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ABSTRACT

Many applications involve repeatedly computing the optimal,
maximum a posteriori (MAP) configuration of a graphical model
as the model changes, often slowly or incrementally over time, e.g.,
due to input from a user. Small changes to the model often require
updating only a small fraction of the MAP configuration, suggest-
ing the possibility of performing updates faster than recomputing
from scratch. In this paper we present an algorithm for efficiently
performing such updates under arbitrary changes to the model. Our
algorithm is within a logarithmic factor of the optimal and is asymp-
totically never slower than re-computing from-scratch: if a modifi-
cation to the model requires m updates to the MAP configuration of
n random variables, then our algorithm requires O(m log (n/m))
time; re-computing from scratch requires O(n) time. We evaluate
the practical effectiveness of our algorithm by considering two prob-
lems in genomic signal processing, CpG region segmentation and
protein sidechain packing, where a MAP configuration must be re-
peatedly updated. Our results show significant speedups over recom-
puting from scratch.

Index Terms— dynamic programming, MAP configuration, model
updates, CpG region segmentation, protein sidechain conformation

1. INTRODUCTION

Finding the optimal sequence of hidden states, or MAP configura-
tion, from given observations is a classic estimation task typically
solved using variants of dynamic programming [1]. In many applica-
tion of the technique, we often perform repeated computations over
a collection of similar problems. For example, in genomic signal
processing problems that require determining the effects of mutation
(computational mutagenesis), each putative mutation gives rise to a
new problem that is very similar to the previously solved problem.
This suggests that we can update our results significantly faster than
recomputing from scratch.

Motivated by this observation, previous work on adaptive in-
ference [2, 3] considered the problem of updating marginals as the
model changes. These approaches, however, consider marginal com-
putations rather than MAP computations; moreover, they provide
only for efficient “queries” to user-specified variables, but as we do
not know a priori which variable configurations will be changed we
cannot use this framework directly.

In this paper we describe an algorithm for efficiently updating
the MAP configurations as the underlying model changes. For a
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graphical model with n nodes, if a modification requires that the
MAP configuration be updated at m positions, then our algorithm
takes expected Θ(m log(n/m)) time (where expectations are taken
over internal randomization). Re-running dynamic programming, in
contrast, could require up to Θ(n) time regardless of the number of
changes actually introduced (Sec. 2). Consequently, our algorithm
provides fast updates when the number of required updates is small,
e.g., Θ(logn) time when a constant number of updates is required,
and never requires more than recomputing from scratch, i.e., takes
Θ(n) time when m = n.

We apply our algorithm to two problems from computational
biology. For CpG island detection, we use an HMM model to seg-
ment regions containing a high frequency of CG nucleotides, and use
our adaptive algorithm to track updates to the island(s) as mutations
are introduced. In protein sidechain packing, we use a higher-order
model to compute the effect of small structural changes on a pro-
tein’s minimum-energy sidechain conformation. In both cases our
algorithm can perform updates orders of magnitude faster than re-
computing from scratch.

2. BACKGROUND

Graphical models provide a useful formalism for describing struc-
ture within a probability distribution or energy function defined over
variables X = [x1, . . . , xn]. This structure can then be used to
design efficient estimation algorithms, for example finding the max-
imum a posteriori (MAP) or most likely configuration of the vari-
ables. We assume discrete-valued xi throughout the paper.

Factor graphs [4] describe the factorization structure of a func-
tion g(X) using a bipartite graph consisting of factor nodes and vari-
able nodes. Specifically, suppose such a graph G consists of factor
nodes F = {f1, . . . , fm} and variable nodes X = {x1, . . . , xn},
and let Xj ⊆ X denote the neighbors of factor node fj . Then, G
is said to be consistent with a function g(·) if and only if g(X) =Q
j fj(Xj). For example, a hidden Markov model (HMM) corre-

sponds to a factor graph with ft(xt, xt−1) = p(xt|xt−1)p(ot|xt),
the product of the transition probability distribution and the likeli-
hood of the observed values ot at each time t. In the case of a singly-
connected graph such as an HMM or a tree, the optimal sequence
of states [x∗1 . . . x

∗
n] can be found using dynamic programming [1].

This proceeds in two passes, first computing a cost to go function
recursively from leaves to root (in an HMM, for example, n to 1),
then selecting the optimal values outward from root to leaves (1 to
n).

Changes to the model, however, may take up to linear time to in-
corporate. If we are unlucky, the change may occur at a leaf which is
O(n) distance from the root. In this case, we must recompute O(n)



cost to go messages before we can determine whether the root con-
figuration has changed, and O(n) selections to determine whether
any configurations have changed. Thus, even when very little about
the problem or solution has changed, we may need to do as much
work as to re-solve the problem from scratch.

