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Abstract

T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-
of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which
an implicit or explicit model of sequence specificity is constructed using a training set of peptides with
experimentally tested MHC class II binding affinity.

In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling
antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to
occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional
structure, our algorithm first aggregates four types of conformational stability data in order to construct
a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis.
Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions
from unstable to stable regions. We validate our method using 35 datasets of experimentally measured
CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects.

Overall, our results show that antigen processing constraints provide a significant source of predictive
power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based
methods, or used in instances where little or no training data is available. In multiple-allele systems,
sequence-based methods can only be used if the allele distribution of a population is known. In contrast,
our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II
genotypes.

Introduction

Epitope-specific CD4+ T cells have been observed to correlate with protection against infections and
cancer [1, 2]; in some cases immunization with single epitope peptides were protective [3–5]. However,
immunization with CD4+ epitope peptides has also been shown to cause immunopathology and death [6,
7]. These studies emphasize the critical need for further analysis of CD4+ T-cell responses, which would
be greatly facilitated by accurate epitope prediction.

Endogenous proteins, such as self proteins and viral proteins, are processed in the cytosol and trans-
ported into the ER and loaded onto class I MHC (MHCI) molecules. Exogenous proteins are taken up
by endo/phagocytosis and processed into peptides and loaded onto MHC class II (MHCII) molecules.
MHCI-peptide complexes bind to specific T-cell receptors on CD8+ T cells, which are cytotoxic, while
MHCII-peptide complexes bind T-cell receptors on CD4+ T cells, which are more varied in nature.
CD4+ T cells provide numerous protective functions as part of the adaptive immune response, including
cytokine-mediated and contact-mediated signals to B cells, CD8+ T cells, and innate-immune cells, as
well as direct modes of attack on pathogenic agents. While MHCI and MHCII molecules have scores of
alleles, their three-dimensional structures are highly conserved; allele variation occurs primarily in the
peptide binding groove and influences antigen peptide specificity. The closed binding grooves of MHCI
molecules exhibit a preference for 8- to 11-mers, while the open binding grooves of MHCII molecules are
less specific, with bound peptides being between 10 and 30 amino acids long.
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Computational methods for predicting MHCII-restricted epitopes are of great interest for understand-
ing immune responses to a variety of pathogens. The most accurate computational approaches to MHC
binding prediction are currently based on modeling the sequence preferences for a given (single) MHCI or
MHCII allele. While the particular machine learning method can vary, generally sequence-based methods
work by using training data obtained from allele-specific MHC binding assays to construct a model that
predicts a binding score. For example, the widely used NetMHCII server [8,9] performs MHCII-restricted
epitope prediction and utilizes a position-specific scoring matrix constructed from the training data for
a specified allele.

Since MHCI molecules are highly sequence specific, supervised learning methods (e.g., [10]) for epi-
tope prediction have been successful (e.g., [11]). Additionally, antigen processing and loading for the
MHCI pathway are more tightly orchestrated, with proteolysis ocurring in one compartment, and bind-
ing/loading occurring in another. The MHCII presentation pathway is more challenging to model due to
the open binding groove in the class II molecule, but also because antigen processing, loading, and MHC
binding happen concurrently. Recently, Wang et al. [12] showed that while a “consensus” approach yields
substantially improved MHCII binding predictions, these improvements do not necessarily carry over to
the subsequent prediction of CD4+ T-cell immune responses.

Early studies demonstrated that multiple lysosomal endoproteases and exoproteases participate in
processing of the antigens and that their activities were partially redundant [13]. Processing steps are
thought to occur both before and after peptide binding to the MHCII protein. The elution of nested sets
of peptides from naturally loaded MHCII proteins suggested that proteolytic trimming takes place after
binding [14]. However, other studies indicated that proteolysis must occur before binding. Watts and
coworkers found that presentation of multiple T-cell epitopes in tetanus toxoid depended on an initial
proteolytic cleavage by asparagine endoprotease [15]. Presumably, the nicked protein was destabilized
enough for unfolding to expose the epitopes for binding to the MHCII protein. Disulfide crosslinks help
a protein resist unfolding, and the works of Cresswell and Landry and their coworkers demonstrated that
disulfide bonds can block epitope immunogenicity [16], (H.-N. Nguyen et al., unpublished). However,
disulfide bonds can also have the opposite effect, to increase T-cell epitope immunogenicity, presumably
by stabilizing the antigen against proteolytic destruction [17]. On a more subtle level, dominant epitopes
were reported to occur most frequently at sites adjacent to conformationally flexible protein segments,
which may serve as entry points for proteolytic processing [18–20]. Several studies have confirmed that
these epitopes occur near the ends of peptides generated by limited proteolysis in vitro [21–23].

