
Beyond Layers: A 3D-Aware Toolpath Algorithm for Fused Filament
Fabrication

Samuel Lensgraf† and Ramgopal R. Mettu†,∗

Abstract— Fused filament fabrication (FFF) is gaining
traction for rapid prototyping and custom fabrication.
Existing toolpath generation methods for FFF printers take
as input a three-dimensional model of the target object and
construct a layered toolpath that will fabricate the object
in 2D slices of a chosen thickness. While this approach is
computationally straightforward, it can produce toolpaths
that can contain significant, yet unnecessary, extrusionless
travel.

In this paper we propose a novel 3D toolpath generation
paradigm that leverages local feature independence in the
target object. In contrast to existing FFF slicing methods
which print an object layer by layer, our algorithm
provides a means to print local features of an object
without being constrained to a single layer. The key
benefit of our approach is a tremendous reduction in
“extrusionless travel,” in which the printer must move
between features without performing any extrusion. We
show on a benchmark of 409 objects that our method can
yield substantial savings in extrusionless travel, 34% on
average, that can directly translate to a reduction in total
manufacturing time.

I. INTRODUCTION

The rise of additive manufacturing has given users
unprecedented freedom and flexibility in manufacturing
objects of arbitrary geometry. In general, the part is
created by a computational determination of a tool
path which is executed by the machine. Fused filament
fabrication1 (FFF), a widely used form of additive man-
ufacturing builds a model incrementally by depositing
substrate that becomes fused to other, already extruded
substrate. Fused filament fabrication allows more flex-
ibility in choice of material than other methods of
additive manufacturing but sacrifices speed in doing so.
A major limitation of this approach is the large amount
of machining time (hours to days) that is required to
print complex parts. When printing models with multiple
distinct parts, the printer typically spends a large fraction
of its time traveling between extrusions. The standard
tool path generation process exacerbates the problem

†Department of Computer Science, Tulane University, New Orleans,
LA 70118
∗ Corresponding author: rmettu@tulane.edu.
1We note that the this type of printing is also commonly referred to

as fused deposition modeling (FDM), but since the term is trademarked
by Stratasys, we use untrademarked term fused filament fabrication.

since the printer must complete all instructions on a
given layer before moving on to the next.

We propose an algorithm to minimize the wasted mo-
tion of an FFF tool path. As input, our algorithm takes
a three-dimensional model (e.g., in STL format) and
produces a tool path in which the printer can move in
all three dimensions so as to reduce extrusionless travel.
Our algorithm utilizes the same toolpath segmentation
as existing methods (i.e., layers consisting of paths), but
utilizes a notion of local dependencies between parts of
the model to ensure that printing and movement in three
dimensions produces the target model and is collision-
free. To our knowledge, this is the first such approach to
be applied to FFF toolpath generation. We believe our
approach presents a new approach to toolpath generation
that can optimally leverage tool geometry to reduce
fabrication time. Our algorithm is simple. In testing it
requires an order of magnitude less time than slicing, and
works with compact geometric approximations of the
print head and carriage. Over a large benchmark of 409
models, we demonstrate an average of 34% reduction in
the wasted motion of slicing-based toolpaths.

A. Related Work

Tool path generation for 3D printers derives from
the computer numerical control (CNC) milling problem.
Current path planning algorithms for 3D printers uti-
lize the adaptive and nonadaptive iso-planar tool path
generation techniques. Adaptive iso-planar tool path
generation changes the layer height used to describe a
model according to the surface complexity of the part
thereby reducing total manufacturing time [6]. Various
techniques for deciding layer height based on a geomet-
ric characterization of the part called adaptive slicing
have been proposed [15], [16]. For a comprehensive
review of slicing techniques we refer the reader to a
review by Pandey et al. [12].

