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Abstract

Clustering is a fundamental problem in unsuper-
vised learning, and has been studied widely both
as a problem of learning mixture models and
as an optimization problem. In this paper, we
study clustering with respect themedianob-
jective function, a natural formulation of clus-
tering in which we attempt to minimize the av-
erage distance to cluster centers. One of the
main contributions of this paper is a simple but
powerful sampling technique that we csilicces-
sive samplinghat could be of independent inter-
est. We show that our sampling procedure can
rapidly identify a small set of points (of size just
O(klogn/k)) that summarize the input points
for the purpose of clustering. Using successive
sampling, we develop an algorithm for the
median problem that runs i@(nk) time for a
wide range of values df and is guaranteed, with
high probability, to return a solution with cost at
most a constant factor times optimal. We also es-
tablish a lower bound of2(nk) on any random-
ized constant-factor approximation algorithm for
the k-median problem that succeeds with even a
negligible (saywlo) probability. The best pre-
vious upper bound for the problem waxnk),
where theD-notation hides polylogarithmic fac-
tors inn andk. The best previous lower bound
of Q(nk) applied only to deterministit-median
algorithms. While we focus our presentation on
the k-median objective, all our upper bounds are
valid for the k-means objective as well. In this
context our algorithm compares favorably to the
widely usedk-means heuristic, which requires
O(nk) time for just one iteration and provides
no useful approximation guarantees.

}@cs.utexas.edu

1 Introduction

Clustering is a fundamental problem in unsupervised learn-
ing that has found application in many problem domains.
Approaches to clustering based on learning mixture mod-
els as well as minimizing a given objective function have
both been well-studied [2, 3, 4, 5, 6, 10]. In recent years,
there has been significant interest in developing clustering
algorithms that can be applied to the massive data sets that
arise in problem domains such as bioinformatics and infor-
mation retrieval on the World Wide Web. Such data sets
pose an interesting challenge in that clustering algorithms
must be robust as well as fast. In this paper, we study the
k-median problenand obtain an algorithm that is time op-
timal for most values of and with high probability pro-
duces a solution whose cost is within a constant factor of
optimal.

A natural technique to cope with a large set of unlabeled
data is to take a random sample of the input in the hopes
of capturing the essence of the input and subsituting the
sample for the original input. Ideally we hope that the sam-
ple size required to capture the relevant information in the
input is significantly less than the original input size. How-
ever, in many situations naive sampling does not always
yield the desired reduction in data. For example, for the
problem of learning Gaussians, this limitation manifests it-
self in the common assumption that the mixing weights are
large enough so that a random sample of the data will cap-
ture a nonnegligible amount of the mass in a given Gaus-
sian. Without this assumption, the approximation guaran-
tees of recent algorithms for learning Gaussians [2, 5] no
longer hold.

A major contribution of our work is a simple yet powerful
sampling technique that we calliccessive samplingNe
show that our sampling technique is an effective data re-
duction technique for the purpose of clustering in the sense
it captures the essence of the input with a very small sub-
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technique that allows us to develop an algorithm for the



k-median problem that has a running time @tnk) for  with cost within a constant factor of optimal.
k betweenlog n andn/ log® n and, with high probability,
produces a solution with cost within a constant factor of
optimal.

Given a set of points and associated interpoint distances;ven before the hardness results mentioned above were es-
let themedianof the set be the point in the set that mini- tablished, heuristic approaches to clustering such as the
mizes the weighted sum of distances to all other points ik-means heuristic were well-studied (see, e.g., [6, 12]).
the set. (Remark: The median is essentially the discretdhe k-means heuristic is commonly used in practice due
analog of the centroid, and is also called thedoid[12].)  to ease of implementation, speed, and good empirical per-
We study a well-known clustering problem where the goalformance. Indeed, one iteration of theneans heuristic re-

is to partitionn weighted points intd: sets such that the quires justO(nk) time [6]; typical implementations of the
sum, over all points;, of the weight ofz multiplied by the ~ k-means heuristic make use of a small to moderate number
distance fromz to the median of set containingis min-  of iterations.

imized_. This clustering prob_lem is a variant of the CIaSSiCHowever, it is easy to construct inputs with just a constant
k-median problem; thé-median problem asks us to mark number of points that, for certain initializations/eimeans,

k of the points such that the sum over all pointsf the ;o4 solutions whose cost is not within any constant factor
weight ofz times the distance fromto the nearest marked ¢ 1o optimal cost. For example, suppose we haueit-

ppint is r.nini.mized. It' is straightforward to see that the OP-weight points inR? where three points are colored blue
timal objective function values for the-median problem 5"y are colored red. Let the blue points have coordi-

and its clustering variant are equal, and furthermore thaﬁates(o 1),(0,0), and(0, —1), and let the red points have
we can convert a solution to tiemedian problem into an coordin’ate’s(;D’O) and7(D (’)) Fork — 3, the optimal

equal-cost solution to its clustering varianti{nk) time.

1.1 Comparison tok-means

blish a| bound 6f : q solution has cost, whereas thé&-means heuristic, when
We establish a lower bound 6f(rk) time on any random- initialized with the blue points, converges to a solution with

ized cqnstant-factor a_pproximat_ion alg_orithm for either thecostQD (the blue points). Sinc® can be arbitrarily large,
k-median problem or its clustering variant. Therefore, any, s case thé-means heuristic does not produce a solu-
constant?factlo r approximation algorithm .for thenedlan tion within any constant factor of optimal. Indeed, a variety
problem implies a constant-factor approximation algorithmag p e, istics for initializingk-means have been previously
with the same asymptotic time complexity for the CluSter'proposed, but no such initialization procedure is known to

ing variant. For this reason, we focus only ontheedian  oq;re convergence to a constant-factor approximate solu-
problem in developing our upper bounds. tion

It is interesting to note that algorithms for tlkemedian
problem can be used for a certain model-based cluste

ing problem as well. The recgnt vyork of Arora and Kan- means heuristic is able to compute a solution of substan-
nan [2] formulates an approximation version of the prob-gay . jo\wer cost than would otherwise be possible. The
lem of learning arbitrary Gaussians. Given points from &y, ction in the cost is at most a factor of two since given a

Gaussian mixture, they study the problem of identifying &:-means solution with cost, it is straightforward to iden-
set of Gaussians whose log-likelihood is within a constan}ify a set ofk input points with cost at mosC.

factor of the log-likelihood of the original mixture. Their
solution to this learning problem is to reduce it to the ~ Thek-means heuristic typically uses an objective function
median problem and apply an existing constant-factor apthat sums squared distances rather than distances. The
proximation algorithm for:-median. Thus, our techniques reader may wonder whether this variation leads to a sub-
may also have applicability in model-based clustering. ~ stantially different optimization problem. It is straightfor-

. ) ) , i ward to show that squaring the distances of a metric space
In this paper, we restrict our attgntlon tq ntmetncyersmn yields a distance function that is “near-metric” in the sense
of the k-median problem, in which the input points are 4, )| of the properties of a metric space are satisfied ex-

assumed to be drawn from a metric space. That is, the ifgg ¢ that the triangle inequality only holds to within a con-
terpoint distances are nonnegative, symmetric, satisty thgg,nt tactor ¢, in this case). It is not difficult to show that

triangle inequality, and the distance between poinend all of our upper bounds hold, up to constant factors, for

y 1S z€ro “'f and pnly ifz = Y. For the“sake. of brey|ty, such near-metric spaces. Thus, if our algorithm is used as
we erte" k-median problem .to mean metnk-mecﬁan the initialization procedure fak-means, the cost of the re-
problem” throughout the remainder of the paper. Itis well-g inq solution is guaranteed to be within a constant factor
known that theéi-median problem islP-hard; furthermore, ¢ ima) - our algorithm is particularly well-suited for
itis known to beNP-hard to achieve an approximation ra- yhis 1 rnose because its running time, being comparable to

X 1 X
tio b?tte.r thanl + £ [7]. IThu_sr,] wer:‘ocus our attentloln ON that of a single iteration of-means, does not dominate the
developing a-median algorithm that produces a solution overall running time.