The intertwined mechanisms of antigen processing and peptide loading are further modulated by
the action of HLA-DM and its regulator HLA-DO (or generically DM and DO). DM stimulates peptide
exchange in MHCII proteins, and mice that lack DM have altered epitope dominance patterns [24].
DO inhibits DM by blocking the site that interacts with the MHCII protein, and mice lacking DO also
have altered epitope-specific responses [25]. We are not aware of any efforts to specifically incorporate
mechanisms of antigen processing or DM/DO-regulated peptide exchange for refinement of class II epitope
prediction. One indirect effort utilized the SYFPEITHI database [26] of natural MHCII ligands to predict
viral peptides that not only bind well to the MHCII protein but also resemble the pools of natural (mostly
self) ligands [27].

In this paper, we present an algorithm for MHCII-restricted epitope prediction that utilizes conforma-
tional stability data of a given antigen structure. We hypothesize that mechanisms for antigen processing,
and thus antigen three-dimensional structure, play an important role in guiding the ultimate presentation
of an epitope. Our algorithm uses experimental and predicted conformational stability criteria as input,
and computes an epitope likelihood score for any peptide in the antigen sequence.

In single-allele systems, our approach is orthogonal to existing, MHC binding-based prediction while
achieving essentially the same accuracy. Thus, in the single-allele setting our method can potentially
supplement existing MHCII-binding based prediction schemes. Perhaps the most applicable setting of
our approach is in multiple-allele systems. MHC binding-based approaches face the dual challenges of
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requiring knowledge of the MHC alleles and identifying appropriate weights on each allele. In contrast our
method is far more practical: it allows epitope prediction without genotype information while achieving
the same or better performance of existing methods in single-allele predictions.

Materials and Methods

Datasets Compiled

We collected 35 datasets of CD4+ T-cell immune response mapping studies. Table 1 provides the details
of each antigen and citation to the experimental study. In general each mapping study provides a
quantitative profile of immunogenicity for the set of peptides that was tested. In our experiments, we
used epitopes characterized in the literature as ground truth (see Table 1, “Antigen” column). For data
gathered in the Landry Lab, we used the Wilcoxon signed-rank test to determine epitopes.

To apply our stability-based prediction method, we utilize crystallographic B-factors, solvent-accessible
surface area, an estimate of local instability in the antigen structure (COREX [28,29] residue stabilities)
and a statistic of evolutionary sequence divergence (Shannon sequence entropy). Each parameter provides
a quantitative measure of the local conformational flexibility and therefore the likelihood of proteolysis
at any particular position in the protein [30]. All antigen structures considered in our experiments were
solved using X-ray crystallography with the exception of that for Bet v 1, which was solved by NMR.
B-factors are a measure of local conformational disorder, which is an indication of how easily the structure
may be deformed for binding in a protease active site [31]. Solvent accessible area quantifies accessibility
to proteases as well as local disorder. COREX provides a score of the probability of unfolding at each
amino acid, and has been validated by correlation with hydrogen-deuterium exchange protection NMR
experiments [28]. Hydrogen exchange occurs on much longer timescales than the conformational fluctu-
ations that are captured by B-factors, and therefore it provides complementary information about the
likelihood of proteolysis [32]. Sequence entropy is correlated with solvent-accessible surface area [33], and
it provides information on protein segments that were not present in the crystallographic/NMR struc-
ture. For this analysis, backbone amide-nitrogen B-factors were extracted from the PDB entries given in
Table 1. Likewise, average root-mean-square deviations for the backbone amide nitrogens were extracted
from the PDB entry for Bet v 1. Solvent-accessible surface area was calculated with the crystallographic
or NMR structures using Molmol [34]. We computed the COREX/BEST [28,35] score using the provided
web interface [29]. For analysis of sequence entropy, all protein sequence entries having 50%-95% identity
to the target were collected from the UniProtKB/Swiss-Prot or UniProtKB database using Blastp. The
UniProtKB database was used when Bastp returned fewer than 25 sequences from the UniProtKB/Swiss-
Prot database. The sequences were aligned using ClustalW [36], and then the Shannon sequence entropy
was calculated using BioEdit [37].