The (nonadaptive) iso-planar technique takes a model
from a CAD application and slices it with parallel planes
yielding a series of contours. These contours can then
be approximated by a series of contact points which the
print head must interpolate. Han et al. provide a useful
characterization of speeding the additive manufacturing

(a) (b)

Fig. 1. (a) An example of a tool path with a large amount of
wasted motion (blue) that could be avoided by printing the columns as
independent objects rather than layer by layer. (b) Two of the screws
produced when this path is printed.

process [8]. Several techniques have been proposed to
apply optimization procedures to tool paths to reduce
the total “airtime” (i.e. extrusionless travel) needed to
produce a part. Wah et al. provide a technique to limit the
total tool path length within layers of a general layered
manufacturing problem [19]. Castelino et al. [3] provide
a traveling salesperson with precedence constraints char-
acterization of CNC machining, and show good results
in minimizing the airtime required to manufacture a part.
Wojcik et al. provide a genetic algorithm to minimize the
tool path length for 3D printers [20] by combining raster
tool path segments together. Volpato et al. [18] provide
two methods for reducing the total path length of a
3D printed part by combining printed regions according
to optimization procedures. Each of these is similar
to ours in that it attempts to reduce the extrusionless
travel distance, but optimization is limited to considering
the tool path in a single layer. Other methods attempt
to reduce the amount of support volume [2], optimize
infill structure [9], or minimize total volume [17]; these
approaches can all be performed in concert with our
algorithm.

II. OUR APPROACH

Since traditional FFF printing proceeds layer-by-layer,
it is easy to see that the target object can always be
printed correctly (subject to support and printer con-
straints). Since our approach diverges from traditional
methods, we first define our notion of printability. A path
is printable if all parts of the path have a proper support
structure and if the print head will not intersect already
printed parts of the model while traversing the path

[14]. Our method proceeds by first computing toolpath
segments in each layer as in traditional methods, and
then combining these into a 3D-aware toolpath that
attempts to minimize extrusionless travel. We achieve
this by abstracting the tool path and imposing a set
of geometric constraints based on a notion of local
dependence (and thus, printability).

For a simple motivating example of our approach,
consider the tool path made for four identical screws
shown in Figure 1. This is a pathological example for
layer-by-layer printing, since each layer incurs wasted
motion, causing the extrusionless travel to scale as the
volume of the bounding box of the model. For the
model in Figure 1, extrusionless travel accounts for
55375.6mm of the total 317030.0mm of motion required
to print the model, or about 18% of the total motion.
This accounts for a significant portion of both the time
and energy required during printing. We propose a
method that can, with an appropriate printer geometry,
significantly improve upon such examples. A favorable
printer geometry is one which allows us to meaningfully
abstract the print head with a small bounding box.
Any print head that hangs below the extruder can be
abstracted. For example, on the Prusai3 printer we used
to print the models in Figures 1 and 3 for testing, we
can create a 7mm×7mm×7mm bounding box around
the nozzle that hangs just below the rest of the extruder.
In our testing, the Prusa i3 extruder geometry admits
substantial savings over a large benchmark of models
from popular open source mesh websites. In the next
section we discuss the structure of our algorithm in
detail.

III. ALGORITHM DESCRIPTION

Since the generation of tool path segments in each
layer of the input model is straightforward, for simplicity
we describe our algorithm by assuming we are given
a set of motion segments (i.e., G-code instructions)
and the associated layer of each segment. In our cur-
rent implementation, we make use of the open-source
Slic3r [13] path generator, which follows the iso-planar
method described in Section I-A. In the sections that
follow we describe each phase of our algorithm. First,
we parse the input segments (Section III-A). Next, the
layers are divided into islands, or portions of the path
that are convenient to print together in (Section III-B).
Then, each island is assigned a set of dependencies that
must be met before it can be put onto the final path
(Section III-C). Finally, the islands are combined into
a final path in Section III-D. Algorithm 1 (OPTIMIZE)
gives a top-down overview of the complete algorithm.

Algorithm 1 Imports and optimizes a tool path F
Input: A tool path F , a specified tolerance ε, the radius

of the extruder bounding box r, the height of the
extruder bounding box h

Output: An optimized toolpath.
1: procedure OPTIMIZE(F , ε, r, h)
2: segments← PARSE(F)
3: segments← REMOVEEXTRUSIONLESS(segments)
4: layers← CREATELAYERS(segments)
5: islands← ∅
6: for i = 0, . . . , len(layers) do
7: islands[i]← CREATEISLANDS(layers[i], ε)
8: end for
9: for k = 0, . . . , len(islands[0]) do

