates sineélU;) < w(U;;,) for all i > 0. Lett¢ be the total number
of iterations of the loop. Le€; = S; = U,. By the choice ofC; in each iteration and the loop
termination conditiont is O(log (w(U)/k’)). For the uniform demands-median problem¢ is
simply O(log (n/k")). From the first step it follows thaw (U)| is O(tk’).

The first step of the algorithm can be performediifnk’) time over all iterations. In each
iteration the second and third steps can be performed indi(fié;| £') by using a (weighted) linear
time selection algorithm. For the uniform demardmedian problem, this computation requires
O(nk’) time over all iterations. The running times of the third and fourth steps are negligible.
Thus, for the uniform demandsmedian problem, the total running time of the above algorithm is
O(nk').

2.2 Approximation Bound

The goal of this section is to establish Theorem 1. The proof of the theorem makes use of Lemmas
2.3, 2.5, and 2.11, which are established below. We remark that Theorem 1 is used in Sections 3
and 4.

Theorem 1 With high probability,c (¢) = O(cost (X)) for any k-configurationX .

Proof: The claim of Lemma 2.3 holds with high probability if we ¢ét= max{k,logn} anda
and appropriately large. The theorem then follows from Lemmas 2.3, 2.5,and 2.11. =

The proof of Lemma 2.3 below relies on bounding the failure probability of a certain family of
random experiments. We begin by bounding the failure probability of a simpler family of random
experiments related to the well-known coupon collector problem. For any positive integed
any nonnegative realsandb, let us definef(m, a,b) as the probability that more thamn bins
remain empty aftefb] balls are thrown at random (uniformly and independently) imtdins.

6



Techniques for analyzing the coupon collector problem (see. e.g., [12]) can be used to obtain sharp
estimates orf (m, a, b). However, the following simple upper bound is sufficient for our purposes.

Lemma 2.1 For any positive reak, there exists a positive realsuch that for all positive integers
m and any reab > m, we havef(m, e, \b) < e~°.

Proof: Note that a crude upper bound gitm, €, \b) is given by the probability of obtaining
at most(1 — )m successes ifnAb] Bernoulli trials, each of which has success probabiity
The claim then follows by choosing sufficiently large and applying a standard Chernoff bound.
(We have in mind the following tail bound: IX is a random variable drawn from a Bernoulli
distribution withn trials and each trial has success probabilitthen for alld such thad < § <1,

Pr{X <(1-9)np} < e 9mr/2: see [1, Appendix A] for a derivation.) n
We now develop a weighted generalization of the preceding lemma. For any positive integer
m, nonnegative reals andb, andm-vectorv = (ro, ..., r,_1) Of nonnegative reals;, we define

defineg(m, a,b,v) as follows. Consider a set af bins numbered from to m — 1 where bini
has associated weight Let R denote the total weight of the bins. Assume that eacfb pballs

is thrown independently at random into one of thebins, where bin is chosen with probability
ri/R, 0 <1 < m. We defineg(m, a, b, v) as the probability that the total weight of the empty bins
after all of the balls have been thrown is more thdh

Lemma 2.2 For any positive reak there exists a positive real such that for all positive integers
m and any reab > m, we havey(m, e, \b,v) < e~ ? for all m-vectorsv of nonnegative reals.

Proof: Fix e, b, m, andv. We will use Lemma 2.1 to deduce the existence of a suitable choice of
A that depends only on Our strategy for reducing the claim to its unweighted counterpart will be
to partition almost all of the weight associated with theveighted bins int@®(m) “sub-bins” of
equal weight. Specifically, we Ietdenote% and for eachi we partition the weight; associated

with binz into | | completesub-bins of weight and oneéncompletesub-bin of weight less than

s. Furthermore, when a ball is thrown into a particular bin, we imagine that the throw is further
refined to a particular sub-bin of that bin, where the probability that a particular sub-bin is chosen
is proportional to its weight.