Algorithm1

The input to our algorithm is the antigen sequence and the four sources of conformational stability data
mentioned above: crystallographic B-factors, solvent-accessible surface area, COREX residue stabilities
and sequence conservation. Our algorithm proceeds in three main steps. In the first step, we preprocess
the input structural data into a suitably smooth representation. For the second step, we first compute a
z-score statistic that characterizes the aggregate conformational stability at each residue relative to the
input structure. Then we segment the structure into regions of conformational stability (and instability)
by thresholding the computed z-score statistic. In the final step, we construct the output epitope like-
lihood by applying a chosen weighting scheme that emphasizes the C- or N-terminal flanks of unstable
regions.

1The source code for our current implementation along with the datasets is available upon request.
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Figure 1. Epitope Likelihood construction. Epitope likelihood is constructed by reweighting the
aggregate stability score in relation to an assumed proteolytic site at the midpoint of an unstable
region. Depending on the context we (a) upweight regions downstream of proteolytic sites, or (b)
regions both upstream and downstream of proteolytic sites.

We first preprocess the data to register the antigen sequence to the structure. Since a PDB file
corresponding to the antigen sequence can have missing residues, we address gaps by assigning default
values for each data type that indicate a minimum level of stability. For example, a missing B-factor
would be set to be the maximum B-factor value observed in the PDB file. Then, as a preprocessing step
to smooth the data, we take a windowed average across each dataset using a window size of 15 residues.

After smoothing the data, we compute z-scores for every residue with respect to each dataset. We
view the z-scores for each type of data as independent observations of antigen conformational stability.
Using the analog of Fisher’s method for combining test statistics, we combine z-scores to obtain an
aggregate z-score for each residue of the antigen. This aggregate z-score characterizes the extent to
which our sources of structural data “agree” that the antigen is conformationally unstable at a given
position, and thus attempts to model likely sites of proteolysis. Then we segment the protein using this
aggregate z-score by classifying any residue with an aggregate z-score greater than zero as stable and all
other residues unstable. In the next step, we will refer to any continguous stretch of stable amino acids
as a stable region, and any other contiguous stretch of amino acids as unstable regions. We note that by
definition, this definition segments the protein into alternating stable and unstable regions.

To construct our epitope likelihood score, we first set the epitope likelihood of any residue in an
unstable region to be zero. Stable residues adopt their z-score as their epitope likelihood (Figure 1,
black curve above dotted line). Then, we selectively upweight likelihoods in regions of the protein that
transition from unstable to stable or vice versa (Figure 1). For exposition, consider an unstable region
and the C-terminally adjacent stable region. First, we magnify the epitope likelihoods for first third of
the stable region by a factor of three. Then, we assign epitope likelihoods by linearly interpolating from
the midpoint of the unstable region to the midpoint of the upweighted portion of the C-terminal flanking
stable region. This same upweighting method can be applied to the N-terminal flank or to both the
C-terminal and N-terminal flanks of an unstable region. We allow the user to choose which particular
scheme will be applied for a given input antigen. In the results presented here, single-allele datasets made
use of C-terminal weighting only (Figure 1(a)), whereas human datasets made use of weighting on both
flanks of unstable regions (Figure 1(b)).
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MHC Binding Score Prediction

For each of the antigens above, we computed MHC binding affinity to use as an alternate analysis of
predicted immunogenicity. We used NetMHCII [8,9] to perform prediction for each antigen sequence. The
resulting prediction score (the 1-log50 K(aff) entry in the output) was used as an epitope likelihood
score. We note that IEDB [38] also has a set of tools, among which are the NetMHCII server itself. We
chose to use NetMHCII for flexibility; NetMHCII allows the selection of individual peptide lengths used
in the peptide mapping assays for each antigen, which varied in length from 15 amino acids to 20 amino
acids.