3. EFFICIENTLY UPDATING MAP CONFIGURATIONS

To perform efficient updates under modifications, we construct a
cluster tree that represents certain intermediate computations. For
a change to the model that induces m changes to the MAP config-
uration, we give an algorithm that uses the cluster tree to efficiently
updates the MAP configuration in O(m logn/m) time. Our algo-
rithm requires no a priori knowledge of m or the positions in which
the MAP configuration requires updates.

3.1. Cluster Trees and MAP configurations

A cluster tree is a representation of the original factor graph con-
structed by an automated, partially random clustering procedure. At
a high level, the cluster tree is an elimination ordering for the input
model that preserves intermediate computations, using little more
time and space than dynamic programming. In particular, we show
the following:

Theorem 1. Given a factor graph G with n nodes, the cluster tree
and associated MAP configuration can be computed in expected
O(n) time. Furthermore the cluster tree has sizeO(n), and expected
depth O(logn).

For a factor graph G = (X + F,E), a cluster C is simply a set
of connected vertices in G. To construct the cluster tree, we require
as input a spanning tree T of G, and proceeds in rounds, replacing
nodes of T with degree at most 2 by a “cluster” associated with their
neighbor(s), which are then joined by an edge. When a node v is
replaced, we denote its cluster by v̄; any clusters adjacent to v are
removed and become the children of v̄ in the cluster tree. Each clus-
ter thus represents a connected subtree of the original graph. Fig. 1
shows a clustering and its associated cluster tree. In [3], we estab-
lished that the construction of a cluster tree with similar properties
for the purpose of computing marginals for any given variable in the
model. In the following discussion we show this definition can be
modified for the computation of MAP configurations.

For a cluster v̄, define the boundary ∂v̄ of v̄ as the set of edges
with exactly one endpoint in v̄, and the boundary variables Xv̄ of
v̄ as the set of variables (variable nodes) incident to the boundary
edges. The boundary variables Xv̄ form a Markov blanket for the
subtree represented by v̄, i.e., given the configuration of these vari-
ables, optimization of the nodes in v̄ does not depend on the rest of
the graph. Moreover, because the clusters are nested, the Markov
blanket can be computed recursively in the cluster tree: if the chil-
dren of v̄ are {ū1, . . . , ūk}, the boundary of v̄ is

∂v̄ = E(v)4∂ū14 . . .4∂ūk, (1)

where E(v) are the edges incident to v in the factor graph and4 is
the set symmetric difference operator. Using the boundary, it is easy
to compute the boundary variables. The cluster function of a cluster
v̄, written ϕv̄ , is the partial maximization of the factors within that
cluster, over all variables except the boundary variables. This too
can be computed recursively

ϕv̄(Xv̄) = max
Xv̄

ψv(Xv)

kY
i=1

ϕūi(Xūi). (2)
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Fig. 1. (a) An example clustering of a Markov chain (with factor
node suppressed for space). (b)-(c) The MAP can be computed on
the cluster tree by computing cluster functions in an upward pass,
then assigning values in a downward pass. Note that the ancestors of
any subtree include its Markov blanket.

where X v̄ = (Xv ∪Xū1 ∪ . . . ∪Xūk ) \ Xv̄ , and the ψu refer
generically to the factors of g(·), equal to fj(Xj) if v = fj , and
a constant if v = xi. Using these recursive definitions, we can
compute all the cluster functions in the cluster tree in O(n) time
by beginning with the leaves and working our way upward, as il-
lustrated in Fig. 1(b). In standard dynamic programming, the time
to compute individual cost-to-go functions requires time exponential
in the treewidth of the model. Computing cluster functions incurs a
slightly larger constant factor that is exponential in the “cut size” [3]
of the input spanning tree. For example, for variables of dimension
d in an HMM, our approach requires O(d3) time to compute cluster
functions, versus O(d2) for dynamic programming. As we show in
Sec. 4, this additional constant factor does not affect the performance
of our algorithm, since the model size, n, is the dominant parameter.

We now perform a downward pass, in which we select an op-
timal configuration for the variables associated with the root of the
cluster tree, then at its children, and so forth. When this top-down
recursion reaches cluster v̄, we choose the optimal configuration for
the variables in X v̄ using

X
∗
v̄ = arg max

Xv̄

ψv(Xv)

kY
i=1

ϕūi(Xūi)δ(Xv̄ = X∗v̄ ). (3)

where δ(·) is the Kronecker delta, ensuring that Xv̄ takes on value
X∗v̄ . By the recursive nature of the computation, we are guaran-
teed that the optimal configuration X∗v̄ is selected before reaching
the cluster v̄. This can be proven inductively: assume that Xv̄ has
an optimal assignment when the recursion reaches the cluster v̄. We
are thus conditioning on the Markov blanket for v̄, and can optimize
the subtree of v̄ independently. The value in (3) is thus the opti-
mal configuration for X v̄ , which by definition includes the bound-
ary variablesXūi for each of v̄’s children. This property can be seen
in Fig. 1(c).