10: islands[0][k].D ← ∅
11: end for
12: for i = 1, . . . , len(islands) do
13: L← islands[i− 1, . . . , i− n]
14: for k = 0, . . . , len(islands[i]) do
15: islands[i][k].D ←

CALCULATEDEPENDENCIES(islands[i][k], L, r)
16: end for
17: end for
18: for i = 0, . . . , len(islands) do
19: for j = 0, . . . , len(islands[i]) do
20: TOCONTINUOUSPATH(islands[i][j])
21: end for
22: end for
23: return BUFFEREDGREEDY(islands, h)
24: end procedure

OPTIMIZE makes use of a number of subroutines; we
provide detailed descriptions of these below.

A. Parsing the path and preparing the data

For clarity, we briefly describe how our algorithm
represents the given set of motion segments in F . PARSE
converts the input path to a sequence of motion segments
in the order that they occur in the path by combining
the contact points in F .

Definition 3.1: A motion segment (segment) l is a
directed line segment specified by its three dimensional
end points where l.b marks the beginning of the motion
and l.e marks the end of the motion. A segment also
stores a type variable type that is either print or travel
where print refers to printed motion and travel refers to
non-printed motion.

REMOVEEXTRUSIONLESS iterates through the given
sequence and removes all segments with the type travel.
CREATELAYERS aggregates the raw sequence of printed
motions into a sequence of layers.

Definition 3.2: A layer L is a sequence of mo-
tion segments li with li.b.z = li.e.z = lj .b.z =
lj .e.z ∀li, lj ∈ L.
We assume the layers in the sequence layers in Algo-
rithm 1 are in ascending order of their z values.

Fig. 2. An example of four islands in a set of machine instructions.

B. Aggregating layers into islands

Islands are sets of motions in a single layer which
are contained by a closed outer path. Figure 2 shows
an example of four islands in a layer. All parts that
feature closed walls can be conveniently decomposed
into islands. This concept is used in the path generation
algorithms of both CuraEngine [5] and Slic3r [13]. In
order to decompose a layer into islands, our algorithm
first decomposes the layer into a sequence of continuous
printed paths. A path is continuous if no extrusionless
travel is required to connect any of the motion segments
constituting the path.

A sequence of paths from the original sequence of
motion segments in the layer is created via a linear
scan, breaking the original sequence at places where the
segments are far enough apart. Paths are labeled as either
closed or open as follows.

Definition 3.3: A path P = p1, p2, . . . , pn is labeled
as closed if DIST(pn, p1) is less than ε, otherwise P is
said to be open.

As seen in Figure 2, an island can be understood as
a closed outer path that contains several open or closed
inner paths where the solid walls of the model form the
outermost path. Islands are a simplistic hierarchical sort
of the type developed by Choi et al. [4]. The following
definition provides more rigorous characterization.

Definition 3.4: An island I is a non-continuous set
of paths with a single outer path and zero or more open
or closed inner paths. The outer path contains all of the
inner paths and is contained by no other path in the
layer. Inner paths may contain other paths but must be
contained by the outer path. Open paths may be the outer
path of an island only in the case that they are contained
by no other path.

A path p1 contains another path p2 if p1 is closed
and p2 occurs entirely inside of p1. That is, if all points
of p2 are inside of p1. We assume that the paths do
not cross, so if p2 is contained in p1, p2 does not cross

p1. So, in order to test if p1 contains p2, we may simply
verify whether p2[0].b is contained in p1 via the winding
number method [1].

CREATEISLANDS operates by selecting a candidate
outer path o for an island and scanning through the list
of paths in the layer searching for paths that it contains
and adding those incrementally to an island, removing
them from the input list as they are encountered. If a
path that contains o is found, that path becomes the
candidate outer, and the iteration begins again. A special
case where a layer contains no closed paths is handled
by creating a single island from the layer. This occurs
in “raft” layers created by the path generator.

C. Calculating the dependencies of islands

Now that the layers have been divided into sequences
of islands, the post-processor must impose physical
constraints on the order in which the islands are printed.
These constraints ensure the integrity of the output
model. Specifically, they ensure that while the print head
is following all of the paths in an island it will not collide
with another island, and that when an island is printed, it
will be resting on all islands that are a part of its support
structure. It is assumed that the support structure of an
island is adequate in the input model. These constraints
are realized by storing a set of dependencies D in each
island object that must be printed before the island in
question can be printed.

