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Tertiary Structure Prediction

Why Should Tertiary Structure Prediction Be
Possible?

Molecules obey the laws of physics!
Conformation space is finite

Proteins have regular structure

Proteins fold into a small number of protein folds

Current Hypothesis:
Proteins generally adopt the lowest energy conformation

Use Chemistry and Physics to model molecular forces!

1) Simulate the Physics of Folding

Start with any conformation and simulate exactly what happens in the cell

2) Generate a Scoring Function
Search all conformations and score each according to physics



Tertiary Structure Prediction

Wants:

e Computationally Feasible

 All atom structures with resolution comparable to
experimental methods - for SBDD, Function Analysis

e Score indicating confidence in structure (reliability)

Why:
 Reduce Time and Cost of Protein Structure Determination
e Solve Structures that are Experimentally Intractable

Classes of Algorithms:

 Homology Modeling (Comparative Modeling)
 Fold Identification (Protein Threading)
* Ab-initio Methods
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Critical Assessment of Protein
Structure Prediction (CASP)

Contest of protein structure prediction
Held every 2 years

Protein Targets: Experimentally solved, but unreleased

CASP7 - Nov 2006
95 Targets, 124 Domains, ~180 Groups Participating

7" Community Wide Experiment on the

Critical Assessment of Techniques for Protein
Structure Prediction

Asilomar Conference Center, Pacific Grove, CA
November 26-30, 2006

Sponsored by the US National Library of Medicine (NIF/hLM), Mational Institute of General Mediczl Sciences (NIF/NIGMS}

Co sponsored by: BicSapizns hotwork of Excellence, ﬂﬂ]
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Critical Assessment of Protein
Structure Prediction (CASP)

Contest of protein structure prediction
Held every 2 years
Protein Targets: Experimentally solved, but unreleased

CASP7 - Nov 2006
95 Targets, 124 Domains, ~180 Groups Participating

Questions Addressed:

1) Are the models produced similar to the corresponding
experimental structure?

2) Is the mapping of the target sequence onto the proposed
structure (i.e. the alignment) correct?

3) Are comparative models more accurate than can be obtained
by simply copying the best template?

4) Has there been progress from the earlier CASPs?

5) What methods are most effective?

6) Where can future effort be most productively focused?



Critical Assessment of Protein
Structure Prediction (CASP)

Difficult to score

Many possible criteria
Overall fold vs Regional fold
Secondary structure arrangement
Accuracy of side-chain placement (Coordinate vs Dihedral)
Hydrogen-bonding networks
Was the ‘best’ structural template identified?
Loop structure
Active sites

Three Divisions of Algorithms:

 Homology Modeling (Comparative Modeling)
 Fold Identification (Protein Threading)
* Ab-initio Methods



Model Quality - GDT

Global Distance Test

Generate a seed superposition by superimposing
all 3, 5, and 7 consecutive ¢, atoms (sliding window)

Starting with an initial set of atom pairs
Obtain the transform (minimizing RMSD) from current set of pairs
|dentify all additional atom pairs with distance below threshold
Repeat untilfno additional atom pairs are added \

Not required to be continuous Use four thresholds (1, 2, 4, 8A)

Score based on the maximum number of aligned atom
pairs for each threshold

GDT = 1/4 [N1 + N2 + N4 + N8|

GDT can be expressed as a percent of total residues
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Homology Modeling

Most simple (and accurate) of the tertiary structure
predictive methods.

Based on two major observations:

1) The structure of a protein is uniquely determined by its
amino acid sequence

2) During evolution, structure is more stable and changes
more slowly than the associated sequence
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Homology Modeling

Template sequence B (arabinose-binding protein, 300 residues)
<4— Aligned region —»

Goal:
Atomic level model, on par with experimental methods



Template-Based Modeling

/\/\_\

Target

(unknown structure)

Template
(known structure)



Quality of computer-based models

o "Until 1985, computer-based weather forecasts
were less refiable than saying that the weather
tomorrow will be fike the weather today.”



“In previous CASP experiments it has been demonstrated
that predictors are rarely able to predict models that are
closer to the target structure than the structure of the
closest template.” -Tress et al, PROTEINS, S7:27-45, 2005
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For CASP6, most best models were better than the template.
Particularly true for easier structures.



Homology (Comparative) Modeling

Errors in one stage propagate through to all later stages

Seven Steps

1. Template recognition and initial alignment
Alignment correction
Backbone generation \

Loop modeling « .
Side-chain modeling «— Much room for improvement

Model optimizatio/
Model validation

 Many Comparative Modeling techniques are the same
e Traditional Methods will improve with more solved structures
e Change in methodology likely required for major breakthrough

NOoO RN



Fold Recognition - Threading

Best chance for structure prediction will use existing structures.
Many seemingly unrelated proteins share a similar fold.

