
Optimal Time Bounds for Approximate Clustering ∗

Ramgopal R. Mettu C. Greg Plaxton
Department of Computer Science

University of Texas at Austin
Austin, TX 78712, U.S.A.

{ramgopal, plaxton }@cs.utexas.edu

Abstract

Clustering is a fundamental problem in unsuper-
vised learning, and has been studied widely both
as a problem of learning mixture models and
as an optimization problem. In this paper, we
study clustering with respect thek-medianob-
jective function, a natural formulation of clus-
tering in which we attempt to minimize the av-
erage distance to cluster centers. One of the
main contributions of this paper is a simple but
powerful sampling technique that we callsucces-
sive samplingthat could be of independent inter-
est. We show that our sampling procedure can
rapidly identify a small set of points (of size just
O(k log n/k)) that summarize the input points
for the purpose of clustering. Using successive
sampling, we develop an algorithm for thek-
median problem that runs inO(nk) time for a
wide range of values ofk and is guaranteed, with
high probability, to return a solution with cost at
most a constant factor times optimal. We also es-
tablish a lower bound ofΩ(nk) on any random-
ized constant-factor approximation algorithm for
thek-median problem that succeeds with even a
negligible (say 1

100) probability. The best pre-
vious upper bound for the problem was̃O(nk),
where theÕ-notation hides polylogarithmic fac-
tors inn andk. The best previous lower bound
of Ω(nk) applied only to deterministick-median
algorithms. While we focus our presentation on
thek-median objective, all our upper bounds are
valid for thek-means objective as well. In this
context our algorithm compares favorably to the
widely usedk-means heuristic, which requires
O(nk) time for just one iteration and provides
no useful approximation guarantees.

∗This research was supported by NSF Grant CCR–9821053.
Much of this work was done while the second author was on leave
at Akamai Techologies, Inc., Cambridge, MA 02139.

1 Introduction

Clustering is a fundamental problem in unsupervised learn-
ing that has found application in many problem domains.
Approaches to clustering based on learning mixture mod-
els as well as minimizing a given objective function have
both been well-studied [2, 3, 4, 5, 6, 10]. In recent years,
there has been significant interest in developing clustering
algorithms that can be applied to the massive data sets that
arise in problem domains such as bioinformatics and infor-
mation retrieval on the World Wide Web. Such data sets
pose an interesting challenge in that clustering algorithms
must be robust as well as fast. In this paper, we study the
k-median problemand obtain an algorithm that is time op-
timal for most values ofk and with high probability pro-
duces a solution whose cost is within a constant factor of
optimal.

A natural technique to cope with a large set of unlabeled
data is to take a random sample of the input in the hopes
of capturing the essence of the input and subsituting the
sample for the original input. Ideally we hope that the sam-
ple size required to capture the relevant information in the
input is significantly less than the original input size. How-
ever, in many situations naive sampling does not always
yield the desired reduction in data. For example, for the
problem of learning Gaussians, this limitation manifests it-
self in the common assumption that the mixing weights are
large enough so that a random sample of the data will cap-
ture a nonnegligible amount of the mass in a given Gaus-
sian. Without this assumption, the approximation guaran-
tees of recent algorithms for learning Gaussians [2, 5] no
longer hold.

A major contribution of our work is a simple yet powerful
sampling technique that we callsuccessive sampling. We
show that our sampling technique is an effective data re-
duction technique for the purpose of clustering in the sense
it captures the essence of the input with a very small sub-
set (justO(k log(n/k)), wherek is the number of clusters)
of the points. In fact, it is this property of our sampling
technique that allows us to develop an algorithm for the

k-median problem that has a running time ofO(nk) for
k betweenlog n andn/ log2 n and, with high probability,
produces a solution with cost within a constant factor of
optimal.

Given a set of points and associated interpoint distances,
let themedianof the set be the point in the set that mini-
mizes the weighted sum of distances to all other points in
the set. (Remark: The median is essentially the discrete
analog of the centroid, and is also called themedoid[12].)
We study a well-known clustering problem where the goal
is to partitionn weighted points intok sets such that the
sum, over all pointsx, of the weight ofx multiplied by the
distance fromx to the median of set containingx is min-
imized. This clustering problem is a variant of the classic
k-median problem; thek-median problem asks us to mark
k of the points such that the sum over all pointsx of the
weight ofx times the distance fromx to the nearest marked
point is minimized. It is straightforward to see that the op-
timal objective function values for thek-median problem
and its clustering variant are equal, and furthermore that
we can convert a solution to thek-median problem into an
equal-cost solution to its clustering variant inO(nk) time.
We establish a lower bound ofΩ(nk) time on any random-
ized constant-factor approximation algorithm for either the
k-median problem or its clustering variant. Therefore, any
constant-factor approximation algorithm for thek-median
problem implies a constant-factor approximation algorithm
with the same asymptotic time complexity for the cluster-
ing variant. For this reason, we focus only on thek-median
problem in developing our upper bounds.

It is interesting to note that algorithms for thek-median
problem can be used for a certain model-based cluster-
ing problem as well. The recent work of Arora and Kan-
nan [2] formulates an approximation version of the prob-
lem of learning arbitrary Gaussians. Given points from a
Gaussian mixture, they study the problem of identifying a
set of Gaussians whose log-likelihood is within a constant
factor of the log-likelihood of the original mixture. Their
solution to this learning problem is to reduce it to thek-
median problem and apply an existing constant-factor ap-
proximation algorithm fork-median. Thus, our techniques
may also have applicability in model-based clustering.

In this paper, we restrict our attention to themetricversion
of the k-median problem, in which then input points are
assumed to be drawn from a metric space. That is, the in-
terpoint distances are nonnegative, symmetric, satisfy the
triangle inequality, and the distance between pointsx and
y is zero if and only ifx = y. For the sake of brevity,
we write “k-median problem” to mean “metrick-median
problem” throughout the remainder of the paper. It is well-
known that thek-median problem isNP-hard; furthermore,
it is known to beNP-hard to achieve an approximation ra-
tio better than1 + 1

e [7]. Thus, we focus our attention on
developing ak-median algorithm that produces a solution

with cost within a constant factor of optimal.

1.1 Comparison tok-means

Even before the hardness results mentioned above were es-
tablished, heuristic approaches to clustering such as the
k-means heuristic were well-studied (see, e.g., [6, 12]).
The k-means heuristic is commonly used in practice due
to ease of implementation, speed, and good empirical per-
formance. Indeed, one iteration of thek-means heuristic re-
quires justO(nk) time [6]; typical implementations of the
k-means heuristic make use of a small to moderate number
of iterations.

However, it is easy to construct inputs with just a constant
number of points that, for certain initializations ofk-means,
yield solutions whose cost is not within any constant factor
of the optimal cost. For example, suppose we have5 unit-
weight points inIR2 where three points are colored blue
and two are colored red. Let the blue points have coordi-
nates(0, 1),(0, 0), and(0,−1), and let the red points have
coordinates(−D, 0) and(D, 0). For k = 3, the optimal
solution has cost1, whereas thek-means heuristic, when
initialized with the blue points, converges to a solution with
cost2D (the blue points). SinceD can be arbitrarily large,
in this case thek-means heuristic does not produce a solu-
tion within any constant factor of optimal. Indeed, a variety
of heuristics for initializingk-means have been previously
proposed, but no such initialization procedure is known to
ensure convergence to a constant-factor approximate solu-
tion.

The reader may wonder whether, by not restricting thek
output points to be drawn from then input points, thek-
means heuristic is able to compute a solution of substan-
tially lower cost than would otherwise be possible. The
reduction in the cost is at most a factor of two since given a
k-means solution with costC, it is straightforward to iden-
tify a set ofk input points with cost at most2C.

Thek-means heuristic typically uses an objective function
that sums squared distances rather than distances. The
reader may wonder whether this variation leads to a sub-
stantially different optimization problem. It is straightfor-
ward to show that squaring the distances of a metric space
yields a distance function that is “near-metric” in the sense
that all of the properties of a metric space are satisfied ex-
cept that the triangle inequality only holds to within a con-
stant factor (2, in this case). It is not difficult to show that
all of our upper bounds hold, up to constant factors, for
such near-metric spaces. Thus, if our algorithm is used as
the initialization procedure fork-means, the cost of the re-
sulting solution is guaranteed to be within a constant factor
of optimal. Our algorithm is particularly well-suited for
this purpose because its running time, being comparable to
that of a single iteration ofk-means, does not dominate the
overall running time.