Note that the total weight of the incomplete sub-bins is less tt#gf2. Furthermore, we can
assume without loss of generality that< 1, since the claim holds vacuously fer > 1. It
follows that less than half of the total weightlies in incomplete sub-bins. Thus, by a standard
Chernoff bound argument, for any positive r@alve can choosg sufficiently large to ensure that
the following claim holds with probability of failure at most®/2 (i.e., half the desired failure
threshold appearing in the statement of the lemma): At l¥asif the [\b] balls are thrown into
complete sub-bins.

Let m’ denote the number of complete sub-bins. Since at least half of the total weight
belongs to complete sub-bins, we havgés < m’ < 2m/e. Accordingly, by a suitable application
of Lemma 2.1, we can establish the existence of a positive\f¢depending only on) such that,
after at least’b balls have landed in complete sub-bins, the probability that the number of empty
complete sub-bins exceeds)’/2 is at most- /2.

From the claims of the two preceding paragraphs, we can conclude that there exigts-a
pending only or¥) such that the following statement holds with probability of failure at nao%t
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The number of empty complete sub-bins is at most/2. Note that the total weight of the com-
plete sub-bins is at most- £ - % = ¢R/2. As argued earlier, the total weight of the incomplete
sub-bins is also at most?/2. Thus, there exists a positive reéabuch that aftef \b| ball tosses,
the probability that the total weight of the empty bins is more th&ns at most~". ]

For the remainder of this section, we fix a positive readuch that? < v < 1. We also
let 1; denote the minimum real such that there exists@nfigurationX with the property that
w(Balls(X, ;) > yw(U;). Lemma 2.3 below establishes the main probabilistic claim used in our
analysis of the algorithm of Section 2.1. We note that the lemma holds with high probability by
takingk’ = max{k, [logn]} anda and/ appropriately large.

Lemma 2.3 For any positive reak, there exists a sufficiently large choicecouch that; < 2u;
forall i, 0 < i < ¢, with probability of failure at most—¢¥".

Proof: Fix ¢ and letX denote ak-configuration such thab(Balls(X, 11;)) > yw(U;). Let us
define each poing in U; to begoodif it belongs toBalls(X, 11;), andbad otherwise. Letz denote
the set of good points. We associate each good poiith its closest point inX, breaking ties
arbitrarily. For each point in X, let A, denote the set of good points associated wjthote that
the setsA, form a partition ofG. Recall thatS; denotes théth set of sample points chosen by the
algorithm. For anyr in X, we say thatS; coversA, iff S; N A, is nonempty. For any point, we
say thatS; coversy iff there exists an: in X such thaty belongs toA, and.S; coversA,. Let
denote the set of points covered By note thatG’ C G.

We will establish the lemma by proving the following claim: For any positive reasdé,
there exists a sufficiently large choice @fsuch thatw(G’) > (1 — ¢)w(G) with probability of
failure at moste—¢*'. This claim then implies the lemma becaus¢the factor appearing in the
definition of ;) is less thany (the factor appearing in the definition pf) and for all pointsy
covered bys;, d(y, S;) < 2u;.

It remains to prove the preceding claim. First, note that the definitipn mhplies that at least
a~y fraction of the total weight is associated with good points. Thus, a standard Chernoff bound
argument implies that for any positive realand¢, there exists a sufficiently large choice @f
such that at leastk’ of the |ak’| samples associated with the constructiorSpfire good with
probability of failure at most—¢*' /2.

To ensure thaty(G’) is at least(1 — ¢)w(G) with failure probabilitye=¢*' /2, we can apply
Lemma 2.2 by viewing each sample associated with a good po#jtas a ball toss and each set
A, as a bin with weightv(A, ). The claim then follows. n

Lemma 2.4 For all i such thal) < i <t ¢(o,C;) < vw(C;).