The reader may wonder whether, by not restricting the
Gutput points to be drawn from the input points, thek-



1.2 Our Results bounds assume only th&t, = O(1). Due to space con-
straints, we have omitted the details of this result here; the
Before stating our results we introduce some useful termicomplete proofs can be found in the full version of this
nology that we use throughout this paper. Uedenote the  writeup [14].
set of all points in a given instance of tkemedian prob-
lem; we assume thdf is nonempty. Aconfigurationis a
nonempty subset df. An m-configuration is a configu-
ration of size at mostu. For any pointsc andy in U, let
w(z) denote the nonnegative weightafletd(z, y) denote

the distance betweenandy, and letd(z, X ) be defined @€ “close” to the sample, and recurse on the remaining
asminycx d(z,y). Thecostof any configuration, de- points. We show that this technique rapidly produces a

notedcost (X), is defined a8~ _,, d(x, X)-w (). We de- configurati.o.n whose cost is within a constanF factor of opti-
note the minimum cost of any.-configuration byOPT,,.. mal. _SpeC|f|caI.Iy, for the_ case .of uniform weights, our suc-
For brevity, we say that am-configuration with cost at C€SSivé sampling algorithm yields(&log (n/k), O(1))-
mosta - OPT), is an(m, a)-configuration. A k-median c_onflguratlon with high probability i® (n max{k, logn})
algorithm is(m, a)-approximateif it produces an(m, a)- time.

configuration. Ak-median algorithm is:-approximateif  |n addition to this sampling result, our algorithms rely
it is (k, a)-approximate. In light of the practical impor- on an extraction technique due to Gubgal. [8] that
tance of clustering in the application areas mentioned prepses a black bog)(1)-approximate:-median algorithm to
viously, we also consider the the given interpoint distancegompute a(k, O(1))-configuration from anym, O(1))-

and point weights in our analysis. L&; denote the ratio assignment. The black box algorithm that we use is the
of the diameter ot (i.e., the maximum distance between |inear-time deterministic online median algorithm of Mettu
any pair of points inJ) to the minimum distance between and Plaxton [15].

any pair of distinct points i/. Let R,, denote the ratio
of the maximum weight of any point it to the minimum
nonzero weight of any point itV. (Remark: We can as-
sume without loss of generality that at least one poirf in
has nonzero weight since the problem is trivial otherwise.
Letrqg =1+ [log Ry| andr,, =1+ |log Ry, |.

The key building block underlying our-median algorithm
is a novel sampling technique that we call “successive sam-
pling”. The basic idea is to take a random sample of the
points, set aside a constant fraction of theoints that

In developing our randomized algorithm for themedian
problem we first consider the special case of uniform
weights, that is, whereR,, = r, = 1. For this
)special case we provide a randomized algorithm run-
ning in O(nmax{k,logn}) time subject to the constraint

. . . _ rqlog ¥ = O(n). The uniform-weights algorithm is
Our ‘main re;ult Is a rand'om|ze@(1)—apprOXImatek- based directly on the two building blocks discussed above:
median algorithm that runs in We apply the successive sampling algorithm to obtain

(klog (n/k), O(1))-configuration and then use the ex-

10) ({n+rdrw log (")} max{k,logn} + (krw)2> (1) traction technique to obtain &, O(1))-configuration.

krw We then use this algorithm to developkamedian algo-
) ) rithm for the case of arbitrary weights. Our algorithm
time. Note that ifk = Q(logn), kri, = O(n), and  pegins by partitioning the: points into r,, power-of2
rqrelog(g=) = O(n), this time bound simplifies to yeight classes and applying the uniform-weights algo-
O(nk). Furthermore, these constraints simplify if we make jthm within each weight class (i.e., we ignore the differ-
the standard assumption that the interpoint distances anghces petween weights belonging to the same weight class,
point weights are polynomially bounded. Then, we only\which are less than a factor @f apart). The union of
needk = Q(logn) andk = O(gt;) to obtain a time  the - k-configurations thus obtained is &n,k, O(1))-
bound ofO(nk). Our algorithm succeedsith high prob-  configuration. We then make use of our extraction tech-
ability, that is, for any positive constagt we can adjust nique to obtain gk, O(1))-configuration from thigr,,k,
constant factors in the definition of the algorithm to achieve((1))-configuration.
a failure probability less than—¢.

We also establish a matchirig(nk) lower bound on the 1.3 Problem Definitions

running time of any randomized(1)-approximatek-

median algorithm with a nonnegligible success probabilityWithout loss of generality, throughout this paper we con-
(e.g., at Ieas%), subject to the requirement th&y; ex-  sider a fixed set of points,U, with an associated distance
ceedsu/k by a sufficiently large constant factor relative to functiond : U x U — IR and an associated nonnegative
the desired approximation ratio. To obtain tight bounds fordemand functionv : U — IR. We assume thad is a
the clustering variant, we also prove @ink) time lower  metric, that is,d is nonnegative, symmetric, satisfies the
bound for anyO(1)-approximate algorithm, but we only triangle inequality, and(x,y) = 0 iff z = y. For a con-
require thatR,; be a sufficiently large constant relative to figuration X and a set of point¥”, we letcost (X,Y) =

the desired approximation ratio. Additionally, our lower ) __, d(z, X) - w(z) and we letcost (X) = cost (X,U).



For any set of points(, we letw(X) denote) .  w(x). median algorithm, Thorup gives a sampling technique that
also consists of a series of sampling steps but produces an
(O((klog®n)/e), 2+¢)-configuration for any positive real

e with 0 < € < 0.4, but is only guaranteed to succeed with
probability 1/2.

We define arassignmentas a function fronJ to U. For
any assignment, we letm(U) denote the sefr(x) | z €
U}. We refer to an assignmentwith |7(U)| < m as am-
assignment Given an assignment, we define the cost of
7, denotedc (1), as) . d(x, 7(x)) - w(x). Itis straigh-  For the data stream model of computation, Gehal. [8]
forward to see that for any assignmentcost (7(U)) < give a single-pas®)(1)-approximate algorithm for thé-
c(7). For brevity, we say that an assignmentwith median problem that runs i®(nk) time and requires

|7(U)| < m and cost at most. - OPT, is an(m, a)-  O(n) space for a positive constantThey also establish a
assignment For an assignment and a set of pointsy, lower bound of2(nk) for deterministicO(1)-approximate
we lete (7, X) =3 oy d(z,7(2)) - w(z). k-median algorithms.