3.2. Updating MAP Configurations Under Changes

In this section we describe how MAP configurations may be effi-
ciently maintained in the face of changes to the underlying model.
The key to our approach is the ability to modify the underlying factor
graph and efficiently update the MAP configurations. More specifi-
cally, we can modify the factor graph by changing the factors them-



selves or by changing the structure of the graph by inserting/deleting
edges or nodes.

Perhaps surprisingly, the time required to perform an update is
proportional to the number of modifications in MAP configuration
plus the number of model changes and the cost gracefully degrades
to linear in the number of nodes in the factor graph, ensuring that
changes to many factors or configurations result in no worse cost
than computing the MAP from scratch. This means that, although
the extent of any changed configurations is not known a priori, it is
identified automatically during the update process.

3.2.1. Modifications to Factors

Let G be a factor graph and let T be its cluster tree. Suppose that
we modify some factor nodes v1, . . . , vl in G, e.g., by changing rel-
ative probabilities (factor values). We update the cluster tree and
MAP configurations in two passes. In the bottom-up pass, we up-
date cluster functions and the boundary variables of the ancestors of
clusters v1, . . . vl by recomputing the cluster functions as described
in Sec. 3.1. We additionally mark each such cluster dirty to indi-
cate that it has been modified. In the top-down phase, we search for
changes to and update the optimal configuration for the variables of
each cluster. We make this high-level description precise and prove
that updates may be performed efficiently in the following theorem.

Theorem 2. Suppose that we modify l factors of a cluster tree, and
that any MAP configuration of the new model differs from our pre-
vious result on at most m variables. Define γ = min(l + rm, n),
where r is the maximum degree of any node in G. Then, the m vari-
ables and their new MAP configuration can be found in expected
O(γ(1 + log n

γ
)) time.

Proof Sketch: To update the cluster tree, we first change the cluster
functions above each modified factor fj , on the path from fj to the
root. Then, to find the new MAP, we revisit our decision for the
configuration of any variables along these routes.

Consider how we can rule out any changes in the MAP con-
figuration of a subtree rooted at v̄. Assume that we have found all
changed configurations above v̄. The decision at v̄ is based on the
cluster functions from its children and the configuration of its bound-
ary variables. The boundary variables form a Markov blanket for the
cluster v̄: if none of these variables have changed, and nothing inter-
nally has changed, then the configuration for all nodes in v̄ remains
valid.

Thus, the following procedure finds a new MAP: beginning at
the root, we move downward along the paths to each modified fj ,
checking for a MAP change. At any changed node, we also check
that node’s children. At any unchanged node, however, we recurse
only on any children which were degree-two when removed, and
were at the time of removal adjacent to a changed node. (This con-
nectivity information can be tracked easily by augmenting the cluster
tree.) As a property of the cluster tree’s construction, there can be at
most one such path of “unchanged but checked” nodes per child of
a changed node.

Now suppose that m nodes have changed value. The total num-
ber of paths checked is then at most l + rm. These paths are of
expected height O(logn), and every node is checked at most once,
ensuring that the total number of nodes visited is at most O(γ(1 +
log n

γ
)) where γ = min(l + rm, n).

As an example, consider the graph in Fig. 1(b)-(c). We update
the cluster functions in the upward pass, then check for changes back
down. If, for example, x6 and x4 are unchanged, we can reason that
x5 must also be unchanged.
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Fig. 2. Update times. Time to update MAP configurations for a
DNA sequence with CpG islands. Our algorithm takes time propor-
tional to the number of changes to the MAP configuration, rather
than the size of the HMM.

3.2.2. Modifications to Structure

It is also possible, using essentially the same procedure, to modify
the structure of the graph, adding or removing nodes and edges. Sup-
pose that we modify G by inserting/deleting a total of l edges and
nodes as desired to obtain a new graph G′. As with updates to the
factors, these changes can be made in O(γ(1 + log n

γ
)) time, with γ

defined as before.
The primary difference between factor and structural changes is

that, in addition to the ancestors of the changes, there are potentially
a small number of additional nodes who are affected by the change.
These correspond to nodes that are in close proximity to an affected
node during the clustering process; again, tracking this information
requires only some additional bookkeeping during clustering. The
growth of this set is limited by the local nature of decisions during
the clustering process, and can be shown to be bounded by a constant
at each round [5]. Thus the number of nodes visited remains at most
O(γ(1 + log n

γ
)).

4. APPLICATIONS TO COMPUTATIONAL BIOLOGY

We implemented our algorithm by using a combination of Python
and C++ and applied it to two computational biology applications:
genomic signal processing with hidden Markov models (HMM), and
protein structure determination using higher-order statistical models.
For both applications, we show that our adaptive approach yields
significant speedups that would be valuable in practice.