If a homologous structure can not be found by sequence
comparison methods, can we identify a structural model by

comparing the target sequence directly to known structures?

Approach

e Rather than asking what is the structure of a target protein,
we ask if any known structure can serve as a reasonable
model. Then perform homology modeling.

e Does not predict ‘new’ folds (ie. ones we haven'’t seen).

e Can be considered a ‘verification’ step for the harder
problem of ab initio structure prediction.

 As a field we need to be able to do this.




Fold Recognition - Threading

Oncogene & Flagellum Motion

> 5
Y

Oxygen Transport & Electron Transport

Viral Protein & Immune System Protein <

Prediction, Tramontano, 2006



Fold Recognition - Threading

Goals:
e |dentify a reasonably similar model structure
* Provide an alignment to that structure

...KYFDVALHLINPGLFHVDSTSVALIYKLRTPL...

Start with protein

structure database

- Complete structure database OR
- Representative folds (CATH, SCOP)

Roughly compute
P(model | sequence)

Evaluation Function
- Profile-Based Methods
- Threading Methods
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Fold Recognition - Threading

Goals:
e |dentify a reasonably similar model structure
* Provide an alignment to that structure

...KYFDVALHLINPGLFHVDSTSVALIYKLRTPL...

Start with protein
structure database

- Complete structure database OR
- Representative folds (CATH, SCOP)

Roughly compute
P(model | sequence)

Evaluation Function
- Profile-Based Methods Template-Based
- Threading Methods Modeling



Fold Recognition - Threading

Threading Methods

* A sequence of amino acids (often including side-chains) is
thread through a known structure and may fit or ‘click’
with a target structure

e Use of pairwise potential function

e Considers long-range interactions

» Stabilizing forces can come from interactions of residues
distant in sequence

Pairwise Potential Function A

Substitution Matrices

Secondary Structure Propensities
Hydrophobicity
Accessibilities
Steric fit
Likelihood of interacting with neighbour residues



Fold Recognition - Threading

Pairwise Potential Function — Interaction Likelihood

Based on frequency of observing the interaction of two amino acids

Simple Model:

Count instances of all pairs of AAs occurring within a single
threshold distance in DB (i.e., 5A)

More Fine Grained Model:

Determine frequency of all AAs occurring as a function of distance d
Many parameters to estimate

Two small hydrophobic residues
— yarop

/Two residues with
like charge

m: num observations

fab(s): corrected frequency
Sparsely observed events are often smoothed | gas(s): uncorrected frequency

o 1 o T b f(s): frequency of observing
J7(s) ~= - f(s)+ - g (s) any two AA at distance s
o l+moe” " 14+mo” ° 7 : constant




Fold Recognition - Threading

How hard is protein threading?

With pairwise energy function is at least as hard as
MAX-CUT (which is NP-Complete)

/

Given graph G = (V, E), find a

cut (S, T) of V with maximum 1
number of edges between S
and T.
2 7
3
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Fold Recognition - Threading

How hard is protein threading?

With pairwise energy function is at least as hard as
MAX-CUT (which is NP-Complete)
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Fold Recognition - Threading

How hard is protein threading?

With pairwise energy function is at least as hard as
MAX-CUT (which is NP-Complete)

/

Given graph G = (V, E), find a 0101010101010101

cut (S, T) of V with maximum
number of edges between S
and T.

2

Consider threading the string
(01), to the graph G.




Fold Recognition - Threading

How hard is protein threading?

With pairwise energy function is at least as hard as
MAX-CUT (which is NP-Complete)

/

Given graph G = (V, E), find a 0101010101010101

cut (S, T) of V with maximum
number of edges between S
and T.

Score = Z S(ei )
r),.,-__‘jGF,"

S(e;;) = 1if label(v;) # label(v))
= 0 if label(v;) = label(v))




Fold Recognition - Threading

How hard is protein threading?

With pairwise energy function is at least as hard as
MAX-CUT (which is NP-Complete)

/

Given graph G = (V, E), find a 0101010101010101

cut (S, T) of V with maximum
number of edges between S
and T.

Score = Z S(ei )
r’,.,-__‘jEF."

S(e;;) = 1if label(v;) # label(v))
= 0 if label(v;) = label(v))
Score =7




Fold Recognition - Threading

Threading Methods: Pairwise Potential Function

Breaks dynamic programming independence assumption!
The score obtained for a match depends on other
positions in the alignment.