The input to thek-median problem igU, d, w) and an in-  Mishraet al. [16] show that in order to find &, O(1))-
tegerk, 0 < k < m. Since our goal is to obtain &, configuration, it is enough to take a sufficiently large sam-
O(1))-configuration, we can assume without loss of gen-ple of the input points and use it as input to a black-box
erality that all input points have nonzero weight. We noteO(1)-approximatek-median algorithm. To compute (&,
that for allm, 0 < m < n, removing zero weight points O(1))-configuration with an arbitrarily high constant prob-
from anm-configuration at most doubles its cost. To seeability, the required sample size &(Rflk). In the gen-
this, consider amn-configurationX'; we can obtain am- eral case, the size of the sample may be as large bat
configurationX’ by replacing each zero weight point with depending on the diameter of the input metric space, this
its closest nonzero weight point. Using the triangle inequaltechnique can yield running times ofn?) (e.qg., if the di-

ity, it is straightforward to see thabst (X') < 2cost (X).  ameter iso(n?/k)).

This argument can be used to show that any minimum-cost

set of sizem contained in the set of nonzero weight input

points has cost at most twi@@PT,,,. We also assume that 2 Approximate Clustering via Successive

the input weights are scaled such that the smallest weight Sampling

is 1; thus the input weights lie in the rangg R,,]. For

0”_‘9‘“’ thek-med|an_ prob_lem requires us to F:ompute AQur first result is a successive sampling algorithm that con-
m|n|mum-costk-gonflgurathn. Th@nlform W§|ght§ k= structs an assignment that has cOftOPT},) with high
median problem is the special case in whietr) is afixed o o1anility. We make use of this algorithm to develop our
real for all pointsz. The output is also a minimum-cost | iform weightsk-median algorithm. (Remark: We as-
configuration. sume arbitrary weights for our proofs since the arguments
generalize easily to the weighted case; furthermore, the
1.4 Previous Work weighted result may be of independent interest.) Infor-
mally speaking, the algorithm works in sampling steps. In
The firstO(1)-approximate:-median algorithm was given each step we take a small sample of the points, set aside a
by Charikaret al. [4]. Subsequently, there have been sev-constant fraction the weight whose constituent points are
eral improvements to the approximation ratio (see, e.g., [3fach close to the sample, and recurse on the remaining
for results and citations). In this section, we focus onpoints. Since we eliminate a constant fraction of the weight
the results that are most relevant to the present paper; wat each sampling step, the number of samples taken is log-
compare our results with other recent randomized algoarithmic in the total weight. We are able to show that us-
rithms for thek-median problem. The first of these results ing the samples taken, it is possible to construct an assign-
is due to Indyk, who gives a randomize@(k), O(1))- ment whose cost is within a constant factor of optimal with
approximate algorithm for the uniform weightsmedian  high probability. For the uniform weights-median prob-
problem [9] that runs irD (nk/52) time, wheres is the de-  lem, our sampling algorithm runs i@ (n max{k, logn})
sired failure probability. time. (We give ak-median algorithm for the case of arbi-

Thorup [18] gives randomized(1)-approximate algo- trary weights in Section 5.)

rithms for the k-median, k-center, and facility location Throughout the remainder of this paper, we use the sym-
problems in a graph. For these problems, we are not givehols o, 3, andk’ to denote real numbers appearing in the
a metric distance function but rather a graph on the inputlefinition and analysis of our successive sampling algo-
points withm positively weighted edges from which the rithm. The value ofo and &’ should be chosen to ensure
distances must be computed; all of the algorithms in [18]that the failure probability of the algorithm meets the de-
runin O(m) time. Thorup [18] also gives a@(nk) time  sired threshold. (See the paragraph preceding Lemma 3.3
randomized constant-factor approximation algorithm forfor discussion of the choice ef and%’.) The asymptotic

the k-median problem that we consider. As part of this  bounds established in this paper are valid for any choice of



B suchthat < 5 < 1.

We also make use of the following definitions:

e A ball Ais a pair(x,r), where thecenterz of A be-
longs toU, and theradius r of A is a nonnegative
real.

e Given aballA = (z,r), we let Points(A) denote the
set{y € U | d(z,y) < r}. However, for the sake
of brevity, we tend to writed instead ofPoints(A).
For example, we write# € A" and “A U B” instead
of “x € Points(A)” and “Points(A) U Points(B)",
respectively.

e For any setX and nonnegative real, we define
Balls(X,r) as the set),c x A, whereA, = (z, 7).

2.1 Algorithm

the third and fourth steps are negligible. Thus, for the uni-
form demand#-median problem, the total running time of
the above algorithm i€ (nk’).

3 Analysis of the Successive Sampling
Algorithm

The goal of this section is to establish that, with high prob-
ability, the outputs of our successive sampling algorithm
has cosO(OPT},). We formalize this statement in Theo-
rem 1 below; this result is used to analyze the algorithms
of Sections 4 and 5. The proof of the theorem makes use
of Lemma 3.3, established in Section 3.1, and Lemmas 3.5
and 3.11, established in Section 3.2.

Theorem 1 With high probability,c (¢) = O(cost (X))
for any k-configurationX .

Proof: The claim of Lemma 3.3 holds with high probabil-

The following algorithm takes as input an instance of theity if we setk’ = max{k,logn} anda and3 appropriately

k-median problem and produces an assignmesch that
with high probability, ¢ (¢) = O(cost (X)) for any k-
configurationX .

LetUp = U, and letSy = (0. While |U;| > ak’:

e Construct a set of points; by sampling (with replace-
ment) |k’ | times fromU;, where at each sampling
step the probability of selecting a given point is pro-
portional to its weight.

e For each point ii/;, compute the distance to the near-
est point inS;.

e Using linear-time selection on the distances compute
in the previous step, compute the smallest real
such thatw(Balls(S;,v;)) > pw(U;). LetC; =
BCL”S(SZ‘,Z/Z‘).

e For eachx in C;, choose a poiny in S; such that
d(z,y) <wv;andleto(z) = y.

o Let Ui+1 =U; \ Ci.

Note that the loop terminates sinegU, 1) < w(U;) for
alli > 0. Lett be the total number of iterations of the loop.
Let C; = S; = U;. By the choice ofC; in each iteration
and the loop termination conditionis O(log (w(U)/k’)).
For the uniform demands-median problemt is simply
O(log (n/k")). From the first step it follows that(U)| is
O(tk").

The first step of the algorithm can be performediMmk’)

large. The theorem then follows from Lemmas 3.3, 3.5,
and 3.11. ]

Before proceeding, we give some intuition behind the proof
of Theorem 1. The proof consists of two main parts. First,
Lemma 3.3 shows that with high probability, fosuch that

0 < i < t, the valuey; computed by the algorithm in
each iteration is at most twice a certain numper We
definey; to be the minimum real for which there exists a
k-configurationX contained inU; with the property that

a certain constant fraction, s%; of the weight ofU; is
within distanceu; from the points ofX. We note thafu;

&an be used in establishing a lower bound on the cost of

an optimalk-configuration forU;. By the definition ofu;,

for any k-configurationY’, a constant fraction, say, of

the weight ofU; has distance at leagt from the points in

Y. To prove Lemma 3.3, we consider an associated balls-
in-bins problem. For each 1 < ¢ < t, we consider a
k-configurationX that satisfies the definition ¢f; and for
each point inX, view the points inl/; within distanceu;

as a weighted bin. Then, we view the random samples in
the first step of the sampling algorithm as ball tosses into
these weighted bins. We show that with(k) such ball
tosses, a high constant fraction of the total weight of the
bins is covered with high probability. Since the valuepof

is determined by the random samples, it is straightforward
to conclude that; is within twice ;.