1.2 Our Results

Before stating our results we introduce some useful termi-
nology that we use throughout this paper. LetU denote the
set of all points in a given instance of thek-median prob-
lem; we assume thatU is nonempty. Aconfiguration is a
nonempty subset ofU . An m-configuration is a configu-
ration of size at mostm. For any pointsx andy in U , let
w(x) denote the nonnegative weight ofx, letd(x, y) denote
the distance betweenx andy, and letd(x,X) be defined
asminy∈X d(x, y). Thecostof any configurationX, de-
notedcost (X), is defined as

∑
x∈U d(x, X)·w(x). We de-

note the minimum cost of anym-configuration byOPTm.
For brevity, we say that anm-configuration with cost at
mosta · OPT k is an(m, a)-configuration. A k-median
algorithm is(m, a)-approximateif it produces an(m, a)-
configuration. Ak-median algorithm isa-approximateif
it is (k, a)-approximate. In light of the practical impor-
tance of clustering in the application areas mentioned pre-
viously, we also consider the the given interpoint distances
and point weights in our analysis. LetRd denote the ratio
of the diameter ofU (i.e., the maximum distance between
any pair of points inU) to the minimum distance between
any pair of distinct points inU . Let Rw denote the ratio
of the maximum weight of any point inU to the minimum
nonzero weight of any point inU . (Remark: We can as-
sume without loss of generality that at least one point inU
has nonzero weight since the problem is trivial otherwise.)
Let rd = 1 + blog Rdc andrw = 1 + blog Rwc.

Our main result is a randomizedO(1)-approximatek-
median algorithm that runs in

O

([
n + rdrw log

(
n

krw

)]
max{k, log n}+ (krw)2

)
(1)

time. Note that ifk = Ω(log n), kr2
w = O(n), and

rdrw log(n
krw

) = O(n), this time bound simplifies to
O(nk). Furthermore, these constraints simplify if we make
the standard assumption that the interpoint distances and
point weights are polynomially bounded. Then, we only
needk = Ω(log n) andk = O(n

log2 n
) to obtain a time

bound ofO(nk). Our algorithm succeedswith high prob-
ability, that is, for any positive constantξ, we can adjust
constant factors in the definition of the algorithm to achieve
a failure probability less thann−ξ.

We also establish a matchingΩ(nk) lower bound on the
running time of any randomizedO(1)-approximatek-
median algorithm with a nonnegligible success probability
(e.g., at least 1

100), subject to the requirement thatRd ex-
ceedsn/k by a sufficiently large constant factor relative to
the desired approximation ratio. To obtain tight bounds for
the clustering variant, we also prove anΩ(nk) time lower
bound for anyO(1)-approximate algorithm, but we only
require thatRd be a sufficiently large constant relative to
the desired approximation ratio. Additionally, our lower

bounds assume only thatRw = O(1). Due to space con-
straints, we have omitted the details of this result here; the
complete proofs can be found in the full version of this
writeup [14].

The key building block underlying ourk-median algorithm
is a novel sampling technique that we call “successive sam-
pling”. The basic idea is to take a random sample of the
points, set aside a constant fraction of then points that
are “close” to the sample, and recurse on the remaining
points. We show that this technique rapidly produces a
configuration whose cost is within a constant factor of opti-
mal. Specifically, for the case of uniform weights, our suc-
cessive sampling algorithm yields a(k log (n/k), O(1))-
configuration with high probability inO(n max{k, log n})
time.

In addition to this sampling result, our algorithms rely
on an extraction technique due to Guhaet al. [8] that
uses a black boxO(1)-approximatek-median algorithm to
compute a(k, O(1))-configuration from any(m, O(1))-
assignment. The black box algorithm that we use is the
linear-time deterministic online median algorithm of Mettu
and Plaxton [15].

In developing our randomized algorithm for thek-median
problem we first consider the special case of uniform
weights, that is, whereRw = rw = 1. For this
special case we provide a randomized algorithm run-
ning in O(n max{k, log n}) time subject to the constraint
rd log n

k = O(n). The uniform-weights algorithm is
based directly on the two building blocks discussed above:
We apply the successive sampling algorithm to obtain
(k log (n/k), O(1))-configuration and then use the ex-
traction technique to obtain a(k, O(1))-configuration.
We then use this algorithm to develop ak-median algo-
rithm for the case of arbitrary weights. Our algorithm
begins by partitioning then points into rw power-of-2
weight classes and applying the uniform-weights algo-
rithm within each weight class (i.e., we ignore the differ-
ences between weights belonging to the same weight class,
which are less than a factor of2 apart). The union of
the rw k-configurations thus obtained is an(rwk, O(1))-
configuration. We then make use of our extraction tech-
nique to obtain a(k, O(1))-configuration from this(rwk,
O(1))-configuration.

1.3 Problem Definitions

Without loss of generality, throughout this paper we con-
sider a fixed set ofn points,U , with an associated distance
functiond : U × U → IR and an associated nonnegative
demand functionw : U → IR. We assume thatd is a
metric, that is,d is nonnegative, symmetric, satisfies the
triangle inequality, andd(x, y) = 0 iff x = y. For a con-
figurationX and a set of pointsY , we letcost (X, Y) =∑

x∈Y d(x,X) ·w(x) and we letcost (X) = cost (X, U).

For any set of pointsX, we letw(X) denote
∑

x∈X w(x).

We define anassignmentas a function fromU to U . For
any assignmentτ , we letτ(U) denote the set{τ(x) | x ∈
U}. We refer to an assignmentτ with |τ(U)| ≤ m as am-
assignment. Given an assignmentτ , we define the cost of
τ , denotedc (τ), as

∑
x∈U d(x, τ(x)) · w(x). It is straigh-

forward to see that for any assignmentτ , cost (τ(U)) ≤
c (τ). For brevity, we say that an assignmentτ with
|τ(U)| ≤ m and cost at mosta · OPT k is an (m, a)-
assignment. For an assignmentτ and a set of pointsX,
we letc (τ,X) =

∑
x∈X d(x, τ(x)) · w(x).

The input to thek-median problem is(U, d, w) and an in-
tegerk, 0 < k ≤ n. Since our goal is to obtain a(k,
O(1))-configuration, we can assume without loss of gen-
erality that all input points have nonzero weight. We note
that for allm, 0 < m ≤ n, removing zero weight points
from anm-configuration at most doubles its cost. To see
this, consider anm-configurationX; we can obtain anm-
configurationX ′ by replacing each zero weight point with
its closest nonzero weight point. Using the triangle inequal-
ity, it is straightforward to see thatcost (X ′) ≤ 2cost (X).
This argument can be used to show that any minimum-cost
set of sizem contained in the set of nonzero weight input
points has cost at most twiceOPTm. We also assume that
the input weights are scaled such that the smallest weight
is 1; thus the input weights lie in the range[1, Rw]. For
output, thek-median problem requires us to compute a
minimum-costk-configuration. Theuniform weights k-
median problem is the special case in whichw(x) is a fixed
real for all pointsx. The output is also a minimum-costk-
configuration.

1.4 Previous Work

The firstO(1)-approximatek-median algorithm was given
by Charikaret al. [4]. Subsequently, there have been sev-
eral improvements to the approximation ratio (see, e.g., [3]
for results and citations). In this section, we focus on
the results that are most relevant to the present paper; we
compare our results with other recent randomized algo-
rithms for thek-median problem. The first of these results
is due to Indyk, who gives a randomized (O(k), O(1))-
approximate algorithm for the uniform weightsk-median
problem [9] that runs iñO(nk/δ2) time, whereδ is the de-
sired failure probability.

Thorup [18] gives randomizedO(1)-approximate algo-
rithms for thek-median, k-center, and facility location
problems in a graph. For these problems, we are not given
a metric distance function but rather a graph on the input
points withm positively weighted edges from which the
distances must be computed; all of the algorithms in [18]
run in Õ(m) time. Thorup [18] also gives añO(nk) time
randomized constant-factor approximation algorithm for
thek-median problem that we consider. As part of thisk-

median algorithm, Thorup gives a sampling technique that
also consists of a series of sampling steps but produces an
(O((k log2 n)/ε), 2+ε)-configuration for any positive real
ε with 0 < ε < 0.4, but is only guaranteed to succeed with
probability1/2.