Fold Recognition - Threading

Threading Methods: Pairwise Potential Function

Breaks dynamic programming independence assumption!
The score obtained for a match depends on other
positions in the alignment.

Possible Work-Arounds:

Alignment techniques that can handle non-local interactions
Likely not guaranteed polynomial-time

Double dynamic programming
Various Approximations



Fold Recognition - Threading

Threading Methods

Target
A A, Ay A, As

Template



Fold Recognition - Threading

Threading Methods

Assumption:
The residue that will align with
A; A, A; Ay As Biis going to be similar to B,

Target

Template



Fold Recognition - Threading

Threading Methods

Frozen Approximation

Interaction partners for residue i are frozen to be the same
as in the template (i.e., not the target) and are iteratively

updated.
P Assumption:

The residue that will align with
A; A, A; Ay As Biis going to be similar to B,

Target

Template



Fold Recognition - Threading

Threading Methods

Consider threading just Core elements
Maintain topology (ordering)

Gaps are not allowed within a core
So threading only needs to specify a start
position for each core

Threading Score:
Sum of self-, pairwise-, and gap terms




Fold Recognition - Threading

Threading Methods Branch-and-Bound Search

. K I/“f — J

l. e ;
:\,
\J

N/

(B)

g Lathrop, Smith, JMB 1996

Lathrop & Smith, “Global Optimum Protein Threading with Gapped Alignment
and Empirical Pair Score Functions” Journal of Molecular Biology, 1996



Fold Recognition - Threading

Threading Methods Branch-and-Bound Search

m core elements C={C,, C,, ..., C,_} with lengths c,, ..., c,,
m loops, z,, ..., Z,,,, loop z;connects C;and C,,,
Loops have minimum / maximum lengths [min  max
Protein sequence a has n amino acids a,, ..., a,
A threading t2 = (2., 2, ..., ¢, ) : 2, is the starting AA index of C,
Each #; is bounded: .
1 _|_ X(C; + z-mm) S tgl S n + 1 — >_:(C} _|_ [m.z,n.)
1< 7=
1+ o + 1M <8 < 4+ 1M



Fold Recognition - Threading

Threading Methods Branch-and-Bound Search

score(t g E(,t}) +> > E(1,7,t7,t5)
1T > Y
~
Self—Energy. Pairwise-Energy:
of core C, at between core C, at t?,

position 2, and core C,; at {2,



Fold Recognition - Threading

Threading Methods Branch-and-Bound Search
Core 3 Core 4

OOO0 WWM

Each core has a limited range of possible alignment
positions.

Branch-and-Bound Search

Keep track of allowable threading space T.
For each core, C, store the lower b; and upper d; placement limits

Compute lower bounds on the score for each region.
Explore regions with lowest minimum bound.




Fold Recognition - Threading

Threading Methods

A Lower Bound on Threading Score over Threadings

min score(t) =
teT

>

min  FE(¢,x) + min  F(¢,7,y, 2)

b; <x<d;

J

E(i,t:) + Y E(i, j,ti, t;)

bj<y<d;
J>1 b;<2<d;

Ciynomial number of pairwise terms

\ Exponential number of threadings

Branch-and-Bound Search




Fold Recognition - Threading

Threading Methods Branch-and-Bound Search

Lathrop, Smith, JMB 1996
(6% = b%;, 7= 1), (b%= b%;, &= 07), (b% = b7y, %= d%), (b% = b%), d9 = d9)
(0% = 2, d% = 2), (b% = b%;, d%= d9), (b% = b3, d = d4), (b% = b2, d%=d%)

(bai = 3, dai = dai), (baj: baj, daj: daj), (bak = bak, dak = dak), (bal = bal, dal = dal)



Fold Recognition - Threading

Threading Methods Branch-and-Bound Search
Algorithm:

Initialization:

e Compute a lower bound for the set of all threadings
e Initialize a sorted list to contain one entry (the set of all threadings
with its lower bound)

Iteration:

 Remove from the list the set having the lowest lower bound

o If the set contains only a single threading, stop, and announce success
This is a global optimum threading

» Otherwise, split the the set into smaller subsets (split the core with
the largest d-b;)

e Compute a lower bound for each new subset
e Merge the new subsets into the list, sorted by lower bound

They have identified the global optimum in search spaces as
large as 103" threadings -- at rates of 1028 equivalent
threadings per second.