It may seem that Theorem 1 follows immediately from
Lemma 3.3, since for eacghwe can approximate; within
a factor of2 with v;, and any optimak-configuration can

time over all iterations. In each iteration the second ande charged a distance of at leastfor a constant fraction

third steps can be performed in tin@(|U;| k') by us-

of the weight inU;. However, this argument is not valid

ing a (weighted) linear time selection algorithm. For thesince forj > 4, U; is contained inlU;; thus an optimal

uniform demandg-median problem, this computation re-
quiresO(nk’) time over all iterations. The running times of

k-configuration could be charged and; for the same
point. For the second part of the proof of Theorem 1 we



provide a more careful accounting of the cost of an opti-real A such that for all positive integers: and any real
mal k-configuration. Specifically, in Section 3.2, we ex- b > m, we havey(m, e, \b,v) < e~° for all m-vectorsv
hibit ¢ mutually disjoint sets with which we are able to es- of nonnegative reals.

tablish a valid lower bound on the cost of an optinkal
configuration. That is, for each 1 < ¢ < ¢, we exhibit a
subset ofU; that has a constant fraction of the total weight
of U; and for which an optimak-configuration must be
charged a distance of at legstf. Lemma 3.11 formal-
izes this statement and proves a lower bound on the cose will use Lemma 3.1 to deduce the existence of a suit-
of an optimalk-configuration, and Lemma 3.5 completes able choice of\ that depends only on. Our strategy for
the proof of Theorem 1 by providing an upper bound onreducing the claim to its unweighted counterpart will be

Proof: Fix €, b, m, andv. As in the paragraph preceding
the lemma statement in Section 2, et (rg,...,r;) and
let R denote the sum of the's.

the cost ofs. to partition almost all of the weight associated with the
m weighted bins into®(m) “sub-bins” of equal weight.
3.1 Balls and Bins Analysis Specifically, we lets denote;% and for each we parti-

tion the weightr; associated with bininto | % | complete
The proof of Lemma 3.3 below relies on bounding the fail- sub-bins of weight and ondncompletesub-bin of weight
ure probability of a certain family of random experiments. less thars. Furthermore, when a ball is thrown into a par-
We begin by bounding the failure probability of a simpler ticular bin, we imagine that the throw is further refined to
family of random experiments related to the well-known a particular sub-bin of that bin, where the probability that a
coupon collector problem. For any positive integeiand  particular sub-bin is chosen is proportional to its weight.
any nonnegative reaisandb, let us definef (m, a, b) as the
probability that more thanm bins remain empty aftelb |
balls are thrown at random (uniformly and independently) / . .
into m bins. Techniques for analyzing the coupon coIIectorgener"’lIIty that < 1, since the claim holds vacuously for

problem (see. e.g., [17]) can be used to obtain sharp estj- > 1. It follows that Ies_s than half of the total weight
mates onf(m, a, b). However, the following simple upper ies in incomplete sub-bins. Thus, by a standard Chernoff
bound is suffi’ciént for our pu;poses bound argument, for any positive redlwe can choose

sufficiently large to ensure that the following claim holds

Lemma 3.1 For any positive reat, there exists a positive With probability of failure at most~*/2 (i.e., half the de-

real \ such that for all positive integers: and any real  Sired failure threshold appearing in the statement of the

b > m, we havef (m, e, \b) < e~". lemma): Atleast\'s of the [A\b] balls are thrown into com-
plete sub-bins.

Note that the total weight of the incomplete sub-bins is less
thansR/2. Furthermore, we can assume without loss of

Proof: Note that a crude upper bound gim, £, Ab) is

Let m’ denote the number of complete sub-bins. Since at
given by the probability of obtaining at magt — £)m suc- " " P i !

i L ) least half of the total weighR belongs to complete sub-
cesses ifAb] Bernoulli trials, each of which has success ;"\ haven/s < m/ g< 2m /e gAccordingly by a

Eirgr?t?ybligtr)ége' ;Zea%zilgi]rfgznsg&%gf dbéﬁgﬁ]%i;?oifg' (quuitable application of Lemma 3.1, we can establish the ex-
' ist f iti af (d di I h that,
have in mind the following tail bound: I is a random stence of a positive reaf (depending only o) such tha

variable drawn from a Bernoulli distribution with trials after at leasi’b balls have landed in complete sub-bins, the
robability that the number of empty complete sub-bins ex-
and each trial has success probabititghen for all§ such P y Py P

; ceedsm’/2 is at moste =" /2.
that0 < 6 < 1, Pr{X < (1 —d&)np} < e~9 /2 see [1,
Appendix A] for a derivation.) m From the claims of the two preceding paragraphs, we can
conclude that there exists)a(depending only om) such
that the following statement holds with probability of fail-
%re at most—?: The number of empty complete sub-bins
is at mostm’ /2. Note that the total weight of the complete
sub-bins is at most - § - % = eR/2. As argued earlier,
the total weight of the incomplete sub-bins is also at most
eR/2. Thus, there exists a positive realsuch that after
[Ab] ball tosses, the probability that the total weight of the
empty bins is more thanR is at moste—°. ]

We now develop a weighted generalization of the precedin
lemma. For any positive integer, nonnegative realsand

b, andm-vectorv = (rg,...,Tn—1) Of NONnegative reals
r;, we define defing(m,a,b,v) as follows. Consider a
set of m bins numbered frond to m — 1 where bin; has
associated weight;. Let R denote the total weight of the
bins. Assume that each ] balls is thrown independently
at random into one of thex bins, where biri is chosen with
probabilityr; /R, 0 < i < m. We defineg(m,a,b,v) as
the probability that the total weight of the empty bins after For the remainder of this section, we fix a positive real

all of the balls have been thrown is more thaR. such tha? < v < 1. For0 < i < t, let y; denote a non-
negative real such that there exists-aonfigurationX for

Lemma 3.2 For any positive reak there exists a positive which the following properties hold: (1) the total weight



of all pointsz in U; such thatd(z, X) < pu; is at least
~w(U;); (2) the total weight of all points in U; such that
d(z,X) > u; is at least(1 — y)w(U;). (Note that such

icated to establishing the lower bound on the cost of an
optimal k-configuration.

a u; is guaranteed to exist.) Lemma 3.3 below establisheéemma 3.4 For all i such that0 < i < ¢, ¢(0,C;) <
the main probabilistic claim used in our analysis of the al-v;w(C;).

gorithm of Section 2.1. We note that the lemma holds with

high probability by takingk’ = max{k, [logn]} and «
andg appropriately large.

Lemma 3.3 For any positive real, there exists a suffi-
ciently large choice ofx such thaty; < 2u; for all i,
0 < i < t, with probability of failure at most—¢*".

Proof: Fix i and letX denote &-configuration such that
w(Balls(X, p;)) > yw(U;). Let us define each pointin
U, to begoodif it belongs to Balls(X, p;), andbad oth-

erwise. LetG denote the set of good points. We associate

each good poing with its closest point inX, breaking ties
arbitrarily. For each point in X, let A,, denote the set of
good points associated with note that the setd, form a
partition of G. Recall thatS; denotes théth set of sample
points chosen by the algorithm. For amyin X, we say
thatS; coversA, iff S; N A, is nonempty. For any poinf,
we say thatS; coversy iff there exists anc in X such that
y belongs ta4,, andS; coversA,. Let G’ denote the set of
points covered bys;; note thatG’ C G.