For the data stream model of computation, Guhaet al. [8]
give a single-passO(1)-approximate algorithm for thek-
median problem that runs iñO(nk) time and requires
O(nε) space for a positive constantε. They also establish a
lower bound ofΩ(nk) for deterministicO(1)-approximate
k-median algorithms.

Mishra et al. [16] show that in order to find a(k, O(1))-
configuration, it is enough to take a sufficiently large sam-
ple of the input points and use it as input to a black-box
O(1)-approximatek-median algorithm. To compute a(k,
O(1))-configuration with an arbitrarily high constant prob-
ability, the required sample size is̃O(R2

dk). In the gen-
eral case, the size of the sample may be as large asn, but
depending on the diameter of the input metric space, this
technique can yield running times ofo(n2) (e.g., if the di-
ameter iso(n2/k)).

2 Approximate Clustering via Successive
Sampling

Our first result is a successive sampling algorithm that con-
structs an assignment that has costO(OPT k) with high
probability. We make use of this algorithm to develop our
uniform weightsk-median algorithm. (Remark: We as-
sume arbitrary weights for our proofs since the arguments
generalize easily to the weighted case; furthermore, the
weighted result may be of independent interest.) Infor-
mally speaking, the algorithm works in sampling steps. In
each step we take a small sample of the points, set aside a
constant fraction the weight whose constituent points are
each close to the sample, and recurse on the remaining
points. Since we eliminate a constant fraction of the weight
at each sampling step, the number of samples taken is log-
arithmic in the total weight. We are able to show that us-
ing the samples taken, it is possible to construct an assign-
ment whose cost is within a constant factor of optimal with
high probability. For the uniform weightsk-median prob-
lem, our sampling algorithm runs inO(n max{k, log n})
time. (We give ak-median algorithm for the case of arbi-
trary weights in Section 5.)

Throughout the remainder of this paper, we use the sym-
bolsα, β, andk′ to denote real numbers appearing in the
definition and analysis of our successive sampling algo-
rithm. The value ofα andk′ should be chosen to ensure
that the failure probability of the algorithm meets the de-
sired threshold. (See the paragraph preceding Lemma 3.3
for discussion of the choice ofα andk′.) The asymptotic
bounds established in this paper are valid for any choice of

β such that0 < β < 1.

We also make use of the following definitions:

• A ball A is a pair(x, r), where thecenterx of A be-
longs toU , and theradius r of A is a nonnegative
real.

• Given a ballA = (x, r), we letPoints(A) denote the
set{y ∈ U | d(x, y) ≤ r}. However, for the sake
of brevity, we tend to writeA instead ofPoints(A).
For example, we write “x ∈ A” and “A ∪ B” instead
of “x ∈ Points(A)” and “Points(A) ∪ Points(B)”,
respectively.

• For any setX and nonnegative realr, we define
Balls(X, r) as the set∪x∈XAx whereAx = (x, r).

2.1 Algorithm

The following algorithm takes as input an instance of the
k-median problem and produces an assignmentσ such that
with high probability, c (σ) = O(cost (X)) for any k-
configurationX.

Let U0 = U , and letS0 = ∅. While |Ui| > αk′:

• Construct a set of pointsSi by sampling (with replace-
ment)bαk′c times fromUi, where at each sampling
step the probability of selecting a given point is pro-
portional to its weight.

• For each point inUi, compute the distance to the near-
est point inSi.

• Using linear-time selection on the distances computed
in the previous step, compute the smallest realνi

such thatw(Balls(Si, νi)) ≥ βw(Ui). Let Ci =
Balls(Si, νi).

• For eachx in Ci, choose a pointy in Si such that
d(x, y) ≤ νi and letσ(x) = y.

• Let Ui+1 = Ui \ Ci.

Note that the loop terminates sincew(Ui+1) < w(Ui) for
all i ≥ 0. Let t be the total number of iterations of the loop.
Let Ct = St = Ut. By the choice ofCi in each iteration
and the loop termination condition,t is O(log (w(U)/k′)).
For the uniform demandsk-median problem,t is simply
O(log (n/k′)). From the first step it follows that|σ(U)| is
O(tk′).

The first step of the algorithm can be performed inO(nk′)
time over all iterations. In each iteration the second and
third steps can be performed in timeO(|Ui| k′) by us-
ing a (weighted) linear time selection algorithm. For the
uniform demandsk-median problem, this computation re-
quiresO(nk′) time over all iterations. The running times of

the third and fourth steps are negligible. Thus, for the uni-
form demandsk-median problem, the total running time of
the above algorithm isO(nk′).

3 Analysis of the Successive Sampling
Algorithm

The goal of this section is to establish that, with high prob-
ability, the outputσ of our successive sampling algorithm
has costO(OPT k). We formalize this statement in Theo-
rem 1 below; this result is used to analyze the algorithms
of Sections 4 and 5. The proof of the theorem makes use
of Lemma 3.3, established in Section 3.1, and Lemmas 3.5
and 3.11, established in Section 3.2.

Theorem 1 With high probability,c (σ) = O(cost (X))
for anyk-configurationX.

Proof: The claim of Lemma 3.3 holds with high probabil-
ity if we setk′ = max{k, log n} andα andβ appropriately
large. The theorem then follows from Lemmas 3.3, 3.5,
and 3.11.

Before proceeding, we give some intuition behind the proof
of Theorem 1. The proof consists of two main parts. First,
Lemma 3.3 shows that with high probability, fori such that
0 ≤ i ≤ t, the valueνi computed by the algorithm in
each iteration is at most twice a certain numberµi. We
defineµi to be the minimum real for which there exists a
k-configurationX contained inUi with the property that
a certain constant fraction, say34 , of the weight ofUi is
within distanceµi from the points ofX. We note thatµi

can be used in establishing a lower bound on the cost of
an optimalk-configuration forUi. By the definition ofµi,
for any k-configurationY , a constant fraction, say14 , of
the weight ofUi has distance at leastµi from the points in
Y . To prove Lemma 3.3, we consider an associated balls-
in-bins problem. For eachi, 1 ≤ i ≤ t, we consider a
k-configurationX that satisfies the definition ofµi and for
each point inX, view the points inUi within distanceµi

as a weighted bin. Then, we view the random samples in
the first step of the sampling algorithm as ball tosses into
these weighted bins. We show that withO(k) such ball
tosses, a high constant fraction of the total weight of the
bins is covered with high probability. Since the value ofνi

is determined by the random samples, it is straightforward
to conclude thatνi is within twiceµi.

It may seem that Theorem 1 follows immediately from
Lemma 3.3, since for eachi, we can approximateµi within
a factor of2 with νi, and any optimalk-configuration can
be charged a distance of at leastµi for a constant fraction
of the weight inUi. However, this argument is not valid
since forj > i, Uj is contained inUi; thus an optimal
k-configuration could be chargedµi andµj for the same
point. For the second part of the proof of Theorem 1 we

provide a more careful accounting of the cost of an opti-
mal k-configuration. Specifically, in Section 3.2, we ex-
hibit t mutually disjoint sets with which we are able to es-
tablish a valid lower bound on the cost of an optimalk-
configuration. That is, for eachi, 1 ≤ i ≤ t, we exhibit a
subset ofUi that has a constant fraction of the total weight
of Ui and for which an optimalk-configuration must be
charged a distance of at leastµi. Lemma 3.11 formal-
izes this statement and proves a lower bound on the cost
of an optimalk-configuration, and Lemma 3.5 completes
the proof of Theorem 1 by providing an upper bound on
the cost ofσ.

3.1 Balls and Bins Analysis

The proof of Lemma 3.3 below relies on bounding the fail-
ure probability of a certain family of random experiments.
We begin by bounding the failure probability of a simpler
family of random experiments related to the well-known
coupon collector problem. For any positive integerm and
any nonnegative realsa andb, let us definef(m,a, b) as the
probability that more thanam bins remain empty afterdbe
balls are thrown at random (uniformly and independently)
into m bins. Techniques for analyzing the coupon collector
problem (see. e.g., [17]) can be used to obtain sharp esti-
mates onf(m,a, b). However, the following simple upper
bound is sufficient for our purposes.