Proof: Observe that

c(o,C;) = > d(z,0(x))- w(x)

zeC;

< Y vi-w(x)

zeC;

= ryw(C;),

where the second step follows from the definitiorCpfand the construction of(x). n



Lemma 2.5

Proof: Observe that

0<:<t
0<i<t
The first step follows since the set$, 0 < ¢ < ¢, form a partition ofU. The second step follows

from Lemma 2.4. =

Throughout the remainder of this section we fix an arbitfagonfigurationX. For alli such
that0 < i < ¢, we letF; denote the setz € U; | d(z, X) > u,;}, and for any integem > 0, we
let £ denoteF; \ (Uj=oFitjm)-

Lemma 2.6 Leti, j, andm be integers such that < : < ¢,0 < 57 < t,m > 0, and (i —
j) mod m = 0. ThenF™ N = .

Proof: Without loss of generality, assume thiat j. Then, by definitionF™ = F;\(Uss0Fitsm)-
SinceF" C Fy and(i — j) mod m = 0, it follows thatF;™ and F]" do not intersect. =

Lemma 2.7 Leti be an integer such that < i < ¢t and letY be a subset of;. Thenw(F;) >
(1 —y)w(U;) and cost (X,Y) > pw(Y).

Proof: First, note that by the definition ¢f;, w(F;) is at leas(1 — v)w(U;). By the definition of
F, d(y, X) = pi foranyy in F;. Thuscost (X,Y) = 3y d(y, X) - w(y) = piw(Y). =

Lemma 2.8 For all 4, 7, andm such that) < i <t¢,0<j <t,andm > 0,

cost(X, U(i—j) mod szFim) > > piw(F").

(i—j) mod m=0
Proof: By Lemma 2.6, for all, j, andm such that <i <¢,0<j <t,andm > 0,

CoSt(X, Ui—j) mod meo F}") = S cost(X,FM).

(i—7) mod m=0

By Lemma 2.7 cost (X, F™) > u;w(F™), and the claim follows. n
For the remainder of the section, tet= [log;_4 ((1 —)/3)].

Lemma 2.9 For all 7 such that) < i < t, w(Fjy,) < sw(F).

Proof: Note thatw(Fjy,) < w(Uy,) < (1= 8)'w(l;) < S=25w(F), where the last step
follows from Lemma 2.7. The claim then follows by the definition-of [



Lemma 2.10 For all i such thad) < i < ¢, w(Fy) > “0,

Proof: Observe that

w(F) = w(F;\ UjsoFitjr)

w(F)
> wF) =2 =57
Jj>0
L wiF)
- 2
where the second step follows from Lemma 2.9. ]

Lemma 2.11 For any k-configurationX,

cost(X) > 17 ST ww(Ch).

2r T

Proof: Letj = arg max.; {3 ;) mod r—o w(F])} and fix ak-configurationX. Thencost (X)
is at least -

COSt(X, U(i—4) mod r:OFiT) > Z :U/iw(}?ir)

(i—j) mod r=0

Y

1 Z piw(F})

T o<i<t

v
|
=
=4
S

where the first step follows from Lemma 2.8, the second step follows from averaging and the
choice ofj, the third step follows from Lemma 2.10, the fourth step follows from Lemma 2.7, and
the last step follows sinc€; C U. n

3 An Efficient Algorithm for the Case of Uniform Weights

Theorem 2.4 of Guhat al. [5] implies that for any giver(m, O(1))-configurationX, we can
compute &k, O(1))-configuration by simply running a@(1)-approximatek-median algorithm

on the modified problem instance obtained by redistributing the point weights as follows: The
weight of any given point is moved to a poiny in X such thatd(x,y) = d(z, X). (This result
follows from the analysis of algorithm Small-Space of Getal. [5], since it corresponds to the
case in whiclY = 1 in step 1 and thém, O(1))-configuration is the output in step 2. It should be
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remarked that although algorithm Small-Space is presented in a manner that assumes the output
of step 2 to be&l (O(k), O(1))-configurations, the analysis of Small-Space given in [5] is easily
seen to hold for the more general case in which the output of step 2 is a collectiompO(1))-
configurations.)