We will establish the lemma by proving the following

claim: For any positive reals and¢, there exists a suffi-
ciently large choice ofr such thatw(G’) > (1 — e)w(G)
with probability of failure at most—¢¥". This claim then
implies the lemma because(the factor appearing in the
definition of ;) is less thamy (the factor appearing in
the definition ofu,;) and for all pointsy covered bysS;,
d(y, Si) < 2u;.

Proof: Observe that
c(o,C;) = Y dx,o(x)) w(z)
zeC;
< Zl/lw(x)
zeC;
= yiw(C’i),

where the second step follows from the definitiorpfand
the construction of (). ]

Lemma 3.5

c(o) <

Z viw(Cy)
0<i<t

Proof: Observe thatc(oc) = > ., c¢(0,C) <
Y o<ics Viw(C;). The first step follows since the sefs,
0 < i < t, form a partition ofU. The second step follows
from Lemma 3.4. [

We now focus on establishing a lower bound on the cost
of an optimalk-configuration. Throughout the remainder
of this section we fix an arbitrarg-configurationX. For

all ¢ such thatd < i < t, we letF; denote the sefx €

U; | d(xz, X) > p;}, and for any integem > 0, we letF™
denoteF; \ (U;>0Fi+;m) and we letG; ,, denote the set

It remains to prove the preceding claim. First, note that the?f all integersj such that) < j < ¢ andj is congruent ta

definition of u; implies that at least a fraction of the total

modulom.

weight is associated with good points. Thus, a standard o .

Chemoff bound argument implies that for any positive reals-€MmMa 3.6 Leti, j, £, andsm be integers such that <
X and¢, there exists a sufficiently large choice @fsuch  * 5 ¢ m = 0,4 # j, andi andj belong oGy m. Then
that at least\k’ of the |ak’| samples associated with the FrnEr =0,

construction ofS; are good with probability of failure at

moste—fk’/z Proof: Without loss of generality, assume that< j.

Then, by definition,F" = F; \ (Us>0Fitsm). Since
F C Fjandj = i+ sm for some positive integes,
it follows that ;" and ;" do not intersect. u

To ensure thatv(G’) is at least(1 — )w(G) with failure
probability e~¢*' /2, we can apply Lemma 3.2 by viewing
each sample associated with a good pointjras a ball
toss and each set, as a bin with weightv(A,). The

claim then follows. m Lemma3.7 Leti be an integer such that < ¢ < ¢t and

letY be a subset of;. Thenw(F;) > (1 —v)w(U;) and
cost (X,Y) > pw(Y).
3.2 Upper and Lower Bounds on Cost ) o )
Proof:  First, note that by the definition qf;, w(F;) is at
In this section we provide an upper bound on the cost ofeast(1 — v)w(U;). By the definition ofF;, d(y, X) >
the assignment as well a lower bound on the cost of an y; for anyy in F;. Thuscost (X,Y) = - .y d(y, X) -
optimal k-configuration. Lemmas 3.4 and 3.5 establish thew(y) > p,w(Y). m
upper bound or: (¢), while the rest of the section is ded-



Lemma 3.8 For all integers? andm such thatd < ¢ < ¢
andm > 0,

cost(X,Uicq, , Fi") = Y piw(F]").
1€GL,m
Proof: ByLemma 3.6, forall andm suchthad < ¢ <t
andm > 0,

cost(X, Uieg,,.. Fi")

Z cost (X, Fj™).

1€Gy,m

By Lemma 3.7 cost (X, F™) > p,w(F™), and the claim

follows. ]
For the remainder of the section, let =
ﬂog(kﬁ) (1 —=7)/3)].

Lemma 3.9 For all i such thatd < i < ¢, w(Fy,) <

Proof: Note that w(f,) < w(Ui,) < (1 —
B)w(U;) < %w(ﬂ), where the last step follows

from Lemma 3.7. The claim then follows by the definition

of r. n
Lemma 3.10 For all ¢ such thatd < i < ¢, w(F}) >
w(F;)
U 5 .
Proof: Observe that
w(F) = w(F;\Uj>oFitjr)
w(F;)
> w(Fi)_Z 5
§>0
S w(Fi)7
- 2
where the second step follows from Lemma 3.9. ]

Lemma 3.11 For anyk-configurationX,

cost(X) >

Proof: Letl = arg max.,.,.{> ;cq, w(F])} and fix
ak-configurationX. Thencost (X) is at least

cost(X, Uicq, , Fy) = Y paw(F))
1€Gy,r
> 1S pw(E)
" o<i<t
> L piw(F;)
- 2r

1—
> 1 Y )
0<i<t
1—
> 27,’y Z le(cl)7
0<i<t

where the first step follows from Lemma 3.8, the second
step follows from averaging and the choicefothe third
step follows from Lemma 3.10, the fourth step follows
from Lemma 3.7, and the last step follows sin¢eC U.

]

4 An Efficient Algorithm for the Case of
Uniform Weights

In this section we use the sampling algorithm of Section 2,
a black-boxk-median algorithm and algorithm Modified-
Small-Space of Appendix B to obtain a fdstmedian al-
gorithm for the case of uniform weights. We note that
algorithm Modified-Small-Space and the accompanying
analysis is a slight generalization of results obtained by
Guhaet al. [8]. Informally speaking, algorithm Modified-
Small-Space works in two phases. First, we use@n (
O(1))-approximatek-median algorithm on the input to
computel (a, O(1))-configurations. Then, we construct
a newk-median problem instance from thege O(1))-
configurations and use a»(1)-approximatet-median al-
gorithm to compute &-configuration. We are able to
show that thisk-configuration is actually gk, O(1))-
configuration.

We obtain our uniform weight&-median algorithm by
applying our sampling algorithm in Step 2 of algorithm
Modified-Small-Space and the deterministic online median
algorithm of Mettu and Plaxton [15] in Step 4. We set the
parameter’ of algorithm Modified-Small-Space tb and
parametef’ of our sampling algorithm tenax{k, logn}.

By Theorem 1, the output of our sampling algorithm is
an (m, O(1))-assignment with high probability, where
m O(max{k,logn}log(n/k)). The online median
algorithm of Mettu and Plaxton [15] is also afi(1)-
approximatek-median algorithm. Thus, by Theorem 4,
the resultingc-median algorithm i®(1)-approximate with
high probability.

We now analyze the running time of the above algorithm on
inputs with uniform weights. The time required to compute
the output assignment in Step 2 isO(n max{k,logn}).

We note that the weight function required in Step 3 of
Modified-Small-Space can be computed during the execu-
tion of the sampling algorithm without increasing its run-
ning time. The deterministic online median algorithm of
Mettu and Plaxton [15] require®(|o(U)|* + |o(U)| rq)
time. The total time taken by the algorithm is therefore

O(nk' +|o(U)[* + |o(U)]ra)



= O(nk' + k?log? (n/k) + rqk' log (n/k)) as the set of input pointg} as the distance function,
= O(nk' + rqk'log (n/k)), andwy as the weight function. Output the resulting
k-configuration.
where the first step follows from the analysis of our sam-
pling algorithm for the case of uniform weights.
the choice of%’, the overall running time iD((n +
rqlog (n/k)) max{k,logn}). Note that ifk = Q(logn)
andrglog (n/k) = O(n), this time bound simplifies to
O(nk).