The print head is modeled by an axis aligned rectan-
gular volume that fully contains the region identified by
the user as the collison region C. Filament is extruded
from the middle of the bottom face of this rectangular
volume. C has side length equal to 2r and height h. For
example, on the Prusai3 fitted with a Greg’s Extruder [7]
used for our physical tests, this region has a radius of
7mm and a height of 7mm. For this setup, the collision
region is defined by the nozzle.

Ideally, when calculating the dependencies of island
i, C is swept along the outer path of each island j
to generate jc in the layers lj preceding i within the
height of C. i is then dependent on all jc ∈ lj which
it intersects. To make calculation simpler and speed
implementation, an expanded axis aligned box which
contains jc is calculated and tested for intersection
instead. This expanded box is obtained by moving the
corners of the box a distance of r in the x and y axes.

Definition 3.5: An island i in a layer at height zi
is dependent on another island j at height zj if the
expanded axis aligned bounding box of j intersects the
axis aligned bounding box of i and zi − h ≤ zj < zi.

CALCULATEDEPENDENCIES populates the depen-
dency set of each island according to Definition 3.5. The

inputs to this procedure are an island I which is to have
its dependency list populated, a sequence of the islands
in the layers before I , L, and the radius of the print head
r. For each island i in L, the algorithm checks whether
the bounding box of I intersects the bounding box of i.

D. Combining the islands into the final path

Algorithm 2 Applies a greedy heuristic over a series of
buffers to generate a new continuous path.
Input: A sequence of layers L, the height h of C.
Output: A continuous, ordered list of segments r.

1: procedure BUFFEREDGREEDY(L, h)
2: printed← [0, 0, . . . , 0] . len(printed) =

#islands
3: r ← ∅; bufmin← L[0][0].z; Z ← 0
4: islandBuf← ∅
5: for current = L[0] . . . L[len(L)− 1] do
6: Z ← current[0].z
7: if |Z − bufmin| ≥ h then
8: bufmin← Z
9: l← GREEDY(islandBuf)

10: r.add(SPAN(r[len(r)− 1], l[0]); r.add(l)
11: islandBuf← ∅
12: end if
13: if current is the last element in L then
14: islandBuf.add(current)
15: l← GREEDY(islandBuf)
16: r.add(SPAN(r[len(r)− 1], l[0]); r.add(l)
17: break
18: else
19: islandBuf.add(current)
20: end if
21: end for
22: return r
23: end procedure

After dependencies are calculated, islands may be
combined into a final continuous path containing both
extrusionless travel and printed motions. First, the
printed paths in each island must be connected into a sin-
gle path by extrusionless travel. TOCONTINUOUSPATH
converts an island to a continuous path by starting with
the outer path and greedily connecting the rest of the
paths in the island with extrusionless travel. After this
procedure has been invoked, an island may be treated
as a sequence of motion segments. These island-paths
are then greedily combined into a single path using
BUFFEREDGREEDY (Algorithm 2).

1) The buffered optimization approach: As we dis-
cussed previously, we must operate on the input model
in a manner that accounts for the print head. That is, we
consider chunks of height h, ensuring that the bounding
box of the print head, C, is a meaningful abstraction.
Above C there is no guarantee that parts of the printer
do not fully sweep a layer while printing an island.
Additionally, there may be parts of the printer outside of

(a) (b)

Fig. 3. (a) The path from Figure 1 after the optimization process.
Blue lines are extrusionless travel. Red is printed motion. (b) Two of
the screws that result from printing this path.

C that cannot be easily abstracted to simple geometric
representation. For example, the nozzle of the print head
extends about 7mm below the rest of the print head
and carriage in the Prusai3 test printer with Greg’s
extruder, and can be easily bounded whereas the rest
of the carriage and print head cannot be easily bounded.