Performance Criteria and Evaluation

In our work, we use two metrics for evaluating predictive performance with respect to a given a set of
epitopes determined experimentally (e.g., with an assay for T-cell proliferation or IFN-γ ELISPOT).
First, we consider how many epitopes are recovered by the 90th and 80th percentile scores for a given
method of prediction (as shown in Table 1). These two thresholds were choisen on the basis of rates
of experimental epitope discovery, which ranged from 8% to 19% of tested peptides corresponding to
proteins that were mapped (see below). The same threshold has been used in recent work evaluating the
correlation between MHC-binding and T-cell activation assays [39]. We note that in general it is difficult
to choose the “correct” threshold that best balances true and false positive rates; it is for this reason that
we also use the AUC metric to evaluate performance on single-allele and human datasets.

For each threshold, we classify the performance of a method based on how many epitopes are correctly
identified. These results provide an evaluation of how effective a particular method is in a real-world
setting where a set of peptides must be chosen for testing. To establish baseline performance, we compare
both MHC binding-based and stability-based prediction results against the expected number of epitopes
at a given threshold. In practice, this baseline approach would correspond to choosing peptides at random
with a probability based on an estimated epitope frequency.

In prior work, evaluation of MHC binding performance (e.g., [12]) has typically been characterized
by the area under the receiver-operator characteristic (ROC) curve. As above, for these evaluations pep-
tides have an underlying classification as a binder or nonbinder (e.g. determined experimentally) and any
method for binding prediction is rated as to its effectiveness in predicting the underlying classification.
In our approach, we compute epitope likelihood on a per antigen basis, and to compare predictions across
antigens we normalize scores to be in the range [0, 1]. Then, predictions for a collection of peptides span-
ning multiple antigens can be evaluated in the same manner as MHC binding. We computed ROC curves
in this way for epitope prediction in both single-allele systems (Figure 2(c)) and humans (Figure 3(b)).

Results and Discussion

We considered a total of 35 datasets in which epitopes were experimentally determined. For each single-
allele MHC dataset, we compared the performance of our algorithm against a popular sequence-based
method, NetMHCII [8, 9]. For multiple allele (i.e., humans) datasets, MHC binding methods can only
be used when the alleles (or allele distribution) of the population is known. This information was not
available for the datasets we considered and thus no MHC binding-based prediction was possible.

Table 1 shows the number of epitopes identified when we consider the top-scoring peptides at the
80th percentile threshold for each method. When evaluating predictive power, we compare both methods
against the naive random approach, in which a peptide is predicted to be an epitope with a probability
equal to the epitope frequency for that antigen.
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Table 1. Results for Epitope Prediction.

Allele Antigen # epitopes # peptides Stability1 MHC binding2

I-Ab

HIV gp120 (JRFL)3 5 46 2 2
Y. pestis LcrV4 7 53 3 4
Tuberculosis antigen 85A [40] 5 28 2 0
Tuberculosis antigen 88 [41] (4LVQ) 2 30 1 1
Cholera toxin B [42] (1FGB) 1 23 0 1
Y. pestis CAF14 8 26 3 3
Friend virus env [43] 6 20 4 3
GFP [44] (2QLE) 1 17 1 1
HIV gp120 (89.6) [45] 8 47 2 2
SIV gp1203 11 80 3 2
Bacteriophage T4 HSP105 2 20 1 1
Hepatitis B virus [46] (3J2V) 1 13 0 1
HRSV M2-1 [47] (4C3B) 1 23 0 1
HSP 16 [48] (3W1Z) 1 13 0 0
Listerialysin O [49] (4CDB) 1 48 0 1
Tuberculosis MPT51 [50] 1 25 0 0
Tuberculosis PstS [51] (1PC3) 3 32 1 1
VSV glycoprotein [52] (2CMZ) 2 44 1 1
West Nile virus env [53] (2I69) 1 78 0 1
West Nile virus ns3 [53] (2WV9) 2 116 0 1
Yellow Fever env [54] 1 96 0 1