By Note that in the second step’ is defined in terms of:
(i.e.,|U|) and not|B;|. Thus, the argument of the proof of
Theorem 1 implies tha#l succeeds with high probability
in terms ofn. Assuming that-, is polynomially bounded
in n, with high probability we have that every invocation of
A is successful.

5 An Efficient Algorithm for the Case of

Arbitrary Weights We now observe that the above algorithm corresponds to

algorithm Modified-Small-Space with the parameterset
) ) ) to r,,, the uniform weights algorithm of Section 4 is used
The algorithm developed in Sections 2 and 4081)-  y step 2 of Small-Space, and the online median algorithm

approximate for thek-median problem with arbitrary st pmetty and Plaxton [15] is used in step 4 of Small-Space.
welghts. Howeyer, the time bound established for the Cas¢hys, Theorem 4 implies that the output®fs a(k, O(1))-
of unn‘or_m weights does not apply .to the case of arb,"conﬁguration with high probability.
trary weights because the running time of the successive
sampling procedure is slightly higher in the latter case We now discuss the running time of the above algorithm. It
(More precisely, the running time of the sampling algo- IS straightforward to compute the sé#sin O(n) time. Our
rithm of Section 2 iSO (nk’ log wéy)) for the case of arbi- uniform weightsk-median algorithm require®((|B;| +
trary weights.) In this section, we use the uniform-weightra log 2:1k/) time to computeZ;, so the time required for
algorithm developed in Sections 2 and 4 to develop-a all invocations ofA is
median algorithm for the case of arbitrary weights that is
time optimal for a certain range df. We first give an
informal description of the algorithm, which consists of o ( > (1Bl +ralog (|Bil /k))k/)
three main steps. First, we partition the input points ac- 0<i<ry
cording to weight intor,, sets. Next, we run our uni- nk’ , n
form weightsk-median algorithm on each of the result- = 0 <7"w <7~ +rak’ log <k>))
ing sets, and show that the union of the resulting outputs v Y
is an(O(kry), O(1))-configuration. We then obtain (@, = 0 ((n + g1y log n) k’) .
O(1))-configuration by creating a problem instance from krw
the (O(kr,,), O(1))-configuration computed in the previ- ) . )
ous step and then feeding this problem instance as input tof he first step follows from the fact that the sum is maxi-
anO(1)-approximate:-median algorithm. mized when B;| = n/ry,.) Note thf':\t eaF:h weight function

. _ o _ wy, can be computed i0(|B;| k) time; it follows thatwg
We now give a precise description of ok#median algo-  can be computed i (nk) time. We employ the online
rithm. Let.A be the uniform weight#-median algorithm  median algorithm of [15] as the black-béxmedian algo-
of Sections 2 and 4, and Ié&t be anO(1)-approximaték-  rithm B. Since|p(U)| is at mostkr,,, the time required
median algorithm. for the invocation of3 is O((kry,)? + kryra). It follows

that the overall running time of the algorithm is as stated in
e Compute sets3; for 0 < ¢ < r, such that for all Equation (1).
x € By, 28 <w(w) < 201,

e Fori=0,1...r,—1: RunAwith B; asthe setofin- 6 Concluding Remarks
put points d as the distance functiop*! as the fixed
weight, and the parametéf = max{k, [logn]}; let
Z; denote the output. Lep; denote the assignment
induced byZ;, that is,¢;(z) = y iff y isin Z; and
d(z, Z;) = d(z,y). For a pointz, if x € Z;, let
wy, () = w(¢; (), otherwise letwy, (z) = 0.

In this paper, we have presented a constant-factor approx-

imation algorithm for thek-median problem that runs in

optimal ©(nk) time if logn < k < ﬁ. If we use our

algorithm as an initialization procedure férmeans, our

analysis guarantees that the cost of the outpui-ofeans

e Let ¢ be the assignment corresponding to the union ofis within a constant factor of optimal. Preliminary experi-
the assignments,; defined in the previous step, and mental work [13] suggests that this approach to clustering
letw, denote the weight function corresponding to theyields improved practical performance in terms of running
union of the weight functionsy,,. Run3 with ¢(U) time and solution quality.
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terms of R,,, we achieve this goal completely, since all of run thek-clustering algorithm to partition theinput points

the input distributions that we consider below have uniforminto at mostk clusters; (2) arbitrarily partition each even-
weights, thatisR,, = 1. For thek-clustering problem, our sized cluster into a number of pairs; (3) arbitrarily parti-
lower bounds are established wifty equal to a constant tion each odd-sized cluster into a singleton and a number
(sufficiently large relative to the desired approximation ra-of pairs; (4) return thé-matching formed by the single-
tio); this is clearly best possible up to a constant factor. Fotons and pairs computed in the previous two steps. Using
the k-median problem, our lower bound requitgg to ex-  the triangle inequality, it is straightforward to prove that
ceedn/k by a sufficiently large constant factor relative to the cost of thek-matching produced by this algorithm is
the desired approximation ratio. at most the cost of thé&-clustering computed in step (1)
rgi.e., the sum over all points of the weight ofr multiplied

by the distance fromx to the medoid of its cluster). Fur-
hhermore, thigc-matching algorithm uses exactly the same
number of probes as the associatedustering algorithm.
Below we will exhibit an input distribution with respect
%o which any deterministié-matching algorithm making

a sufficiently small number of probes has only a negligible
Probability of computing a&-matching with cost within a

In our proofs, we assume an oracle model of computatio
in which the algorithm is charged only for asking the ora-
cle the distance between a pair of points. We refer to eac
call to the oracle as probe By a generalization of Yao's

technique [19] due to Mackenzie [11], we can establish
lower bound ofp on the success probability of a random-
ized algorithm by exhibiting an input distribution for which

every determ|n|§t|c ia_lgonthm hgs a success probgblllty O onstant factor of the cost of the optimal clustering. By the
at mostp. (The intuition underlying this reduction is that : . :
foregoing reduction from thé&-matching problem to the

the success probability of a randomized algorithm is just 3. ; o2
S iy -clustering problem, such a result implies that any deter-
convex combination of the success probabilities of a num-

ber of deterministic algorithms.) Thus in what follows, we ”?'“'.S“C ]c-clusterlng glgonthm running on the same input
: . Lo o distribution and making the same small number of probes
restrict our attention to exhibiting “hard” distributions for

determinstic algorithms. All of the problems considered inhas only the same negligible probability of computing-a

this section take the same input as thenedian problem. clustering with cost within a constant factor of optimal.