The input for BUFFEREDGREEDY is a sequence of
sequences of island objects in which iterating over the
outer sequence represents iterating over the layers of
the model and the inner sequences are the islands in
the appropriate layer. Here L[0] is the first layer of the
model, L[0][0] is the first island in the first layer of the
model, and L[0][0][0] is the first motion segment in the
first layer of the first island. Remember that the layers
are ordered by z value, ascending. The outer portion
of BUFFEREDGREEDY chunks the model into a series
of smaller layer sequences and sends them through the
inner GREEDY procedure. It is GREEDY that actually
combines the islands into a single path and returns the
path. So, BUFFEREDGREEDY divides the model into
chunks and adds the connected paths from GREEDY onto
its output list. GREEDY operates by connecting each
island with its nearest possible neighbor. Each time an
island is selected, it is marked as printed in the printed
array. An island is possible if all of the islands in its
dependency set are marked as printed.

SPAN is used to connect islands together using ex-
trusionless travel by constructing a two dimensional
visibility graph over the foot print of the islands above
both the starting and destination islands. This visibility
graph is then queried to yield a collisionless horizontal
path which is connected with the appropriate vertical
motions to yield a collisionless three dimensional path.

In our current implementation, the construction of the

visibility graph dominates the run time of our algorithm
because a new visibility graph must be generated for
each island. The construction of a visibility graph with
a standard implementation takes O(n2 log n) time where
n is the number of vertices of the input polygons. Each
island is approximated by a bounding box which has
a constant number of vertices, so to run the SPAN
procedure for each island costs O(n3 log n) time where
n is the number of islands. We discuss potential opti-
mizations around this particular step in Section V.

IV. RESULTS

As a concrete example of our algorithm, we printed
the model of four screws shown in Figure 1 after
optimizing the path using our algorithm; the result is
shown in Figure 3. With our method applied, we achieve
a savings of about 30m of wasted motion. On our test
printer, a RepRap Prusa i3, this translated to a total print
time that was over an hour faster. As expected, printer
geometry dictates the possible improvement; we can see
in Figure 3 that printing in the z-direction is limited by
h, the height of the bounding box of the print head.

For a more comprehensive evaluation, we constructed
a benchmark set of 409 models of varying geome-
try taken from popular mesh sharing websites. Our
benchmark set consists of models that have a wide
variety of complexities in terms of the total distance
traveled by the print head (65mm–9.6km), number of
faces (36–2.9M), number of islands (2–35K) and the
number of layers (2–2.7K). We provide a table of the
full dataset along with individual complexity measures
and various performance measurements for each model
as a supplement to this manuscript.

To test such a large set of models, we made use
of a simulator. The simulator was configured to read
a tool path represented in the NIST RS274NGC G-code
standard [10], compatible with the Marlin firmware [11].
The abstracted tool path could then be operated on
and rendered back into a G-code representation and
analyzed. We ran the simulator for each of the 409
models, using parameters appropriate for our test printer.
As mentioned previously, the height of the bounding box
of the print head was set to 7mm as was the radius.

To measure performance, we considered the overall
reduction in extrusionless travel distance along with
the overall time taken by our current implementation.
Figure 4 provides a summary of the performance of our
algorithm on our benchmark. The extrusionless travel
in our models produced by a standard slicing-based
toolpath (obtained with Slic3r) spans five orders of mag-
nitude (Figure 4(a)), has a mean of 70m. Our primary
figure of merit to characterize the overall improvement

(b)(a) (c)

Fig. 4. Performance. Our approach provides a very low overhead means of significantly reducing extrusionless travel. The mean reduction
in extrusionless travel over our benchmark of 409 models of varying complexity is about 34%. Moreover our optimization algorithm is
computationally efficient, typically requiring taking just a few seconds.