Lemma 3.1 For any positive realε, there exists a positive
real λ such that for all positive integersm and any real
b ≥ m, we havef(m, ε, λb) ≤ e−b.

Proof: Note that a crude upper bound onf(m, ε, λb) is
given by the probability of obtaining at most(1− ε)m suc-
cesses indλbe Bernoulli trials, each of which has success
probabilityε. The claim then follows by choosingλ suffi-
ciently large and applying a standard Chernoff bound. (We
have in mind the following tail bound: IfX is a random
variable drawn from a Bernoulli distribution withn trials
and each trial has success probabilityp, then for allδ such
that0 ≤ δ ≤ 1, Pr {X ≤ (1− δ)np} ≤ e−δ2np/2; see [1,
Appendix A] for a derivation.)

We now develop a weighted generalization of the preceding
lemma. For any positive integerm, nonnegative realsa and
b, andm-vectorv = (r0, . . . , rm−1) of nonnegative reals
ri, we define defineg(m,a, b, v) as follows. Consider a
set ofm bins numbered from0 to m − 1 where bini has
associated weightri. Let R denote the total weight of the
bins. Assume that each ofdbe balls is thrown independently
at random into one of them bins, where bini is chosen with
probability ri/R, 0 ≤ i < m. We defineg(m,a, b, v) as
the probability that the total weight of the empty bins after
all of the balls have been thrown is more thanaR.

Lemma 3.2 For any positive realε there exists a positive

real λ such that for all positive integersm and any real
b ≥ m, we haveg(m, ε, λb, v) ≤ e−b for all m-vectorsv
of nonnegative reals.

Proof: Fix ε, b, m, andv. As in the paragraph preceding
the lemma statement in Section 2, letv = (r0, . . . , ri) and
let R denote the sum of theri’s.

We will use Lemma 3.1 to deduce the existence of a suit-
able choice ofλ that depends only onε. Our strategy for
reducing the claim to its unweighted counterpart will be
to partition almost all of the weight associated with the
m weighted bins intoΘ(m) “sub-bins” of equal weight.
Specifically, we lets denote εR

2m and for eachi we parti-
tion the weightri associated with bini into

⌊
ri

s

⌋
complete

sub-bins of weights and oneincompletesub-bin of weight
less thans. Furthermore, when a ball is thrown into a par-
ticular bin, we imagine that the throw is further refined to
a particular sub-bin of that bin, where the probability that a
particular sub-bin is chosen is proportional to its weight.

Note that the total weight of the incomplete sub-bins is less
thanεR/2. Furthermore, we can assume without loss of
generality thatε ≤ 1, since the claim holds vacuously for
ε > 1. It follows that less than half of the total weightR
lies in incomplete sub-bins. Thus, by a standard Chernoff
bound argument, for any positive realλ′ we can chooseλ
sufficiently large to ensure that the following claim holds
with probability of failure at moste−b/2 (i.e., half the de-
sired failure threshold appearing in the statement of the
lemma): At leastλ′b of thedλbe balls are thrown into com-
plete sub-bins.

Let m′ denote the number of complete sub-bins. Since at
least half of the total weightR belongs to complete sub-
bins, we havem/ε ≤ m′ ≤ 2m/ε. Accordingly, by a
suitable application of Lemma 3.1, we can establish the ex-
istence of a positive realλ′ (depending only onε) such that,
after at leastλ′b balls have landed in complete sub-bins, the
probability that the number of empty complete sub-bins ex-
ceedsεm′/2 is at moste−b/2.

From the claims of the two preceding paragraphs, we can
conclude that there exists aλ (depending only onε) such
that the following statement holds with probability of fail-
ure at moste−b: The number of empty complete sub-bins
is at mostεm′/2. Note that the total weight of the complete
sub-bins is at mosts · ε

2 ·
2t
ε = εR/2. As argued earlier,

the total weight of the incomplete sub-bins is also at most
εR/2. Thus, there exists a positive realλ such that after
dλbe ball tosses, the probability that the total weight of the
empty bins is more thanεR is at moste−b.

For the remainder of this section, we fix a positive realγ
such thatβ < γ < 1. For0 ≤ i ≤ t, let µi denote a non-
negative real such that there exists ak-configurationX for
which the following properties hold: (1) the total weight

of all points x in Ui such thatd(x,X) ≤ µi is at least
γw(Ui); (2) the total weight of all pointsx in Ui such that
d(x,X) ≥ µi is at least(1 − γ)w(Ui). (Note that such
a µi is guaranteed to exist.) Lemma 3.3 below establishes
the main probabilistic claim used in our analysis of the al-
gorithm of Section 2.1. We note that the lemma holds with
high probability by takingk′ = max{k, dlog ne} and α
andβ appropriately large.

Lemma 3.3 For any positive realξ, there exists a suffi-
ciently large choice ofα such thatνi ≤ 2µi for all i,
0 ≤ i ≤ t, with probability of failure at moste−ξk′ .

Proof: Fix i and letX denote ak-configuration such that
w(Balls(X, µi)) ≥ γw(Ui). Let us define each pointy in
Ui to begood if it belongs toBalls(X, µi), andbad oth-
erwise. LetG denote the set of good points. We associate
each good pointy with its closest point inX, breaking ties
arbitrarily. For each pointx in X, let Ax denote the set of
good points associated withx; note that the setsAx form a
partition ofG. Recall thatSi denotes theith set of sample
points chosen by the algorithm. For anyx in X, we say
thatSi coversAx iff Si ∩Ax is nonempty. For any pointy,
we say thatSi coversy iff there exists anx in X such that
y belongs toAx andSi coversAx. LetG′ denote the set of
points covered bySi; note thatG′ ⊆ G.

We will establish the lemma by proving the following
claim: For any positive realsε andξ, there exists a suffi-
ciently large choice ofα such thatw(G′) ≥ (1 − ε)w(G)
with probability of failure at moste−ξk′ . This claim then
implies the lemma becauseβ (the factor appearing in the
definition of νi) is less thanγ (the factor appearing in
the definition ofµi) and for all pointsy covered bySi,
d(y, Si) ≤ 2µi.

It remains to prove the preceding claim. First, note that the
definition ofµi implies that at least aγ fraction of the total
weight is associated with good points. Thus, a standard
Chernoff bound argument implies that for any positive reals
λ andξ, there exists a sufficiently large choice ofα such
that at leastλk′ of the bαk′c samples associated with the
construction ofSi are good with probability of failure at
moste−ξk′/2.

To ensure thatw(G′) is at least(1 − ε)w(G) with failure
probabilitye−ξk′/2, we can apply Lemma 3.2 by viewing
each sample associated with a good point inSi as a ball
toss and each setAx as a bin with weightw(Ax). The
claim then follows.

3.2 Upper and Lower Bounds on Cost

In this section we provide an upper bound on the cost of
the assignmentσ as well a lower bound on the cost of an
optimalk-configuration. Lemmas 3.4 and 3.5 establish the
upper bound onc (σ), while the rest of the section is ded-

icated to establishing the lower bound on the cost of an
optimalk-configuration.

Lemma 3.4 For all i such that0 ≤ i ≤ t, c (σ,Ci) ≤
νiw(Ci).

Proof: Observe that

c(σ,Ci) =
∑
x∈Ci

d(x, σ(x)) · w(x)

≤
∑
x∈Ci

νi · w(x)

= νiw(Ci),

where the second step follows from the definition ofCi and
the construction ofσ(x).

Lemma 3.5

c(σ) ≤
∑

0≤i≤t

νiw(Ci)

Proof: Observe thatc (σ) =
∑

0≤i≤t c (σ,Ci) ≤∑
0≤i≤t νiw(Ci). The first step follows since the setsCi,

0 ≤ i ≤ t, form a partition ofU . The second step follows
from Lemma 3.4.

We now focus on establishing a lower bound on the cost
of an optimalk-configuration. Throughout the remainder
of this section we fix an arbitraryk-configurationX. For
all i such that0 ≤ i ≤ t, we letFi denote the set{x ∈
Ui | d(x,X) ≥ µi}, and for any integerm > 0, we letFm

i

denoteFi \ (∪j>0Fi+jm) and we letGi,m denote the set
of all integersj such that0 ≤ j ≤ t andj is congruent toi
modulom.