By Theorem 1, the output of our sampling algorithm is(an O(1))-assignment with high
probability, wheren = O(max{k,logn}log (n/k)) in the case of uniform weights. ThugU)
is an(m, O(1))-configuration with high probability, and we can directly apply the Getal. [5]
technique to extract @, O(1))-configuration fromz(U). The only trouble with this approach is
that a direct application of their technique expefds:n) = w(nk) time in computing the closest
point in o(U) to each point inU/. Fortunately, it is straightforward to verify that the following
variation of the Guhat al. [5] technique is also valid. Given am, O(1))-assignment, we can
redistribute the weight of each pointto o (=) and then run a@(1)-approximate:-median algo-
rithm on the modified problem instance. (Remark: In [5, Section 2], the poisitdefined to be
the median closest to the pointFor the purposes of our variation, the painshould instead be
defined a%r(i). )

We now analyze the running time of the above algorithm. To compute the assigameat
use our sampling algorithm with the parametéset toO(max{k,logn}). The time required to
computes is thenO(n max{k,logn}). We note that the required weight function can be com-
puted during the execution of the sampling algorithm without increasing its running time. The
deterministic online median algorithm of Mettu and Plaxton [10] can then be used to complete the
extraction step itO(|o(U)|* + |o(U)| r4) time. The total time taken by the algorithm is therefore

Ok + |o(U)] +|o(U)|rg) = O(nk'+k?log? (n/k) + r4k'log (n/k))
= O(nk' +rqk’log (n/k)),

where the first step follows from the analysis of our sampling algorithm for the case of uniform
weights. By the choice of’, the overall running time i€ ((n + r4log (n/k)) max{k,logn}).
Note that ift = Q(logn) andkr? = O(n), this time bound simplifies t®(nk).

4  An Efficient Algorithm for the Case of Arbitrary Weights

The algorithm developed in Sections 2 and ®id )-approximate for thé-median problem with
arbitrary weights. However, the time bound established for the case of uniform weights does
not apply to the case of arbitrary weights because the running time of the successive sampling
procedure is slightly higher in the latter case. (More precisely, the running time of the sampling
algorithm of Section 2 i$)(nk’ log “’,(f/)) for the case of arbitrary weights.) In this section, we
use the uniform-weight algorithm developed in Sections 2 and 3 to devdlapedian algorithm
for the case of arbitrary weights that is time optimal for a certain range of

We first give an informal description of the algorithm, which consists of three main steps. First,
we partition the input points according to weight intg sets. Next, we run our uniform weights
k-median algorithm on each of the resulting sets, and show that the union of the resulting outputs is
an(O(kry), O(1))-configuration. We then obtain(&, O(1))-configuration by creating a problem
instance from th¢O(kr,,), O(1))-configuration computed in the previous step and then feeding
this problem instance as input to ér1)-approximate:-median algorithm.

11



We now give a more precise description of dumedian algorithm. Letd be the uniform
weights k-median algorithm of Sections 2 and 3, and Febe anO(1)-approximatek-median
algorithm.

e Compute set®; for 0 < i < r,, such that for alk € B;, 2! < w(z) < 27+

e Fori=0,1...r, — 1: Run A with B; as the set of input pointg,as the distance function,
211 as the fixed weight, and the parameter= max{k, [logn]}; let Z; denote the output.
Let ¢, denote the assignment induced By that is,¢;(z) = y iff yisin Z; andd(z, Z;) =
d(zx,y). For a pointr, if x € Z;, letwy, (z) = w(¢; ' (x)), otherwise leti, (x) = 0.

e Let ¢ be the assignment corresponding to the union of the assignmgedesfined in the
previous step, and let, denote the weight function corresponding to the union of the weight
functionsw,,. RunB with ¢(U) as the set of input pointd,as the distance function, ang,
as the weight function. Output the resultihgonfiguration.

Note that in the second step), is defined in terms of. (i.e., |U|) and not|B;|. Thus, the
argument of the proof of Theorem 1 implies thatsucceeds with high probability in terms of
n. Assuming that-, is polynomially bounded im, with high probability we have that every
invocation of A is successful.