HLA-DR4

Chlamydia CPAF [55] 5 58 1 1
Anthrax protective antigen [38] 15 74 3 6
Anthrax lethal factor [38] 16 89 3 7
Dengue env [56] 14 26 4 2
Burkholderia flagellin [38] 2 37 1 0

Human

Adenovirus serotype 5 hexon [57] 16 133 7 -
Tuberculosis antigen 85A [58] 14 28 4 -
Birch pollen Bet v 1 [59] 5 50 2 -
Hepatitis C ns3 [60] 7 45 2 -
M. leprae HSP70 [61] 6 60 3 -
Polio vp1 [62] 5 25 1 -
Tick-borne encephalitis protein E [63] 12 121 4 -
Tetanus toxoid [64] 10 51 4 -
Wasp Ves v 1 [65] 7 65 2 -

1 Number of epitopes recovered at the 80th percentile scoring threshold for stability-based epitope prediction.
2 Number of epitopes recovered at the 80th percentile scoring threshold for MHC binding-based epitope prediction.
3 H. Nguyen et al., Vaccine, In press.
4 T. Charles, Landry Lab, unpublished data.
5 Landry and coworkers, unpublished data.
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Figure 2. Prediction accuracy and ROC curves for single-allele datasets. (a, c) Overall
accuracy of prediction at the 80th percentile threshold of the random baseline, stability-based
prediction and MHC binding-based prediction for IAb and HLA-DR4 data, respectively. (b, d) ROC
curves for stability-based prediction (in green) and MHC binding-based prediction (blue).

Results for single-allele systems

Epitope-predictions based on stability and based on MHC-peptide binding were evaluated for accuracy
in epitope-mapping results obtained in immunized mice. Each experimental map was generated with
a scan for T-cell responses using an overlapping series of peptides that spanned the complete antigen.
The input requirements for the epitope predictions limit the number of epitope-mapping studies that
may be used for the evaluation. For predictions based on conformational stability, the high-resolution
structure of the antigen must have been solved by X-ray crystallography or nuclear magnetic resonance.
For predictions based on MHC binding, the T-helper epitopes must have been mapped in mice that have
a single well-characterized MHCII protein. The evaluation also excluded studies on mammalian antigens,
for which some epitopes may have been suppressed by negative selection. Epitope maps of influenza
antigens were excluded because epitope placement is exceptional, in that epitopes consistently appear
on the N-terminal flanks of flexible sites, possibly due to viral modifications to antigen processing mech-
anisms [66]. The usefulness of excluding influenza epitopes highlights that fact that antigen-processing
steps play an important role in shaping CD4+ epitope dominance. It is likely that additional organisms
modulate epitope dominance through their influence on antigen processing. The present approach creates
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a formalism for handling these influences and ultimately incorporating them into the algorithm.
These limitations reduced the available experimental systems to C57BL/6 mice (70 epitopes in 21

antigens) and HLA-DR4-transgenic mice (52 epitopes in 5 antigens). Several epitope-mapping studies in
BALB/c mice have been reported, but the number of epitopes discovered is low. The BALB/c strain also
has two MHCII proteins (I-Ad and I-Ed), which potentially complicate the MHCII binding prediction
and the interpretation of mapping data. Thus, results from BALB/c mice were not included. The
several mapping studies in HLA-DR1- and HLA-DQ8-transgenic mice yielded only a small number of
epitopes, and thus they were not included. For comparison, the IEDB lists 377 I-Ab-restricted epitopes
in 146 non-mammalian antigens. Most of these epitopes were not included in the present study because
the high-resolution structure of the antigen was not available (e.g., a membrane protein or intrinsically
disordered protein) or because a limited set of peptides (usually prescreened for I-Ab binding) were tested
for a T-cell response.

In C57BL/6 and HLA-DR4 mice, the various antigens primed as few as one and as many as eleven
epitopes, which were discovered by testing with peptide sets of 20-89 peptides. In general the density of
epitopes is similar to that previously reported for a collection of nine antigens and allergens [66]. For the
collection of 21 antigens in C57BL/6 mice, the rate of epitope discovery is the number of epitopes divided
by the number of test peptides (aggregated over all antigens, to account for antigen size). Expressed as
a percentage, the rate was 8%. This rate imposes a lower limit on the accuracy of epitope prediction
because 8% of peptides randomly selected from the test set are expected to contain an epitope.