Lemma 3.6 Let i, j, `, andm be integers such that0 ≤
` ≤ t, m > 0, i 6= j, and i and j belong toG`,m. Then
Fm

i ∩ Fm
j = ∅.

Proof: Without loss of generality, assume thati < j.
Then, by definition,Fm

i = Fi \ (∪s>0Fi+sm). Since
Fm

j ⊆ Fj and j = i + sm for some positive integers,
it follows thatFm

i andFm
j do not intersect.

Lemma 3.7 Let i be an integer such that0 ≤ i ≤ t and
let Y be a subset ofFi. Thenw(Fi) ≥ (1 − γ)w(Ui) and
cost (X, Y) ≥ µiw(Y).

Proof: First, note that by the definition ofµi, w(Fi) is at
least(1 − γ)w(Ui). By the definition ofFi, d(y, X) ≥
µi for any y in Fi. Thuscost (X, Y) =

∑
y∈Y d(y, X) ·

w(y) ≥ µiw(Y).

Lemma 3.8 For all integers` andm such that0 ≤ ` ≤ t
andm > 0,

cost
(
X,∪i∈G`,m

Fm
i

)
≥

∑
i∈G`,m

µiw(Fm
i).

Proof: By Lemma 3.6, for all̀ andm such that0 ≤ ` ≤ t
andm > 0,

cost
(
X,∪i∈G`,m

Fm
i

)
=

∑
i∈G`,m

cost (X, Fm
i) .

By Lemma 3.7,cost (X, Fm
i) ≥ µiw(Fm

i), and the claim
follows.

For the remainder of the section, letr =
dlog(1−β) ((1− γ)/3)e.

Lemma 3.9 For all i such that0 ≤ i ≤ t, w(Fi+r) ≤
1
3w(Fi).

Proof: Note that w(Fi+r) ≤ w(Ui+r) ≤ (1 −
β)rw(Ui) ≤ (1−β)r

1−γ w(Fi), where the last step follows
from Lemma 3.7. The claim then follows by the definition
of r.

Lemma 3.10 For all i such that0 ≤ i ≤ t, w(F r
i) ≥

w(Fi)
2 .

Proof: Observe that

w(F r
i) = w(Fi \ ∪j>0Fi+jr)

≥ w(Fi)−
∑
j>0

w(Fi)
3j

≥ w(Fi)
2

,

where the second step follows from Lemma 3.9.

Lemma 3.11 For anyk-configurationX,

cost(X) ≥ 1− γ

2r

∑
0≤i≤t

µiw(Ci).

Proof: Let ` = arg max0≤`<r{
∑

i∈G`,r
w(F r

i)} and fix
ak-configurationX. Thencost (X) is at least

cost
(
X,∪i∈G`,r

F r
i

)
≥

∑
i∈G`,r

µiw(F r
i)

≥ 1
r

∑
0≤i≤t

µiw(F r
i)

≥ 1
2r

∑
0≤i≤t

µiw(Fi)

≥ 1− γ

2r

∑
0≤i≤t

µiw(Ui)

≥ 1− γ

2r

∑
0≤i≤t

µiw(Ci),

where the first step follows from Lemma 3.8, the second
step follows from averaging and the choice of`, the third
step follows from Lemma 3.10, the fourth step follows
from Lemma 3.7, and the last step follows sinceCi ⊆ U .

4 An Efficient Algorithm for the Case of
Uniform Weights

In this section we use the sampling algorithm of Section 2,
a black-boxk-median algorithm and algorithm Modified-
Small-Space of Appendix B to obtain a fastk-median al-
gorithm for the case of uniform weights. We note that
algorithm Modified-Small-Space and the accompanying
analysis is a slight generalization of results obtained by
Guhaet al. [8]. Informally speaking, algorithm Modified-
Small-Space works in two phases. First, we use an (a,
O(1))-approximatek-median algorithm on the input to
compute` (a, O(1))-configurations. Then, we construct
a newk-median problem instance from these(a, O(1))-
configurations and use anO(1)-approximatek-median al-
gorithm to compute ak-configuration. We are able to
show that thisk-configuration is actually a(k, O(1))-
configuration.

We obtain our uniform weightsk-median algorithm by
applying our sampling algorithm in Step 2 of algorithm
Modified-Small-Space and the deterministic online median
algorithm of Mettu and Plaxton [15] in Step 4. We set the
parameter̀ of algorithm Modified-Small-Space to1 and
parameterk′ of our sampling algorithm tomax{k, log n}.
By Theorem 1, the output of our sampling algorithm is
an (m, O(1))-assignment with high probability, where
m = O(max{k, log n} log (n/k)). The online median
algorithm of Mettu and Plaxton [15] is also anO(1)-
approximatek-median algorithm. Thus, by Theorem 4,
the resultingk-median algorithm isO(1)-approximate with
high probability.

We now analyze the running time of the above algorithm on
inputs with uniform weights. The time required to compute
the output assignmentσ in Step 2 isO(n max{k, log n}).
We note that the weight function required in Step 3 of
Modified-Small-Space can be computed during the execu-
tion of the sampling algorithm without increasing its run-
ning time. The deterministic online median algorithm of
Mettu and Plaxton [15] requiresO(|σ(U)|2 + |σ(U)| rd)
time. The total time taken by the algorithm is therefore

O(nk′ + |σ(U)|2 + |σ(U)| rd)

= O(nk′ + k′2 log2 (n/k) + rdk
′ log (n/k))

= O(nk′ + rdk
′ log (n/k)),

where the first step follows from the analysis of our sam-
pling algorithm for the case of uniform weights. By
the choice ofk′, the overall running time isO((n +
rd log (n/k))max{k, log n}). Note that ifk = Ω(log n)
and rd log (n/k) = O(n), this time bound simplifies to
O(nk).

5 An Efficient Algorithm for the Case of
Arbitrary Weights

The algorithm developed in Sections 2 and 4 isO(1)-
approximate for thek-median problem with arbitrary
weights. However, the time bound established for the case
of uniform weights does not apply to the case of arbi-
trary weights because the running time of the successive
sampling procedure is slightly higher in the latter case.
(More precisely, the running time of the sampling algo-
rithm of Section 2 isO(nk′ log w(U)

k′) for the case of arbi-
trary weights.) In this section, we use the uniform-weight
algorithm developed in Sections 2 and 4 to develop ak-
median algorithm for the case of arbitrary weights that is
time optimal for a certain range ofk. We first give an
informal description of the algorithm, which consists of
three main steps. First, we partition the input points ac-
cording to weight intorw sets. Next, we run our uni-
form weightsk-median algorithm on each of the result-
ing sets, and show that the union of the resulting outputs
is an(O(krw), O(1))-configuration. We then obtain a(k,
O(1))-configuration by creating a problem instance from
the (O(krw), O(1))-configuration computed in the previ-
ous step and then feeding this problem instance as input to
anO(1)-approximatek-median algorithm.

We now give a precise description of ourk-median algo-
rithm. LetA be the uniform weightsk-median algorithm
of Sections 2 and 4, and letB be anO(1)-approximatek-
median algorithm.

• Compute setsBi for 0 ≤ i < rw such that for all
x ∈ Bi, 2i ≤ w(x) ≤ 2i+1.

• Fori = 0, 1 . . . rw−1: RunAwith Bi as the set of in-
put points,d as the distance function,2i+1 as the fixed
weight, and the parameterk′ = max{k, dlog ne}; let
Zi denote the output. Letφi denote the assignment
induced byZi, that is,φi(x) = y iff y is in Zi and
d(x,Zi) = d(x, y). For a pointx, if x ∈ Zi, let
wφi

(x) = w(φ−1
i (x)), otherwise letwφi

(x) = 0.

• Let φ be the assignment corresponding to the union of
the assignmentsφi defined in the previous step, and
letwφ denote the weight function corresponding to the
union of the weight functionswφi

. RunB with φ(U)

as the set of input points,d as the distance function,
andwφ as the weight function. Output the resulting
k-configuration.