We now observe that the above algorithm corresponds to the special case of algorithm Small-
Space of [5] in which the parametéis set tor,,, the uniform weights algorithm of Section 3 is
used in step 2 of Small-Space, and the online median algorithm of [10] is used in step 4 of Small-
Space. Thus, [5, Theorem 2.4] implies that the outpuf &f a (&, O(1))-configuration with high
probability.

We now discuss the running time of the above algorithm. It is straightforward to compute the
setsB; in O(n) time. Our uniform weighté-median algorithm requireS((| B;| + 74 log '%‘)k’)
time to computeZ;, so the time required for all invocations dfis

o< > <rBir+rdlog<\Bi\/k>>k') - O(m (”k/m’f’bg(;)))

0<i<ry w Tw

= 0 ((n + rqry log k:) /{/) .

(The first step follows from the fact that the sum is maximized wigh= n/r,.) Note that each
weight functionw,, can be computed i0)(|B;| k) time; it follows thatw, can be computed in
O(nk) time. We employ the online median algorithm of [10] as the black-/boxedian algorithm
B. Since|¢(U)| is at mostr,,, the time required for the invocation Bfis O((kr,,)*+kr,rq). The
overall time required for out-median algorithm is therefor@((n + rqr, log ())&’ + (kry)* +
kryra). Note that ifk = Q(logn), kri = O(n), andrgr, log(;~) = O(n), this time bound
simplifies toO(nk).
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A Lower Bounds

In this section, we give lower bounds for thenedian problem and its clustering variant. Through-
out the section, we refer to the clustering variant as#taustering problem Recall that the
k-clustering problem asks us to partition the input points such that the sum, over all sets in the
partition, of the weight of a point times the distance to the median of its set, is minimized. Since
anyk-median solution can be converted into a solution forkitfedustering problem i (nk) time,

in developing our upper bounds it was sufficient to consider only:theedian problem. Unfor-
tunately this reduction is not useful for the present purpose of establiShing) lower bounds;
accordingly, in this section we consider the problems separately.

For both thek-clustering problem and thie-median problem, we establish a lower bound of
Q(nk) time on any randomized algorithm that(¥ 1)-approximate with even a negligible proba-
bility. Since the overall objective of this paper is to study the complexity of approximate clustering
in terms of the four parameters k, R,;, andR,,, it is desirable for the metric spaces associated
with our lower bound arguments to have small values for bgtrand R,,. In terms ofR,,, we
achieve this goal completely, since all of the input distributions that we consider below have uni-
form weights, that isR,, = 1. For thek-clustering problem, our lower bounds are established with
R, equal to a constant (sufficiently large relative to the desired approximation ratio); this is clearly
best possible up to a constant factor. Forth@edian problem, our lower bound requirBs to
exceed/k by a sufficiently large constant factor relative to the desired approximation ratio.

In our proofs, we assume an oracle model of computation in which the algorithm is charged
only for asking the oracle the distance between a pair of points. We refer to each call to the oracle as
aprobe By a generalization of Yao’s technique [14] due to Mackenzie [8], we can establish a lower
bound ofp on the success probability of a randomized algorithm by exhibiting an input distribution
for which every deterministic algorithm has a success probability of at mogiThe intuition
underlying this reduction is that the success probability of a randomized algorithm is just a convex
combination of the success probabilities of a number of deterministic algorithms.) Thus in what
follows, we restrict our attention to exhibiting “hard” distributions for determinstic algorithms.
All of the problems considered in this section take the same input @stiredian problem. Our
lower bounds also hold for the non-uniform case since for each choigeaafl k£, we exhibit a
probability distribution over the set @f-point metric spaces on which no deterministic algorithm
making a sufficiently small number of probes can achieve more than a negligible probability of
success.