Accuracy of epitope prediction in C57BL/6 mice was evaluated by comparing the 80th percentile
of predicted epitopes to the experimentally discovered epitopes (Figure 2(a)). Using our stability-based
method for epitope prediction, 13% of peptides scoring in the 80th percentile of predicted immunogenicity
were actually observed as epitopes (see Supplementary Information Figures S1–S21 for full details of
predictions for all antigens). This is a significant improvement over random peptide selection (p = 0.02).
Prediction based on peptide-binding to the I-Ab MHCII achieved a success rate of 15%, and was also
significant (p = 0.002). In HLA-DR4 transgenic mice, epitopes were discovered at a rate of 19% of the
test peptides. Epitope prediction at the 80th percentile using stability-based prediction and HLA-DR4
binding-based prediction yielded accuracies of 23% and 32%, respectively (Figure 2(c), see Supplementary
Information Figures S22–S226 for full details of predictions for all antigens). HLA-DR4 binding-based
prediction was significantly better than random (p = 0.03) at this threshold.

Finally, we also consider the area under the ROC curve for a threshold-independent comparison of
MHC binding-based prediction and stability-based prediction (Figure 2(b, d)). For I-Ab data, stability-
based prediction achieves an AUC of 0.62 (p = 0.0007), while MHC-based prediction achieves an AUC
of 0.70 (p < 0.0001). For HLA-DR4 data, while MHC-based prediction achieved significance at the 80%
threshold, neither method achieves an AUC that is significantly better than random epitope selection.
Interestingly a simple combination of the methods, in which we compute an epitope likelihood score that
is the product of the normalized individual scores, achieves an AUC of 0.61 and is significant (p = 0.01).
The poor performance of both predictions may be related to the heterologous expression of HLA-DR4.
Peptide loading or peptide exchange may be abnormal in the transgenic mice due, for example, to the
lack of HLA-DM. The mouse homolog DM radically alters the CD4+ epitope dominance pattern for
Leishmania LACK [24], and presentation of an HLA-DR4-restricted arthritogenic epitope was essentially
eliminated by co-expression of HLA-DM in APC [67].

Results for human subjects

Antigen processing-based epitope prediction was evaluated for the aggregated results of mapping studies
performed in human subjects (see Supplementary Information Figures S27–S35 for full details of predic-
tions for all antigens). As noted above for the single-allele studies, the analysis was limited to non-self
antigens for which a crystal structure was available and where the epitope-mapping employed a complete
series of overlapping peptides. The identification of a discrete set of all epitopes for a given antigen is
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Figure 3. Prediction accuracy and ROC for human data. (a) Overall accuracy of prediction at
the 80th percentile threshold of the random baseline and stability-based prediction. (b) ROC curve for
stability-based prediction.

difficult for systems with multiple MHC alleles because the immunogenicity of some epitopes could be
strongly allelle-specific. If the investigators identified a discrete set of epitopes, then these were included
as the immunodominant set. If the investigators reported a frequency of response for all peptides, then
the peptides of the 90th percentile were included as the immunodominant set. In all, 82 epitopes were
identified as immunodominant in 9 antigens. Since the antigens were scanned with a total of 578 peptides,
this represents a rate of discovery for immunodominant epitopes of 14%. We take this to be the threshold
for useful accuracy of epitope prediction in this set of antigens.

At the 80th percentile, the accuracy of 23% achieved significance (p = 0.01), Figure 3(a)). To
gain additional perspective, we also consider the receiver-operator characteristic (ROC) taken over all
predictions for human alleles (Figure 3(b)). Our algorithm achieves an area under the curve of 0.61
(p = 0.001). Taken together, the accuracy and AUC results for human data demonstrates that our
method is about twice as effective the random baseline. In practice this would mean screening about half
as many peptides to identify the desired number of epitopes.

We now discuss two specific antigens, Bet v 1 and adenovirus type 5 (Ad5), and rationalize our
predictions with what was observed in epitope mapping studies.