Our lower bounds also hold for the non-uniform case sincdn order to state and prove our lower bounds it is conve-
for each choice of. and k£, we exhibit a probability dis- nient to introduce a shorthand notation for expressing cer-
tribution over the set ofi-point metric spaces on which no tain kinds of statements. In particular, for any statement
deterministic algorithm making a sufficiently small number S, we define an associated statement, which we refer to as
of probes can achieve more than a negligible probability othe P-claim S, as follows: For all positive reals andc,
success. there exist positive reals and~ and positive integers,

For any positive real > 1, it is convenient to define a met- anda such that for all positive integers and for which

ric space to bé-simpleif the following conditions hold: (1) fﬁbﬁ tiz(r]l ?)ng\}efth]é s<etrgff2i?rr1e Iz(zl?tiiﬁt ?;Z?ﬁf'!tyag;
all of the points have unit weight; (2) the points of the met- P P P

: - X . vlylheref = ~ such that any deterministic-matching al-
ric space can be partitioned into equivalence classes suc Lrithm 4 making at mosnk probes on an inout drawn
that the distance between any pair of distinct pointsifs g 9 P b

the points belong to the same equivalence class ani- uniformly at random fromD, the statemen$ holds with

erwise. Thus, any-simple metric space hag, — £ and probability at least — . (We remark that a giveR-claim
R — 1. Our lower bounds are all based f}lsi;i’nple input S need not contain the parameteWe also remark that if

o . the P-claimsS andT hold, then theP-claim .S AT holds.)
distributions for some appropriately chosen valué.of

We define aP’-claim in the same way asfa-claim except
that the restriction otk is strengthened ta < k < 3.
Similarly, aP”-claim is a variant of @-claim in which the

restriction onk is 5 < k < n. Note that for any statement

S, the P’-claim S and theP”-claim .S imply the P-claim

In order to establish a lower bound for theclustering
problem, we find it convenient to introduce a problem
that we call thek-matching problem The input to the
k-matching problem is the same as the input to ke
clustering problem. The output is a partition of thén-
put points into a collection of disjoint pairs and singletons,
subject to the constraint that there are at mosingletons.  Finally, for addressing the-median problem we defing-

We refer to such an output askamatching The costof , Q'-, and@”-claims in an analogous manner, where the
a k-matching is defined as the sum, over all output pairsalgorithm.A is assumed to be /&amedian algorithm rather
of points (z,y), of d(z,y) - min{w(x),w(y)}. The goal than ak-matching algorithm, andis defined to bey* in-

of the k-matching problem is to compute a minimum-cost stead ofy.

k-matching. The rest of this section is devoted to proving the following

Given an algorithm for thé-clustering problem, consider two theorems.

the associated-matching algorithm defined as follows: (1)
Theorem 2 The P-claim “the cost of thek-matching so-



lution computed by4 is more thanc times the cost of an Let us assume for the sake of simplicity thait a multiple
optimal k-clustering solution” holds. of 2a. (Remark: It is not difficult to modify our argument
to handle general.) For the sake of the analysis, it is use-
Theorem 3 The @-claim “the cost of thek-median solu-  ful to think of sampling from the input distributio® via
tion computed byA is more thanc times the cost of an the following three-stage process: (1) randomly partition
optimal k-median solution” holds. then points intog- supergroupf size2a; (2) randomly
partition each supergroup intopairs; (3) pick a random
The proof of the first theorem follows from Lemmas A.1 set ofk — % pairs and split them to obtaizk — n single-
and A.2 below. The proof of the second theorem followstons. In what follows we refer to these pairs and singletons
from Lemmas A.3 and A.4. asinput-pairsandinput-singletonsin order to avoid con-
fusion with the pairs and singletons computed by algorithm
Lemma A.1 TheP’-claim “the cost of thet-matching so- 4, which we refer to asutput-pairsandoutput-singletons
lution computed by4 is more thanc times the cost of an

optimal k-clustering solution” holds. We define a supergroup to laterestingif it contains at

least one input-pair. Note that there are at Iéa;ét inter-
esting supergroups. Let us define a supergroup tedé

Proof Sketch: Let D denote the distribution of-simple . ) . .
)|; contains at least one output-pair; otherwise, hlise

n-point metric spaces where each point is independentl
placed into one ok equivalence classes uniformly at ran- If there arei blue supergroups then at leasutput-pairs ei-
dom. Given an input instance drawn fram the cost of an  ther span distinct supergroups or contain at least one input-
optimal k-clustering solution is easily seen to he- k. singleton; it follows that the cost of thie-matching pro-
duced byA is at leasti/. If at least half (say) of the in-
teresting supergroups are blue, this argument is sufficient
to establish the lemma. Thus, in what follows, we may as-
sume that at least half of the interesting supergroups are
red

Let us define a point to becleanwith respect to an exe-
cution of algorithmA if the following two conditions are
satisfied: (1) there is no poigtsuch thatl(z, y) = 1 and.A
has probedi(z, y); (2) A has probed the distance between
x and at mostk other points.

Let us define a supergroup to bkeanwith respect to an
execution of algorithmA if .4 does not probe the distance
between any two points in the supergroup. It is not diffi-
cult to establish the followind®”’-claim: “At least al — ¢

It is not difficult to establish the following®’-claim: “At
least(1 — €)n points are clean”. Sincd is ak-matching
algorithm it outputs at least— k > n/2 pairs. This obser-

vation, together with the preceding -claim, implies the fracti £ the int " | " By thi
P’-claim “At leastn/3 of the pairs produced byl con- raction of the interesting supergroups are clean.” by this

sist of two clean points.” Note that each such output pair ofP"'Cla'm _and theﬂassgm‘p‘)tlon of the previous parggraph,

clean points independently contributes a cogttofthe cost we_establlsh the””-claim “at least on(?,—thlrd of the inter-

of the k-matching produced byl with probability at least esting supergroups are clean and red”.

1 — 5a—2 since a clean point is equally likely to belong Let G denote a clean interesting red supergroup and let

to any of the at least(1 —¢) equivalence classes (those for (x,y) denote an output-pair that belongso(such a pair

which A has not probed a distance between the given cleaaxists since5 is red). Ifz is an input-singleton then the

point and some point in the equivalence class). The claintost of pair(z,y) is ¢, and we can attribute this cost ¢a

of the lemma now follows by choosing constants appropri-Otherwise,x belongs to some input-pafr;, z), and algo-

ately (i.e., by setting, v, andn to appropriate functions rithm A pays/ for the pair(z,y) unlessy = z. But the

of ¢ andc) and applying a standard Chernoff bound argu-probability thaty = z is 2@%1 since@ is clean. Further-

ment. m  more, the event that = z is independent of the analogous
events defined for other clean interesting red supergroups.
Thus each clean interesting red supergroup independently

Lemma A.2 TheP”-claim “the cost of the:-matching so-  contributes, with probability at least— 52—, a cost of at

lution computed byA is more thanc times the cost of an  |east/ to the total cost of thé-matching produced by.

optimal k-clustering solution” holds. The claim of the lemma now follows by choosing constants
appropriately and applying a standard Chernoff bound ar-
Proof Sketch: The proof of the preceding lemma does not gument. -

readily extend to large values 6f so we employ a some-

what different approach. In this case we define the input

distribution D by randomly partitioning the: points into  Lemma A.3 The Q’-claim “the cost of thek-median so-
k clusters (i.e., equivalence classes);- k of which are lution computed by4 is more thanc times the cost of an
pairs, and2k — n of which are singletons. As in the proof optimalk-median solution” holds.

of Lemma A.1, the cost of an optimalclustering solution

isn — k. Proof Sketch: Let D denote the distribution of-simple



n-point metric spaces associated with the following par-crepancy is then itis straightforward to prove that the cost
titioning scheme: (1) independently place each of the of the k-median solution computed hy is at leastsé. If
points into one of k/2] tentative equivalence classesi- s is at least one-quarter of the number of interesting super-
formly at random; (2) randomly seleft /2] specialpoints  groups then this argument is sufficient to establish the claim
and move each of these special points into a singletownf the lemma. Thus in what follows we may assume that
equivalence class. Note that for any such instance, the cost less than one-quarter of the number of interesting super-
of an optimalk-median solution is — k. groups. Under this assumption, at least half of the interest-
ing supergroups are balanced (since at most one-quarter of

We define a point to becleanwith respect to an execution . .
them can have negative discrepancy).

of algorithm A if there is no pointy belonging to the same
tentative equivalence class asfor which A has probed It is not difficult to establish the following)”’-claim: “At
d(z,y). least al — ¢ fraction of the interesting supergroups are
clean.” Combining this with the conclusion of the preced-
ing paragraph we obtain thg’-claim “at least one-third of
the interesting supergroups are clean and balanced”.