For any positive real > 1, it is convenient to define a metric space todsimpleif the
following conditions hold: (1) all of the points have unit weight; (2) the points of the metric space
can be partitioned into equivalence classes such that the distance between any pair of distinct points
is 1 if the points belong to the same equivalence class/anterwise. Thus, an§simple metric
space has; = ¢ andR,, = 1. Our lower bounds are all based &isimple input distributions for
some appropriately chosen value/of

In order to establish a lower bound for theclustering problem, we find it convenient to in-
troduce a problem that we call tikematching problem The input to thek-matching problem is
the same as the input to theclustering problem. The output is a partition of théenput points
into a collection of disjoint pairs and singletons, subject to the constraint that there are at most
k singletons. We refer to such an output as-matching The costof a k-matching is defined
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as the sum, over all output pairs of poirts y), of d(x,y) - min{w(z),w(y)}. The goal of the
k-matching problem is to compute a minimum-cbgnatching.

Given an algorithm for thé-clustering problem, consider the associgtadatching algorithm
defined as follows: (1) run the-clustering algorithm to partition the input points into at most
k clusters; (2) arbitrarily partition each even-sized cluster into a number of pairs; (3) arbitrarily
partition each odd-sized cluster into a singleton and a number of pairs; (4) returabeching
formed by the singletons and pairs computed in the previous two steps. Using the triangle inequal-
ity, it is straightforward to prove that the cost of thanatching produced by this algorithm is at
most the cost of thé-clustering computed in step (1) (i.e., the sum over all poirt$ the weight
of  multiplied by the distance from to the medoid of its cluster). Furthermore, thisnatching
algorithm uses exactly the same number of probes as the assdcidtestering algorithm. Below
we will exhibit an input distribution with respect to which any determinigtimatching algorithm
making a sufficiently small number of probes has only a negligible probability of computing a
matching with cost within a constant factor of the cost of the optimal clustering. By the foregoing
reduction from the:-matching problem to thg-clustering problem, such a result implies that any
deterministick-clustering algorithm running on the same input distribution and making the same
small number of probes has only the same negligible probability of computirgjstering with
cost within a constant factor of optimal.

In order to state and prove our lower bounds it is convenient to introduce a shorthand notation
for expressing certain kinds of statements. In particular, for any statetnerg define an associ-
ated statement, which we refer to as thelaim S, as follows: For all positive realsandc, there
exist positive realg and~ and positive integers, anda such that for all positive integefsandk
for whichn > ng and1 < k < n, there exists a probability distributiab over the set of-simple
n-point metric spaces where= ~ such that any deterministic-matching algorithm4 making
at mostonk probes on an input drawn uniformly at random frdm the statemen$ holds with
probability at least — . (We remark that a give-claim S need not contain the parameteiVe
also remark that if thé’-claims S and7" hold, then theP-claim S A T holds.)

We define aP’-claim in the same way as/a-claim except that the restriction dnis strength-
ened tol < k£ < 7. Similarly, aP”-claim is a variant of @-claim in which the restriction ok is
5 < k < n. Note that for any statemefst, the '-claim S and theP"-claim .S imply the P-claim
S.

Finally, for addressing the-median problem we defing-, ()’-, and@”-claims in an analogous
manner, where the algorithm is assumed to be /&median algorithm rather thankamatching
algorithm, and’ is defined to be;* instead ofy.

The rest of this section is devoted to proving the following two theorems.

Theorem 2 The P-claim “the cost of thek-matching solution computed by is more than: times
the cost of an optimat-clustering solution” holds.

Theorem 3 The@-claim “the cost of thet-median solution computed b¥ is more thanc times
the cost of an optimat-median solution” holds.

The proof of the first theorem follows from Lemmas A.1 and A.2 below. The proof of the
second theorem follows from Lemmas A.3 and A.4.
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Lemma A.1 The P’-claim “the cost of thek-matching solution computed by is more thanc
times the cost of an optimatclustering solution” holds.