Bet v 1 in birch-allergic human subjects. T-helper epitope maps from human populations are
difficult to interpret due to genetic heterogeneity of class II MHC proteins. Scores of different class II
alleles are represented in some populations, and individuals may express six different alleles. For most
epitopes, the restricting MHC allele is not known or multiple alleles contribute to presentation. In spite of
multiple sources of variability, strong epitope dominance is still observed in the human immune responses.

Bet v 1 of birch pollen is one of the most thoroughly studied allergens. Bohle and coworkers mapped
the T-helper epitopes of the 159-residue Bet v 1 in a group of 57 birch-allergic subjects using a set of 50
overlapping 12-mer peptides [59]. As expected for a heterogeneous population, the T-helper epitopes were
distributed over most of the protein. Forty-three peptides obtained a response from at least one subject,
and 35 peptides obtained a response from at least two subjects. Here, we define the immunodominant
epitopes as the five most frequently immunogenic peptides (90th percentile), each of which obtained a
response from at least 11 subjects (peptides 2, 5, 7, 38, and 48). The single most frequently immunogenic
epitope (peptide 48) obtained a response in 32 subjects.
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The analysis of conformational stability in Bet v 1 found two major dips in stability and predicted
epitopes in the transitions from low-to-high stability on both sides of the stability minima, resulting in
three peaks of predicted immunogenicity (Figure 4(a, b)). This equal weighting of N- and C-terminal
flanks was adopted on the basis of a previous analysis of immune responses in outbred populations to nine
different antigens/allergens [66]. Four Bet v 1 peptides in the 90th percentile of predicted immunogenicity
were located in the first major peak, and they include the observed epitopes 5 and 7. Although having
generally lower predicted immunogenicity, the second and third peaks each included one of the observed
epitopes.

The fact that the highly dominant peptide 48 coincided with the smallest of the three peaks of
predicted immunogenicity in Bet v 1 suggests that that the prediction failed to capture an important
aspect of the mechanism for dominance. We posit that the missing element involves the ease with which
a proteolytic fragment dissociates from the otherwise intact antigen. The current algorithm assigns high
immunogenicity to peptides that are located within stable segments adjacent to highly flexible segments.
This weighting recognizes the probability of initial cleavage in the flexible site and assigns immunogenicity
to the adjacent stable segment. It does not account for the requirement that the MHCII protein gain
access to the stable segment, which is likely to involve the dissociation of the epitope-containing segment
from other stable segments. Clearly, these considerations will demand a more sophisticated model than
is currently implemented. Nevertheless, our method performs well across all scoring thresholds, achieving
an AUC of 0.76.

The exceptional immunodominance of peptide 48 was studied by Bohle and co-workers [23], and has
been attributed to its early and abundant processing and presentation. Peptides presented by dendritic
cells were compared to the proteolytic fragments generated in a time-course of Bet v 1 digestion in lyso-
somal extracts. The most abundantly presented peptides corresponded to fragments that were generated
only at early time-points (0.5–3 hr). It remains unclear why peptides generated at later time-points (5–24
hr) are poorly presented. The late peptides appear to be in equal or greater abundance compared to the
early peptides at the respective time points, and thus proteolytic destruction of late peptides seems to
be ruled out. Mechanisms of intracellular traffic may be responsible. During the maturation of dendritic
cells, ubiquitination in the C-terminal tails redirects MHCII from the lysosome to the cell surface [68],
and thus the MHCII may not be available to bind peptides that emerge from late stages of antigen
processing.

Adenovirus type 5 hexon in HIV-vaccine trial participants. Pre-existing immunity to Ad5
has been linked to weaker responses to Ad5-based vaccines. Initial attention focused on the ability of
the antibodies to neutralize the vaccine, and this spurred the development of adenoviruses having low
prevalence in humans and little antibody crossreactivity. However, the highly conserved T-cell responses
to the hexon subunit of Ad5 recently have also been implicated in the weak responses to Ad5 vaccines [57].
Thus, we sought to examine the relationship of structure and T-cell epitope dominance in hexon, a 947-
residue capsid protein.