It is not difficult to establish the following pair of)’-
claims: (1) at leastl — ¢)n points are clean; (2) at least
(1 —¢€) [k/2] of the special points are clean.

Let X denote the random variable corresponding to the sell’sat G denote a clean interesting balanced supergroup with

of clean points, and Iét” denote the remaining points. Let v input-pairs aq(jj input_—sihglgtor.\s. Thu_s the input-weight
Z denote the random variable corresponding to the set o?rf gu(tspl)rt:(t:é/vg Iigshitnct)gésstli:)] (;s:]nggce?rliobgi/a:)r;dcedg, i:;nda
special clean points. We now argue that the conditionar:Ost of £ for servicing an gf .the oints in su erprgafqg
distribution of Z given X and|Z| has a simple structure, ng any point: perg
. . . the subset of7 of sizei + j contained in the output oft
namely,Z is a uniformly random subset of of size|Z|. X . :
. : N .. has to include exactly one point out of each of theput-
This claim holds because the definition of a clean pointim-__" - : . .
plies that the behavior of algorithm is the same no mat- pairs, and all of thg input-singletons. Sincé is clean, the
. . . - probability that.4 produces such an output 2 divided
ter which sizetZ| subset ofX is equal toZ. Combining by (**). Given the constraints oiy namely,1 < i < a
this claim with the results of the preceding paragraph, itis . ‘¢/° = -~ " L=
. : A ; this probability is at most /a. Furthermore, the event that
straightforward to establish thg' -claim “A fails to output L
1 (say) of the clean special points.” A produces such an output is independent the analogous
1 38y P P ' events defined for other clean interesting balanced super-
Note that each special point that does not appear in the ougroups. Thus each clean interesting balanced supergroup
put of A contribute< to the cost of thé--median solution independently contributes, with probability at leagt:, a
computed byA. Thus we obtain th€)’-claim “the cost of  cost of at least to the total cost of thé-median solution
the solution computed byl is at leas{1—¢)k¢/8". Choos-  produced byA. The claim of the lemma now follows by
ing v sufficiently large (depending at), the claim of the choosing constants appropriately and applying a standard
lemma then follows sincé = yn/k. m  Chernoff bound argument. |

Lemma A.4 TheQ"”-claim “the cost of thek-median so- B Algorithm Modified-Small-Space
lution computed byl is more than: times optimal” holds.

Proof Sketch: This proof is similar to that of Lemma A.2 'I_'he mhain goal of th_|s section is to establish that a _mod|-
. . o fied version of algorithm Small-Space of Guéiaal. [8] is
above. We define the input distributiad in the same : . .
. ) O(1)-approximate. Our version of algorithm Small-Space,

manner, as well as the following terms: supergroup, . o .
clean supergroup, interesting supergroup, input-pair inquhICh we refer to as Modlfled—SmaII_—Space_, and its analy-

. ' | ' sis are used to establish the results in Sections 4 and 5. We
singleton. As before, note that at ledst® of the super- .

fouDS are interestin a note that the changes to the algorithm of Geftal. are
group 9 trivial; the discussion in this section is included for com-
We define theénput-weightof a supergroup as the number pleteness only.
of input-pairs and input-singletons that it contains. We ey . discuss the modification to algorithm Small-Space
fine theoutput-weighbf a supergroup as the size of its in- of Guhaet al. [8] and the changes required in the analy-
tersection with thé:-median solution computed by. We : 9 q y

i : o . sis. In Step 2 of algorithm Small-Space of Guédtal. [8],
define thediscrepancyof a supergroup as its input-weight ¢ O(k)-configurations are computed. Then, in Step 3,

minus its output-weight. Note that the sum of the discrep- . L ,
. . . . ) weight function is constructed based on these configu-
ancies of all supergroups is zero since the total input-weight_ . . o .
; rations. In algorithm Modified-Small-Space, we instead
and the total output-weight are both equalkto A super- ; : .
compute/ assignments in Step 2 and use them in Step

group isbalancedif it has discrepancy 0. 3 to construct a weight function. Theorem 2.4 of Guha
If the total discrepancy of the supergroups with positive dis-et al. [8] proves the approximation bound for algorithm



Small-Space. In order to prove the same approximation
bound for algorithm Modified-Small-Space, a slight gener-

alization of [8, Theorem 2.3] (which is used in the proof

of [8, Theorem 2.4]) is needed. The rest of their analysis,

including the proof of Theorem 2.4, remains unchanged.

> (dy, 7)) + d(y, X)) - w(y)

yeU
c(1) + cost (X)

cost(X)+ Y c(m),

0<i<t

This section is organized as follows. We first present algo- _
rithm Modified-Small-Space. We then restate Theorem 2.4vhere the third step follows from Lemma B.2 and the last

of Guhaet al. [8] for algorithm Modified-Small-Space as

step follows from the definition of. ]

Theorem 4 below and give the required generalization of

Theorem 2.3 of Guhat al. [8] with Lemma B.1 below.

Lemma B.2 Letr be an assignment, Iéf be a

We also make use of some additional definitions in this seceonfiguration such thak’ C 7(U), letz be a point in

tion. For any assignment, we definew, as follows: For
a pointz in 7(U), wr(z) = > -1,y w(y). Forany
assignmentr and set of pointsX, we letc,(X) denote
ZII;ET(U) d(z, X) - wr ().

Algorithm Modified-Small-Space(U)

1. Divide U into ¢ disjoint pieces{Jy, ..., Us_1.

2. For each, 0 < i < ¢, compute an assignment
; : U; — U;. LetT be an assignment that is defined
as follows: Ifz is in U;, thent(x) = 7;(x).

. LetU’ denoter(U) and letw, be the weight function
onU’.

. Compute &-configuration usind/’ as the set of
points,w, as the weight function, andlas the
distance function.

Theorem 4 (Guhaet al.[8]) If an (a, b)-approximate
k-median algorithm is used in Step 2 of algorithm
Modified-Small-Space, andaapproximatek-median
algorithm is used in Step 4 of algorithm
Modified-Small-Space, then algorithm
Modified-Small-Space iQc(1 + 2b) + 2b)-approximate.

Lemma B.1 Let the setd/;, 0 < i < ¢, be a partition of

U. Letr;, 0 <i < ¢, be assignments such thatU) C U;
andr; '(U) = U;. Letr be an assignment that is defined
as follows: forz in U;, thenr(x) = 7;(z). LetX be a
configuration such thak C 7(U). Then,

cr(X) < cost(X)+ > c(nm).

0<i<¥
Proof: Observe that
e (X) = Z d(z, X) - w,(x)
zeT(U)
= > d(x,X)( > w(y))
zeT(U) yer—1(z)

IN

oD (@l Tw) +dly, X)) - w(y)

reT(U)yer—*(z)

7(U), and lety be a point inr—*(z). Then
d(x, X) < d(y, 7(y)) + d(y, X).

Proof: Letz be a pointinX such that
d(y, X) = d(y, z). Observe that(x, X) < d(z, z) <
d(z,y) + d(y, z) = d(y, 7(y)) + d(y, X).