Note that in the second step,k′ is defined in terms ofn
(i.e., |U |) and not|Bi|. Thus, the argument of the proof of
Theorem 1 implies thatA succeeds with high probability
in terms ofn. Assuming thatrw is polynomially bounded
in n, with high probability we have that every invocation of
A is successful.

We now observe that the above algorithm corresponds to
algorithm Modified-Small-Space with the parameter` is set
to rw, the uniform weights algorithm of Section 4 is used
in step 2 of Small-Space, and the online median algorithm
of Mettu and Plaxton [15] is used in step 4 of Small-Space.
Thus,Theorem 4 implies that the output ofB is a(k, O(1))-
configuration with high probability.

We now discuss the running time of the above algorithm. It
is straightforward to compute the setsBi in O(n) time. Our
uniform weightsk-median algorithm requiresO((|Bi| +
rd log |Bi|

k)k′) time to computeZi, so the time required for
all invocations ofA is

O

 ∑
0≤i<rw

(|Bi|+ rd log (|Bi| /k)) k′


= O

(
rw

(
nk′

rw
+ rdk

′ log
(

n

krw

)))
= O

((
n + rdrw log

n

krw

)
k′

)
.

(The first step follows from the fact that the sum is maxi-
mized when|Bi| = n/rw.) Note that each weight function
wφi

can be computed inO(|Bi| k) time; it follows thatwφ

can be computed inO(nk) time. We employ the online
median algorithm of [15] as the black-boxk-median algo-
rithm B. Since|φ(U)| is at mostkrw, the time required
for the invocation ofB is O((krw)2 + krwrd). It follows
that the overall running time of the algorithm is as stated in
Equation (1).

6 Concluding Remarks

In this paper, we have presented a constant-factor approx-
imation algorithm for thek-median problem that runs in
optimalΘ(nk) time if log n ≤ k ≤ n

log2 n
. If we use our

algorithm as an initialization procedure fork-means, our
analysis guarantees that the cost of the output ofk-means
is within a constant factor of optimal. Preliminary experi-
mental work [13] suggests that this approach to clustering
yields improved practical performance in terms of running
time and solution quality.

References

[1] N. Alon and J. H. Spencer.The Probabilistic Method.
Wiley, New York, NY, 1991.

[2] S. Arora and R. Kannan. Learning mixtures of arbi-
trary Gaussians. InProceedings of the 33rd Annual
ACM Symposium on Theory of Computing, pages
247–257, July 2001.

[3] M. Charikar and S. Guha. Improved combinatorial al-
gorithms for facility location andk-median problems.
In Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science, pages 378–388,
October 1999.

[4] M. Charikar, S. Guha,́E. Tardos, and D. B. Shmoys.
A constant-factor approximation algorithm for thek-
median problem. InProceedings of the 31st Annual
ACM Symposium on Theory of Computing, pages 1–
10, May 1999.

[5] S. Dasgupta. Learning mixtures of Gaussians. InPro-
ceedings of the 40th Annual IEEE Symposium on the
Theory of Computation, pages 634–644, May 1999.

[6] R. O. Duda and P. E. Hart.Pattern Classification and
Scene Analysis. John Wiley and Sons, New York,
1973.

[7] S. Guha. Approximation Algorithms for Facility Lo-
cation Problems. PhD thesis, Department of Com-
puter Science, Stanford University, August 2000.

[8] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. InProceedings of the 41st
Annual IEEE Symposium on Foundations of Com-
puter Science, pages 359–366, November 2000.

[9] P. Indyk. Sublinear time algorithms for metric space
problems. InProceedings of the 31st Annual ACM
Symposium on Theory of Computing, pages 428–
434, May 1999. See also the revised version at
http://theory.lcs.mit.edu/˜indyk.

[10] B. Lindsay. Mixture Models: Theory, Geometry, and
Applications. Institute for Mathematical Statistics,
Hayward, California, 1995.

[11] P. D. Mackenzie. Lower bounds for randomized ex-
clusive write prams. InProceeding of the 7th Annual
ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 254–263, July 1995.

[12] C. D. Manning and H. Scḧutze.Foundations of Statis-
tical Natural Language Processing. MIT Press, Cam-
bridge, 1999.

[13] R. R. Mettu.Approximation Algorithms for NP-Hard
Clustering Problems. PhD thesis, Department of
Computer Science, University of Texas at Austin, Au-
gust 2002.

[14] R. R. Mettu and C. G. Plaxton. Optimal time bounds
for approximate clustering. Full version of UAI 2002
submission with complete proofs. Available online at
http://www.cs.utexas.edu/users/ramgopal/.

[15] R. R. Mettu and C. G. Plaxton. The online me-
dian problem. InProceedings of the 41st Annual
IEEE Symposium on Foundations of Computer Sci-
ence, pages 339–348, November 2000.

[16] N. Mishra, D. Oblinger, and L. Pitt. Sublinear time
approximate clustering. InProceedings of the 12th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 439–447, January 2001.

[17] R. Motwani and P. Raghavan.Randomized Algo-
rithms. Cambridge University Press, Cambridge, UK,
1995.

[18] M. Thorup. Quickk-median,k-center, and facility
location for sparse graphs. InProceedings of the 28th
International Colloquium on Automata, Languages,
and Programming, pages 249–260, July 2001.

[19] A. Yao. Probabilistic computations: Toward a unified
measure of complexity. InProceedings of the 18th
IEEE Symposium on Foundations of Computer Sci-
ence, pages 222–227, 1977.

A Lower Bounds

In this section, we give lower bounds for thek-median
problem and its clustering variant. Throughout the sec-
tion, we refer to the clustering variant as thek-clustering
problem. Recall that thek-clustering problem asks us to
partition the input points such that the sum, over all sets in
the partition, of the weight of a point times the distance to
the median of its set, is minimized. Since anyk-median so-
lution can be converted into a solution for thek-clustering
problem inO(nk) time, in developing our upper bounds
it was sufficient to consider only thek-median problem.
Unfortunately this reduction is not useful for the present
purpose of establishingΩ(nk) lower bounds; accordingly,
in this section we consider the problems separately.

For both thek-clustering problem and thek-median prob-
lem, we establish a lower bound ofΩ(nk) time on any ran-
domized algorithm that isO(1)-approximate with even a
negligible probability. Since the overall objective of this
paper is to study the complexity of approximate clustering
in terms of the four parametersn, k, Rd, andRw, it is desir-
able for the metric spaces associated with our lower bound
arguments to have small values for bothRd andRw. In

terms ofRw, we achieve this goal completely, since all of
the input distributions that we consider below have uniform
weights, that is,Rw = 1. For thek-clustering problem, our
lower bounds are established withRd equal to a constant
(sufficiently large relative to the desired approximation ra-
tio); this is clearly best possible up to a constant factor. For
thek-median problem, our lower bound requiresRd to ex-
ceedn/k by a sufficiently large constant factor relative to
the desired approximation ratio.

In our proofs, we assume an oracle model of computation
in which the algorithm is charged only for asking the ora-
cle the distance between a pair of points. We refer to each
call to the oracle as aprobe. By a generalization of Yao’s
technique [19] due to Mackenzie [11], we can establish a
lower bound ofp on the success probability of a random-
ized algorithm by exhibiting an input distribution for which
every deterministic algorithm has a success probability of
at mostp. (The intuition underlying this reduction is that
the success probability of a randomized algorithm is just a
convex combination of the success probabilities of a num-
ber of deterministic algorithms.) Thus in what follows, we
restrict our attention to exhibiting “hard” distributions for
determinstic algorithms. All of the problems considered in
this section take the same input as thek-median problem.
Our lower bounds also hold for the non-uniform case since
for each choice ofn andk, we exhibit a probability dis-
tribution over the set ofn-point metric spaces on which no
deterministic algorithm making a sufficiently small number
of probes can achieve more than a negligible probability of
success.

For any positive real̀ > 1, it is convenient to define a met-
ric space to bè-simpleif the following conditions hold: (1)
all of the points have unit weight; (2) the points of the met-
ric space can be partitioned into equivalence classes such
that the distance between any pair of distinct points is1 if
the points belong to the same equivalence class, and` oth-
erwise. Thus, anỳ-simple metric space hasRd = ` and
Rw = 1. Our lower bounds are all based on`-simple input
distributions for some appropriately chosen value of`.