McElrath and coworkers [57] mapped T-helper epitopes for the Ad5 hexon using 133 overlapping
15-mer peptides with the PBMC of 32 subjects participating in an HIV-vaccine trial. Although ap-
proximately half of the subjects were sero-negative for Ad5, most reacted to at least one T-cell epitope,
probably because the T-cell epitopes are conserved in other adenoviruses to which the subjects had been
exposed (e.g., Ad1 or Ad2). As expected for a heterogeneous population, epitopes were distributed over
a large portion (40%) of the hexon sequence. For the present comparison to epitope prediction, we desig-
nated as immunodominant the 16 peptides that stimulated a T-cell response from two or more subjects
(corresponding to the 88th percentile of the tested peptides).

The analysis of hexon conformational stability found at least eight major dips in stability, which
gave rise to adjacent peaks of epitope likelihood (Figure 5(a, b)). Peptides in the 90th percentile of
predicted epitopes touched five peaks of epitope likelihood. Two peaks contained four peptides that
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match observed epitopes (peptides 45, 46, 131, and 132). Although the epitopes occured as two pairs
of overlapping peptides, it is not clear that each pair should be considered a single epitope because the
restricting MHC alleles are unknown. An alternative explanation is that the pairs of epitopes arose from
the same abundantly processed antigen fragments, as suggested by their locations at the transitions from
low-to-high stability. If we reach down to the 80th percentile, our stability-based approach accurately
predicts three more epitopes (peptides 54, 82, and 84).

In summary for Ad5 hexon, 4 of 13 peptides in the 90th percentile and 7 of 26 peptides in the 80th
percentile were observed as epitopes. Of the eight transitions from low-to-high stability (peaks of epitope
likelihood), four contained epitopes in the vaccine trial participants. Overall, our method achieves an
AUC of 0.76 for this dataset.

Conclusions

In this paper we have developed a method for epitope prediction based solely on antigen processing
constraints. Our method achieves significant predictive power, despite the fact that it does not consider
the sequence specificity of MHC class II binding. Importantly, a conformational stability-based approach
to epitope prediction is orthogonal to existing methods that rely solely on sequence preferences for MHC
binding to predict epitopes.

Given this dichotomy, a natural question is whether it is possible to combine the two methods to
make improved predictions in single-allele systems. In prior work, researchers have taken a consensus
approach [12] in which the results of multiple MHC binding-based predictors are aggregated to obtain
improved results. The resulting “consensus” approach from this work is currently implemented in the
IEDB [38]. In the course of developing the current antigen processing-based prediction algorithm, we also
tested a simple hybrid approach in which stability-based prediction and MHC binding-based prediction
were assumed to be independent and were combined accordingly. We found a mixed set of results, wherein
any improvement in epitope identification was offset by an increase in false positive rates.

We believe it is important to further refine the construction of epitope likelihood, by conditioning the
computation of the score both on antigen processing and MHC binding affinity, in a manner analogous to
the class I-restricted epitope prediction tool, NetCTL. However, class II prediction must overcome a con-
siderably larger pool of alleles in the human gene pool, a potentially smaller influence of peptide-binding
affinity, and a complex interaction between antigen processing and MHC binding. The present studies
take an important first step toward addressing the influence of antigen processing. We are exploring
supervised learning methods analogous to those used for training MHC binding affinity predictors, which
use training sets of peptides with experimentally determined MHC binding affinity. We seek to generalize
these approaches with the inclusion of conformational stability criteria. That is, rather than applying a
predetermined upweighting to the flanks of an unstable domain (and adjacent stable domains), we would
include conformational stability data in the training data, and rely on the training regime to identify
appropriate joint weightings of both conformational stability and MHC binding affinity.
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Figure 4. Birch Bet v 1 predictions. (a) Conformational stability data is shown by residue,
epitopes are shaded green bars. (b) The computed epitope likelihood score for sequential 12-mers
(epitopes shown as black lines) is shown along with (c) the rank-order view of the scores with 90th and
80th percentile thresholds (red dashed lines).
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Figure 5. Adenovirus type 5 hexon predictions. (a) Conformational stability data is shown by
residue, epitopes are shaded green bars. (b) The computed epitope likelihood score for sequential
15-mers (epitopes shown as black lines) is shown along with (c) the rank-order view of the scores with
90th and 80th percentile thresholds (red dashed lines).