afforded by our algorithm is the percentage reduction
of extrusionless travel. Figure 4(b) shows significant
overall improvement on nearly all models. The mean
and median percentage reductions in extrusionless travel
was around 34% over all models. As is evident from the
boxplot, our algorithm achieves over a 20% reduction
in travel over three quarters of the benchmark. We did
notice that our algorithm did not achieve significant
reductions in a small fraction of cases. For example,
about 30 models achieve an improvement of 5% or less.
Importantly, we also saw an increase in the extrusionless
travel in 20 models; 10 of these models had more
than 5% greater extrusionless travel than before opti-
mization. The worst two models increase extrusionless
travel by 25% and 27% respectively. To understand
the poor performance on these models, we examined
the generated toolpaths and found that the primary
reason for increased travel is the traversal of islands
and the spatial organization of islands. The issue is that
when the dependency graph provides very few (or no)
constraints on what can be printed, we do not optimize
the selection of the visitation order of the islands. We
discuss avenues for addressing this limitation below. To
evaluate running time, we ran Slic3r and our imple-
mentation on a consumer-grade desktop for all models.
The time taken by our algorithm is negligible in all but
a few cases (see Figure 4(c)). Typically our algorithm
takes on the order of seconds; the median runtime was
3.8 seconds. It is important to note that although our
algorithm can be considered a standalone approach, our
implementation takes the output of a slicing engine as
input (so that islands do not have be computed). Thus
the times given in Figure 4(c) are not meant to be head-
to-head comparison. Instead we view the time reported

as a reasonable upper bound on the additional overhead
for our approach. In comparison to slicing, which has
a median runtime of 38 seconds, the additional cost
of our algorithm is on average just a few seconds.
In cases with a relatively large running time, profiling
showed that the construction of the visibility graph and
computation of shortest path distances becomes costly in
certain instances. This aspect of the performance could
be improved with a more efficient data structure and/or
update scheme for the visibility graph.

A. Discussion

Overall, our approach provides a substantial reduction
in extrusionless travel in the vast majority of models
tested. It is important to note that since our method takes
a fraction of the time required by slicing, cases in which
extrusionless travel is actually increased can simply be
eliminated by examining the output of our algorithm to
judge whether there is an improvement. In cases where
there is a minor improvement, issues such as part quality
can also be considered in choosing a toolpath.

As shown empirically, our current algorithm can in
some cases increase the amount of extrusionless travel.
A natural question is to ask whether a 3D-aware method
can achieve as much or less extrusionless travel than
an optimal slicing-based method? This type of bound
is an open question but it is possible to construct
an illustrative example that shows that always printing
independent elements is suboptimal. The high-level idea
is that a 2D layer-by-layer approach can be ideal when
it is possible to use an element of the model that divides
two other elements as a mode of transportation between
the two. If a 3D aware method is limited to printing
spatially independent components in their entirety, then

we can construct a worst-case input as follows. Let A
and B be cubes with a small side length, and let D be
a cube with very large side length positioned between
A and B such that it is touching neither A nor B. With
this conformation, we may choose a print head radius
so that A, B and D are mutually independent. In the
worst case, the starting and ending points of islands in
D can be arranged to facilitate the traditional approach
by allowing printed travel through D between A and B.
With any ordering chosen by a 3D-aware method, the
side length of D must be paid for twice, and thus we may
choose the size of D relative to A and B to get arbitrarily
bad outputs. In practice, we find that realistically-sized
examples are hard to put into conditions as dire as this
pathological example due to the required proportions.

V. CONCLUSION

In this paper we have presented a novel, 3D-aware
approach to toolpath planning for fused filament fabri-
cation. Our algorithm makes use of printer geometry to
model dependencies between local features in order to
create a toolpath that attempts to minimize extrusionless
travel. Existing slicing methods cannot take advantage
of the possible savings in time, which we have shown
is 34% on average. Our algorithm is relatively simple
in its approach, but opens up a number of interesting
questions about toolpath planning in three dimensions.

We are currently exploring improved methods for 3D
aware planning. In particular we have taken inspiration
from the cases in which our current method actually
increases extrusionless travel. These cases demonstrate
that while our greedy method works well in the vast
majority of inputs, there is still improvement to be
gained by improving the modeling of spatial separation
in local features of the input model.

Yet another avenue for interesting research is param-
eterizing our approach to add a part quality criterion
into the optimization algorithm. The traditional layer-
based method results in relatively uniform curing time
that is proportional to the time needed to print the
whole layer. Our approach on the other hand, would
tend to lessen curing time due to its focus on printing in
three dimensions in a locally constrained area. Current
path generation software addresses this by altering the
print speed for very small islands. A simple hardware-
based approach to guarantee good curing is to add
an additional fan to the print bed. While there are
numerous material properties to take into consideration
(e.g. for ABS versus PLA), the interesting aspect of our
algorithm with respect to curing rates is that the extruder
height h can be tuned as needed. That is, if h is set to be
equal to the layer height, then our algorithm reproduces

the standard method because the dependency graph
would be constructed in such a way that all islands on a
single layer must be printed before proceeding on the z-
axis. Thus our algorithm can actually be modified (with
appropriate material-specific information about curing)
quite easily so that the optimization of extrusionless
travel can be balanced with the needed curing time.