Proof Sketch: Let D denote the distribution af-simplen-point metric spaces where each point
is independently placed into one bfequivalence classes uniformly at random. Given an input
instance drawn fronD, the cost of an optimal-clustering solution is easily seen to he- k.
Let us define a point to becleanwith respect to an execution of algorithaif the following
two conditions are satisfied: (1) there is no paisuch thati(x, y) = 1 and.A has probed(z, y);
(2) A has probed the distance betweeand at mostk other points.
It is not difficult to establish the following”-claim: “At least(1 — ¢)n points are clean”. Since
A is ak-matching algorithm it outputs at least- k£ > n /2 pairs. This observation, together with
the preceding”’-claim, implies theP’-claim “At leastn /3 of the pairs produced byl consist of
two clean points.” Note that each such output pair of clean points independently contributes a cost

of / to the cost of thé:-matching produced byl with probability at least — -1, since a clean

k(1—e)
point is equally likely to belong to any of the at le&$t — <) equivalence classes (those for which
A has not probed a distance between the given clean point and some point in the equivalence class).
The claim of the lemma now follows by choosing constants appropriately (i.e., by s&ttingnd

no to appropriate functions afandc) and applying a standard Chernoff bound argument. =

Lemma A.2 The P”-claim “the cost of thek-matching solution computed b¥ is more thanc
times the cost of an optimatclustering solution” holds.

Proof Sketch: The proof of the preceding lemma does not readily extend to large values of
so we employ a somewhat different approach. In this case we define the input distributipn
randomly partitioning the: points intok clusters (i.e., equivalence classes);- k£ of which are
pairs, and2k — n of which are singletons. As in the proof of Lemma A.1, the cost of an optimal
k-clustering solution i — k.

Let us assume for the sake of simplicity thais a multiple of2a. (Remark: It is not difficult
to modify our argument to handle genera) For the sake of the analysis, it is useful to think
of sampling from the input distributio® via the following three-stage process: (1) randomly
partition then points intog- supergroupf size2a; (2) randomly partition each supergroup into
a pairs; (3) pick a random set df —  pairs and split them to obtai?k — n singletons. In
what follows we refer to these pairs and singletonsnasit-pairs and input-singletonsin order
to avoid confusion with the pairs and singletons computed by algoridhnvhich we refer to as
output-pairsandoutput-singletons

We define a supergroup to lr@erestingif it contains at least one input-pair. Note that there
are at Ieasf;—’“ interesting supergroups. Let us define a supergroup tedi it contains at least
one output-pair; otherwise, it [due

If there arei blue supergroups then at leastutput-pairs either span distinct supergroups or
contain at least one input-singleton; it follows that the cost ofitimatching produced by is
at leasti/. If at least half (say) of the interesting supergroups are blue, this argument is sufficient
to establish the lemma. Thus, in what follows, we may assume that at least half of the interesting
supergroups are red.

Let us define a supergroup to bleanwith respect to an execution of algorithehif A does
not probe the distance between any two points in the supergroup. It is not difficult to establish
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the following P”-claim: “At least al — ¢ fraction of the interesting supergroups are clean.” By
this P”-claim and the assumption of the previous paragraph, we establigi’tbaim “at least
one-third of the interesting supergroups are clean and red”.

Let G denote a clean interesting red supergroup angd:let) denote an output-pair that belongs
to G (such a pair exists sing@ is red). If z is an input-singleton then the cost of péif, y) is ¢,
and we can attribute this costfa Otherwise;r belongs to some input-pa(t, =), and algorithm
A pays/ for the pair(z,y) unlessy = 2. But the probability thaty = =z is 2a1_1 sinced is clean.
Furthermore, the event that= :z is independent of the analogous events defined for other clean
interesting red supergroups. Thus each clean interesting red supergroup independently contributes,
with probability at least — ﬁ a cost of at least to the total cost of thé-matching produced
by A. The claim of the lemma now follows by choosing constants appropriately and applying a
standard Chernoff bound argument. [

Lemma A.3 The'-claim “the cost of theét-median solution computed by is more than: times
the cost of an optimat-median solution” holds.