In order to establish a lower bound for thek-clustering
problem, we find it convenient to introduce a problem
that we call thek-matching problem. The input to the
k-matching problem is the same as the input to thek-
clustering problem. The output is a partition of then in-
put points into a collection of disjoint pairs and singletons,
subject to the constraint that there are at mostk singletons.
We refer to such an output as ak-matching. The cost of
a k-matching is defined as the sum, over all output pairs
of points (x, y), of d(x, y) · min{w(x), w(y)}. The goal
of thek-matching problem is to compute a minimum-cost
k-matching.

Given an algorithm for thek-clustering problem, consider
the associatedk-matching algorithm defined as follows: (1)

run thek-clustering algorithm to partition then input points
into at mostk clusters; (2) arbitrarily partition each even-
sized cluster into a number of pairs; (3) arbitrarily parti-
tion each odd-sized cluster into a singleton and a number
of pairs; (4) return thek-matching formed by the single-
tons and pairs computed in the previous two steps. Using
the triangle inequality, it is straightforward to prove that
the cost of thek-matching produced by this algorithm is
at most the cost of thek-clustering computed in step (1)
(i.e., the sum over all pointsx of the weight ofx multiplied
by the distance fromx to the medoid of its cluster). Fur-
thermore, thisk-matching algorithm uses exactly the same
number of probes as the associatedk-clustering algorithm.
Below we will exhibit an input distribution with respect
to which any deterministick-matching algorithm making
a sufficiently small number of probes has only a negligible
probability of computing ak-matching with cost within a
constant factor of the cost of the optimal clustering. By the
foregoing reduction from thek-matching problem to the
k-clustering problem, such a result implies that any deter-
ministic k-clustering algorithm running on the same input
distribution and making the same small number of probes
has only the same negligible probability of computing ak-
clustering with cost within a constant factor of optimal.

In order to state and prove our lower bounds it is conve-
nient to introduce a shorthand notation for expressing cer-
tain kinds of statements. In particular, for any statement
S, we define an associated statement, which we refer to as
the P -claim S, as follows: For all positive realsε andc,
there exist positive realsδ andγ and positive integersn0

anda such that for all positive integersn andk for which
n ≥ n0 and1 < k < n, there exists a probability dis-
tribution D over the set of̀ -simplen-point metric spaces
where` = γ such that any deterministick-matching al-
gorithmA making at mostδnk probes on an input drawn
uniformly at random fromD, the statementS holds with
probability at least1− ε. (We remark that a givenP -claim
S need not contain the parameterc. We also remark that if
theP -claimsS andT hold, then theP -claimS ∧T holds.)

We define aP ′-claim in the same way as aP -claim except
that the restriction onk is strengthened to1 < k < n

2 .
Similarly, aP ′′-claim is a variant of aP -claim in which the
restriction onk is n

2 ≤ k < n. Note that for any statement
S, theP ′-claim S and theP ′′-claim S imply theP -claim
S.

Finally, for addressing thek-median problem we defineQ-
, Q′-, andQ′′-claims in an analogous manner, where the
algorithmA is assumed to be ak-median algorithm rather
than ak-matching algorithm, and̀ is defined to beγn

k in-
stead ofγ.

The rest of this section is devoted to proving the following
two theorems.

Theorem 2 TheP -claim “the cost of thek-matching so-

lution computed byA is more thanc times the cost of an
optimalk-clustering solution” holds.

Theorem 3 TheQ-claim “the cost of thek-median solu-
tion computed byA is more thanc times the cost of an
optimalk-median solution” holds.

The proof of the first theorem follows from Lemmas A.1
and A.2 below. The proof of the second theorem follows
from Lemmas A.3 and A.4.

Lemma A.1 TheP ′-claim “the cost of thek-matching so-
lution computed byA is more thanc times the cost of an
optimalk-clustering solution” holds.

Proof Sketch: Let D denote the distribution of̀-simple
n-point metric spaces where each point is independently
placed into one ofk equivalence classes uniformly at ran-
dom. Given an input instance drawn fromD, the cost of an
optimalk-clustering solution is easily seen to ben− k.

Let us define a pointx to becleanwith respect to an exe-
cution of algorithmA if the following two conditions are
satisfied: (1) there is no pointy such thatd(x, y) = 1 andA
has probedd(x, y); (2)A has probed the distance between
x and at mostεk other points.

It is not difficult to establish the followingP ′-claim: “At
least(1 − ε)n points are clean”. SinceA is ak-matching
algorithm it outputs at leastn−k ≥ n/2 pairs. This obser-
vation, together with the precedingP ′-claim, implies the
P ′-claim “At least n/3 of the pairs produced byA con-
sist of two clean points.” Note that each such output pair of
clean points independently contributes a cost of` to the cost
of thek-matching produced byA with probability at least
1 − 1

k(1−ε) , since a clean point is equally likely to belong
to any of the at leastk(1−ε) equivalence classes (those for
whichA has not probed a distance between the given clean
point and some point in the equivalence class). The claim
of the lemma now follows by choosing constants appropri-
ately (i.e., by settingδ, γ, andn0 to appropriate functions
of ε andc) and applying a standard Chernoff bound argu-
ment.

Lemma A.2 TheP ′′-claim “the cost of thek-matching so-
lution computed byA is more thanc times the cost of an
optimalk-clustering solution” holds.

Proof Sketch: The proof of the preceding lemma does not
readily extend to large values ofk, so we employ a some-
what different approach. In this case we define the input
distributionD by randomly partitioning then points into
k clusters (i.e., equivalence classes),n − k of which are
pairs, and2k − n of which are singletons. As in the proof
of Lemma A.1, the cost of an optimalk-clustering solution
is n− k.

Let us assume for the sake of simplicity thatn is a multiple
of 2a. (Remark: It is not difficult to modify our argument
to handle generaln.) For the sake of the analysis, it is use-
ful to think of sampling from the input distributionD via
the following three-stage process: (1) randomly partition
then points into n

2a supergroupsof size2a; (2) randomly
partition each supergroup intoa pairs; (3) pick a random
set ofk − n

2 pairs and split them to obtain2k − n single-
tons. In what follows we refer to these pairs and singletons
as input-pairsand input-singletons, in order to avoid con-
fusion with the pairs and singletons computed by algorithm
A, which we refer to asoutput-pairsandoutput-singletons.

We define a supergroup to beinterestingif it contains at
least one input-pair. Note that there are at leastn−k

a inter-
esting supergroups. Let us define a supergroup to bered if
it contains at least one output-pair; otherwise, it isblue.

If there arei blue supergroups then at leasti output-pairs ei-
ther span distinct supergroups or contain at least one input-
singleton; it follows that the cost of thek-matching pro-
duced byA is at leasti`. If at least half (say) of the in-
teresting supergroups are blue, this argument is sufficient
to establish the lemma. Thus, in what follows, we may as-
sume that at least half of the interesting supergroups are
red.

Let us define a supergroup to becleanwith respect to an
execution of algorithmA if A does not probe the distance
between any two points in the supergroup. It is not diffi-
cult to establish the followingP ′′-claim: “At least a1 − ε
fraction of the interesting supergroups are clean.” By this
P ′′-claim and the assumption of the previous paragraph,
we establish theP ′′-claim “at least one-third of the inter-
esting supergroups are clean and red”.

Let G denote a clean interesting red supergroup and let
(x, y) denote an output-pair that belongs toG (such a pair
exists sinceG is red). If x is an input-singleton then the
cost of pair(x, y) is `, and we can attribute this cost toG.
Otherwise,x belongs to some input-pair(x, z), and algo-
rithm A pays` for the pair(x, y) unlessy = z. But the
probability thaty = z is 1

2a−1 sinceG is clean. Further-
more, the event thaty = z is independent of the analogous
events defined for other clean interesting red supergroups.
Thus each clean interesting red supergroup independently
contributes, with probability at least1 − 1

2a−1 , a cost of at
least` to the total cost of thek-matching produced byA.
The claim of the lemma now follows by choosing constants
appropriately and applying a standard Chernoff bound ar-
gument.

Lemma A.3 TheQ′-claim “the cost of thek-median so-
lution computed byA is more thanc times the cost of an
optimalk-median solution” holds.