REFERENCES

[1] D. G. Alciatore, “The point in polygon problem for arbitrary
polygons,” Computational Geometry, vol. 20, pp. 131–144, 2001.

[2] P. Alexander and D. Dutta, “Layered manufacturing of surfaces
with open contours using localized wall thickening,” Computer-
Aided Design, vol. 32, pp. 175–189, 2000.

[3] K. Castelino, R. D’Souza, and P. K. Wright, “Tool-path opti-
mization for minimizing airtime during machining,” Journal of
Manufacturing Systems, August 2004.

[4] S. Choi and K. Kwok, “A topological hierarchy-sorting algorithm
for layered manufacturing,” Rapid Prototyping Journal, vol. 10,
pp. 98–113, 2004.

[5] “Cura engine source code repository,” https://github.com/
Ultimaker/CuraEngine.

[6] S. Ding, M. A. Mannan, and A. Poo, “Adaptive iso-planar tool
path generation for machining of free-form surfaces,” Computer-
Aided Design, vol. 35, pp. 141–153, 2003.

[7] “Greg’s hinged extruder,” http://reprap.org/wiki/Gregs’s Hinged
Extruder.

[8] W. Han, M. A. Jafari, and K. Seyed, “Process speeding up via
deposition planning in fused deposition-based layered manufac-
turing,” Rapid Prototyping Journal, vol. 9, pp. 212–218, 2003.

[9] Y. Jin, Y. He, J. Fu, W. Gan, and Z. Lin, “Optimization of tool-
path generation for material extrusion-based additive manufac-
turing technology,” Additive Manufacturing, pp. 1–16, 2014.

[10] T. R. Kramer, F. M. Proctor, and E. R. Messina, “The nist
rs274ngc interpreter - version 3,” NIST Interagency/Internal
Report (NISTIR), August 2000.

[11] “Marlin firmware source repository,” https://github.com/
MarlinFirmware/Marlin.

[12] P. M. Pandey, N. V. Reddy, and S. G. Dhande, “Slicing pro-
cedures in layered manufacturing: a review,” Rapid Prototyping
Journal, vol. 9, no. 5, pp. 274–288, 2003.

[13] “Slic3r gcode generator,” http://www.slic3r.org, accessed: 4-29-
2015.

[14] K. A. Tarabanis, “Path planning in the proteus rapid prototyping
system,” Rapid Prototyping Journal, vol. 7, pp. 241–252, 2001.

[15] K. Tata, G. Fadel, A. Bagchi, and N. Aziz, “Efficient sliciing for
layered manufacturing,” Rapid Prototyping Journal, vol. 4, pp.
151–167, 1998.

[16] J. Tyberg and J. Bohn, “Local adaptive slicing,” Computer-Aided
Design, vol. 28, pp. 307–318, 1998.

[17] J. Vanek, J. A. G. Galicia, B. Benes, R. Mch, N. Carr, O. Stava,
and G. S. Miller, “Packmerger: A 3d print volume optimizer,”
Computer Graphics Forum, vol. 33, no. 6, pp. 322–332, 2014.

[18] N. Volpato, R. T. Nakashinma, L. C. Galvao, A. O. Barboza, P. F.
Benevides, and L. F. Nunes, “Reducing repositioning distances in
fused deposition-based processes using optimization algorithms,”
High Value Manufacturing, 2014.

[19] P. K. Wah, K. G. Murty, A. Joneja, and L. C. Chiu, “Tool
path optimization in layered manufacturing,” IIE Transactions,
vol. 34, pp. 335–347, 2000.

[20] M. Wojcik, L. Koszalka, I. Pozniak-Koszalka, and A. Kasprzak,
“MZZ-GA algorithm for solving path optimization in 3d print-
ing,” in ICONS 2015: The Tenth International Conference on
Systems, 2015.