Proof Sketch: Let D denote the distribution gFsimplen-point metric spaces associated with the
following partitioning scheme: (1) independently place each ofitpeints into one of k£/2| ten-
tative equivalence classasiformly at random; (2) randomly selejdt/2] specialpoints and move
each of these special points into a singleton equivalence class. Note that for any such instance, the
cost of an optimak-median solution is — k.

We define a point to becleanwith respect to an execution of algorithiaif there is no point
y belonging to the same tentative equivalence classfaswhich .4 has probed/(z, y).

It is not difficult to establish the following pair af’-claims: (1) at leastl — ¢)n points are
clean; (2) at leastl — ¢) [k/2] of the special points are clean.

Let X denote the random variable corresponding to the set of clean points, andl&riote
the remaining points. LeX denote the random variable corresponding to the set of special clean
points. We now argue that the conditional distributiorZajiven X and|Z| has a simple structure,
namely,Z is a uniformly random subset of of size|Z|. This claim holds because the definition
of a clean point implies that the behavior of algorithdnis the same no matter which sizg}
subset ofX is equal toZ. Combining this claim with the results of the preceding paragraph, it is
straightforward to establish thg'-claim “A fails to outputi (say) of the clean special points.”

Note that each special point that does not appear in the outpdtaaintributes/ to the cost
of the k-median solution computed byt. Thus we obtain th&)’-claim “the cost of the solution
computed byA is at leas{1 — ¢)k¢/8". Choosingy sufficiently large (depending at), the claim
of the lemma then follows sinde= ~yn/k. n

Lemma A.4 TheQ"-claim “the cost of the--median solution computed byis more than: times
optimal” holds.

Proof Sketch: This proof is similar to that of Lemma A.2 above. We define the input distribution

D in the same manner, as well as the following terms: supergroup, clean supergroup, interesting
supergroup, input-pair, input-singleton. As before, note that at @sbf the supergroups are
interesting.
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We define thenput-weightof a supergroup as the number of input-pairs and input-singletons
that it contains. We define tlautput-weighof a supergroup as the size of its intersection with the
k-median solution computed by. We define theliscrepancyof a supergroup as its input-weight
minus its output-weight. Note that the sum of the discrepancies of all supergroups is zero since the
total input-weight and the total output-weight are both equdl.té supergroup idalancedif it
has discrepancy O.

If the total discrepancy of the supergroups with positive discrepaneyhien it is straightfor-
ward to prove that the cost of tikemedian solution computed hy is at leasts/. If s is at least
one-quarter of the number of interesting supergroups then this argument is sufficient to establish
the claim of the lemma. Thus in what follows we may assume ghiatless than one-quarter
of the number of interesting supergroups. Under this assumption, at least half of the interesting
supergroups are balanced (since at most one-quarter of them can have negative discrepancy).

It is not difficult to establish the followin@”-claim: “At least al — ¢ fraction of the interesting
supergroups are clean.” Combining this with the conclusion of the preceding paragraph we obtain
theQ”-claim “at least one-third of the interesting supergroups are clean and balanced”.

Let G denote a clean interesting balanced supergroupaumput-pairs and input-singletons.

Thus the input-weight and output-weight Gfis i + j (sinceG is balanced), and > 0 (sinceG

is interesting). In order to avoid paying a cost’dbr servicing any of the points in supergroGp

the subset of7 of sizei 4+ j contained in the output ofl has to include exactly one point out of

each of the input-pairs, and all of thg input-singletons. Sinc€' is clean, the probability that

produces such an outputdsdivided by (Qi“). Given the constraints o namely,1 < i < a, this

probability is at most /a. Furthermore, the event that produces such an output is independent

the analogous events defined for other clean interesting balanced supergroups. Thus each clean

interesting balanced supergroup independently contributes, with probability at leastcost of

at least/ to the total cost of thé-median solution produced hy. The claim of the lemma now

follows by choosing constants appropriately and applying a standard Chernoff bound argument.
u
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