4.1. Sequence Analysis with Hidden Markov Models

HMMs are a widely-used tool to analyze DNA sequences [6]; typ-
ically an HMM is trained using a sequence with known function or
annotations, and new sequences are analyzed by inferring hidden
states in the resulting HMM. In this context our algorithm for updat-
ing MAP configurations can be used to study the effect of changes
to to the model and observations on hidden states of the HMM. We
can use an HMM to identify “CpG” islands in DNA [7], which are
regions of DNA with higher distributions of cytosine and guanine
that are believed to regulate upstream gene expression. For each nu-
cleotide in the sequence being analyzed, our HMM has a hidden state
that represents whether that nucleotide is in a CpG island or not. A
MAP configuration of the hidden states in this model then identifies
CpG islands in the given sequence. In mutagenesis applications, we
would like to repeatedly update the inferred location of CpG islands
as we modify the sequence DNA sequence (e.g. due to methylation
or evolution). This has potential application, for example, in study-
ing the evolution of gene expression.
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Fig. 3. Runtime of our algorithm. A log-log plot of the time to
update MAP configurations as the HMM size increases; we see a
logarithmic trend for our algorithm.

Since repeated modifications to the DNA sequence typically cause
small updates to the CpG-islands (MAP) configurations, we expect
to gain significant speedup by using our algorithm. To test this hy-
pothesis, we compared the time to update MAP configurations in
our algorithm against the Bio.HMM package in BioPython; we used
training parameters from [6]. We used a 3000-base pair stretch of
DNA from chromosome 21 of the human genome (contig NT.030188),
which contains three CpG islands, and observed the effect of 10,000
random mutations. After each mutation we updated the respective
MAP configurations (i.e. indicating CpG island position); we ob-
served the islands shift, disappear and reappear. We see in Fig. 2 that
the time to update a MAP configuration scales with number of ac-
tual updates, rather than the length of the sequence. Similarly, Fig. 3
shows that as the sequence size increases, update times grows loga-
rithmically, with our algorithm running about an order of magnitude
faster than computation from scratch.

4.2. Protein Structure Analysis with Factor Graphs

The molecular structure of proteins defines the biochemical basis for
biological processes. Determining protein structure experimentally,
however, is difficult and computational methods are often employed.
For the protein sidechain packing problem, we are given a three-
dimensional backbone for a protein P consisting of n amino acids,
each of which can take on one of a discrete number of states called
rotamers [8]. Our goal then is to find a conformation (i.e. choice of
rotamers) with minimum physical energy. Recently, graphical mod-
els have been used to accurately predict sidechain conformations [9];
these models are similar to an HMM, but with additional long-range
interactions depending on the amino acid sequence and backbone
structure. To construct the model we represent amino acids with
variable nodes, whose states correspond to rotamers. Then, we de-
fine factors for the a priori likelihood of a rotamer according to its in-
teractions with the backbone, and pairwise factors betwen rotamers
using their pairwise energies1. In the resulting model, a MAP config-
uration corresponds to a minimum-energy sidechain conformation.

Conformational changes in proteins occur due to, for example,
ligand binding and allostery in proteins; these changes typically in-
volve changes to a small set of amino acid sidechains. Such con-
formational change commonly regulates activity in many enzymes,
transcription factors and signaling proteins. Our algorithm for adap-
tive MAP computation is a natural choice in such applications, since
it can handle arbitrary factor graphs.

For our experiments, we used the SCWRL [8] benchmark, which
contains about 180 proteins of varying sizes (31–910 residues) and

1We compute probability of a conformation CP by using a natural corre-
spondence between energy functions and probabilistic models, given by the
Boltzmann distribution: p(CP ) ∝ exp(−βE(CP )).
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Fig. 4. Speedup for SCWRL benchmark. The x-axis shows pro-
teins sorted by size; the speedup varies due to the diversity of protein
folds in SCWRL, but on average our approach is about 8 times faster
than computation from scratch.

backbone folds. With some optimization (i.e. reducing the state
space of the models using dead-end elimination), we were able to
obtain accurate models with cut size of about 6 on average. For the
cluster tree corresponding to each protein, we selected a set of 10
randomly chosen amino acids for modification. We then measured
the time taken for inference from scratch versus our algorithm. For
each protein we applied updates to a random subset of a selected set
amino acids by choosing a random rotameric state for each. We then
recorded the time taken to compute a new minimum-energy confor-
mation. We ran 1000 such updates for each protein, and found that
our algorithm was on average 8.18 times faster than computation
from scratch (see Fig. 4). As expected, we found that the minimum-
energy conformation actually does not change substantially after the
updates, with typically no more than 5 additional amino acids requir-
ing a new rotamer in the computed minimum-energy conformation.
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