Proof Sketch: Let D denote the distribution of̀-simple

n-point metric spaces associated with the following par-
titioning scheme: (1) independently place each of then
points into one ofbk/2c tentative equivalence classesuni-
formly at random; (2) randomly selectdk/2e specialpoints
and move each of these special points into a singleton
equivalence class. Note that for any such instance, the cost
of an optimalk-median solution isn− k.

We define a pointx to becleanwith respect to an execution
of algorithmA if there is no pointy belonging to the same
tentative equivalence class asx for which A has probed
d(x, y).

It is not difficult to establish the following pair ofQ′-
claims: (1) at least(1 − ε)n points are clean; (2) at least
(1− ε) dk/2e of the special points are clean.

Let X denote the random variable corresponding to the set
of clean points, and letY denote the remaining points. Let
Z denote the random variable corresponding to the set of
special clean points. We now argue that the conditional
distribution ofZ given X and |Z| has a simple structure,
namely,Z is a uniformly random subset ofX of size|Z|.
This claim holds because the definition of a clean point im-
plies that the behavior of algorithmA is the same no mat-
ter which size-|Z| subset ofX is equal toZ. Combining
this claim with the results of the preceding paragraph, it is
straightforward to establish theQ′-claim “A fails to output
1
4 (say) of the clean special points.”

Note that each special point that does not appear in the out-
put ofA contributes̀ to the cost of thek-median solution
computed byA. Thus we obtain theQ′-claim “the cost of
the solution computed byA is at least(1−ε)k`/8”. Choos-
ing γ sufficiently large (depending onc), the claim of the
lemma then follows sincè= γn/k.

Lemma A.4 TheQ′′-claim “the cost of thek-median so-
lution computed byA is more thanc times optimal” holds.

Proof Sketch: This proof is similar to that of Lemma A.2
above. We define the input distributionD in the same
manner, as well as the following terms: supergroup,
clean supergroup, interesting supergroup, input-pair, input-
singleton. As before, note that at leastn−k

a of the super-
groups are interesting.

We define theinput-weightof a supergroup as the number
of input-pairs and input-singletons that it contains. We de-
fine theoutput-weightof a supergroup as the size of its in-
tersection with thek-median solution computed byA. We
define thediscrepancyof a supergroup as its input-weight
minus its output-weight. Note that the sum of the discrep-
ancies of all supergroups is zero since the total input-weight
and the total output-weight are both equal tok. A super-
group isbalancedif it has discrepancy 0.

If the total discrepancy of the supergroups with positive dis-

crepancy iss then it is straightforward to prove that the cost
of thek-median solution computed byA is at leasts`. If
s is at least one-quarter of the number of interesting super-
groups then this argument is sufficient to establish the claim
of the lemma. Thus in what follows we may assume thats
is less than one-quarter of the number of interesting super-
groups. Under this assumption, at least half of the interest-
ing supergroups are balanced (since at most one-quarter of
them can have negative discrepancy).

It is not difficult to establish the followingQ′′-claim: “At
least a1 − ε fraction of the interesting supergroups are
clean.” Combining this with the conclusion of the preced-
ing paragraph we obtain theQ′′-claim “at least one-third of
the interesting supergroups are clean and balanced”.

Let G denote a clean interesting balanced supergroup with
i input-pairs andj input-singletons. Thus the input-weight
and output-weight ofG is i + j (sinceG is balanced), and
i > 0 (sinceG is interesting). In order to avoid paying a
cost of` for servicing any of the points in supergroupG,
the subset ofG of sizei + j contained in the output ofA
has to include exactly one point out of each of thei input-
pairs, and all of thej input-singletons. SinceG is clean, the
probability thatA produces such an output is2i divided
by

(
2a
i

)
. Given the constraints oni, namely,1 ≤ i ≤ a,

this probability is at most1/a. Furthermore, the event that
A produces such an output is independent the analogous
events defined for other clean interesting balanced super-
groups. Thus each clean interesting balanced supergroup
independently contributes, with probability at least1/a, a
cost of at least̀ to the total cost of thek-median solution
produced byA. The claim of the lemma now follows by
choosing constants appropriately and applying a standard
Chernoff bound argument.

B Algorithm Modified-Small-Space

The main goal of this section is to establish that a modi-
fied version of algorithm Small-Space of Guhaet al. [8] is
O(1)-approximate. Our version of algorithm Small-Space,
which we refer to as Modified-Small-Space, and its analy-
sis are used to establish the results in Sections 4 and 5. We
note that the changes to the algorithm of Guhaet al. are
trivial; the discussion in this section is included for com-
pleteness only.

We now discuss the modification to algorithm Small-Space
of Guhaet al. [8] and the changes required in the analy-
sis. In Step 2 of algorithm Small-Space of Guhaet al. [8],
` O(k)-configurations are computed. Then, in Step 3,
a weight function is constructed based on these configu-
rations. In algorithm Modified-Small-Space, we instead
compute` assignments in Step 2 and use them in Step
3 to construct a weight function. Theorem 2.4 of Guha
et al. [8] proves the approximation bound for algorithm

Small-Space. In order to prove the same approximation
bound for algorithm Modified-Small-Space, a slight gener-
alization of [8, Theorem 2.3] (which is used in the proof
of [8, Theorem 2.4]) is needed. The rest of their analysis,
including the proof of Theorem 2.4, remains unchanged.

This section is organized as follows. We first present algo-
rithm Modified-Small-Space. We then restate Theorem 2.4
of Guhaet al. [8] for algorithm Modified-Small-Space as
Theorem 4 below and give the required generalization of
Theorem 2.3 of Guhaet al. [8] with Lemma B.1 below.

We also make use of some additional definitions in this sec-
tion. For any assignmentτ , we definewτ as follows: For
a point x in τ(U), wτ (x) =

∑
y∈τ−1(x) w(y). For any

assignmentτ and set of pointsX, we let cτ (X) denote∑
x∈τ(U) d(x,X) · wτ (x).

Algorithm Modified-Small-Space(U)

1. DivideU into ` disjoint pieces,U0, . . . , U`−1.

2. For eachi, 0 ≤ i < `, compute an assignment
τi : Ui → Ui. Let τ be an assignment that is defined
as follows: Ifx is in Ui, thenτ(x) = τi(x).

3. LetU ′ denoteτ(U) and letwτ be the weight function
onU ′.

4. Compute ak-configuration usingU ′ as the set of
points,wτ as the weight function, andd as the
distance function.

Theorem 4 (Guhaet al. [8]) If an (a, b)-approximate
k-median algorithm is used in Step 2 of algorithm
Modified-Small-Space, and ac-approximatek-median
algorithm is used in Step 4 of algorithm
Modified-Small-Space, then algorithm
Modified-Small-Space is(2c(1 + 2b) + 2b)-approximate.

Lemma B.1 Let the setsUi, 0 ≤ i < `, be a partition of
U . Letτi, 0 ≤ i < `, be assignments such thatτi(U) ⊆ Ui

andτ−1
i (U) = Ui. Letτ be an assignment that is defined

as follows: forx in Ui, thenτ(x) = τi(x). LetX be a
configuration such thatX ⊆ τ(U). Then,

cτ (X) ≤ cost(X) +
∑

0≤i<`

c (τi) .

Proof: Observe that

cτ (X) =
∑

x∈τ(U)

d(x, X) · wτ (x)

=
∑

x∈τ(U)

d(x, X)

 ∑
y∈τ−1(x)

w(y)


≤

∑
x∈τ(U)

∑
y∈τ−1(x)

(d(y, τ(y)) + d(y, X)) · w(y)

=
∑
y∈U

(d(y, τ(y)) + d(y, X)) · w(y)

= c(τ) + cost (X)

= cost(X) +
∑

0≤i<`

c (τi) ,

where the third step follows from Lemma B.2 and the last
step follows from the definition ofτ .

Lemma B.2 Let τ be an assignment, letX be a
configuration such thatX ⊆ τ(U), let x be a point in
τ(U), and lety be a point inτ−1(x). Then
d(x, X) ≤ d(y, τ(y)) + d(y, X).

Proof: Let z be a point inX such that
d(y, X) = d(y, z). Observe thatd(x, X) ≤ d(x, z) ≤
d(x, y) + d(y, z) = d(y, τ(y)) + d(y, X).