Fold Recognition - Threading

Threading Methods Branch-and-Bound Search

B Interleukin (8I1B) threaded through trypsin inhibitor (1TIE) model

MODEL = ) R ]
K2 E3 D e =3 S R v
B3 38883 = = 10 =3 3885
B4 = = e | ™ g
B3 3 =3 L EBE 3

C Trypsin inhibitor (1TIE) threaded through Interleukin (8I1B) model

MODEL omoo I 0sac 3600 | R EE E=3 & .3 €5
Cl
2 O g e G
I3 R = TR B T PSR R B 6 D
L4 S5, 3 B oy EEEER ST e
| C5 b B2 [ SRR,




Fold Recognition - Threading

Threading Methods Branch-and-Bound Search

Number Search Nirmber af Tta Fauivalent Fauivaent

Pretein I’ I'rotein ol core bpie search {search-only) threaclings threadings
number code length SCZMCNGS Size iterations scconds pecr iteration oer scoond
1 256k 10¢ 5 5.15c + 3 5 1(1) 103c +3 c19 -5
2 lend 137 3 475+ 4 & 1) 798¢+ 3 SN -4
3 nh 125 4 .50 + 4 7 1l S4e+ 3 S8% -4
- Zmhr 118 B 9.14c+ 4 i 1(1) 131c + 4 G14c 4
5 35l 82 + Li2e+5 3 1) 2240+ 4 LI2e -5
6 Ibge 174 N L83k +5 ) 1(l) 172e +4 163 -5
7 Tuhy e 5 T7le+ 5 4 1(1) LEde + 4 170 ~ 8
) Linbd 153 g L77¢+ 5 10 1(1) 1L77e+ 4 1.77¢ -5
9 s 136 5 5.02¢ + 5 7 1(l) Fl7e + 4 5.02¢ -5
45 lapa 206 4 336c - 17 141 13 (¢} 232c+ 15 1.55¢ + 16
44 4l 209 4 3800 - 18 35l 22 {7) LE2e + 16 2860 + 17
sU Stmn ) 8 s | H.51e - 18 11 28(7) A&Te + L€ 232e 4+ 17
3 llec 222 15 7.01c - 18 320 2612) 2.1%9¢c + 1€ 2.70c + 17
32 Lnar 290 L7 1338¢ - 19 3924 205 (L83) 3850 + 15 Ll2e + 17
a3 (BN 273 8 400 - 19 54 320073 S5+ 1R ane 4 I8
3 Scpu 307 L€ 1.2¢ - 20 1082 T2(5C) 1.12v + 17 169 + 18
35 Qupi 38 L7 1.95¢ — 22 290 57 (251 871lu+ 18 341e + 20
Sh 2had A G 1570 - 22 am7 200 (179 .30p + IR 280+ 20
57 X 114 2 HA7e - 24 SINK 205 (164 JaRp 4 2 A0+ 22
38 blaa 478 23 A3e — 31 4917 1409 (1267 [ 96 + 28 8,23 + 28

Lathrop, Smith, JMB 1996

Self-Threadings



Fold Recognition - Threading

Differences Between Fold Recognition Algorithms

e Protein Model and Interaction Description
The full three-dimensional structure is often simplified

 Energy Parameterization
Energy functions not as sophisticated as we’ll see in molecular simulation

e Alignment Algorithms
Dynamic Programming with Frozen Approximation
Double Dynamic Programming
Monte Carlo Minimization
Branch-and-Bound

Limitations

 Fold Recognition algorithms will return the fold that minimizes the
energy function or maximizes the alignment score - but that doesn’t
mean the identified model is correct.

* |dentified model structure is often not as good as in homology
modeling



ADb initio

When no structural model can be identified a model must be
constructed from first principles

Molecules obey the laws of physics!

Proteins generally adopt the lowest energy conformation
Conformation space is finite

Proteins fold into a small number of protein folds

Current Challenges:
- Potential functions have limited accuracy
- Conformational search space is huge
Many methods use reduced representations,
simplified potentials, coarse search
Strategies, simplified solvent models, but...



ADb Initio - Molecular Dynamics

When no structural model can be identified a model must be
constructed from first principles

Molecules obey the laws of physics!
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Proteins fold into a small number of protein folds
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Strategies, simplified solvent models, but...



Folding@Home
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ADb initio

When no structural model can be identified a model must be
constructed from first principles

Molecules obey the laws of physics!

Proteins generally adopt the lowest energy conformation
Conformation space is finite

Proteins fold into a small number of protein folds

Current Challenges:
- Potential functions have limited accuracy
- Conformational search space is huge
Many methods use reduced representations,
simplified potentials, coarse search
Strategies, simplified solvent models, but...

When a new fold is discovered, it is often composed of

common structural motifs at the fragment level



ADb Initio
Fragment Based Methods

 Local structure profiles from PDB database

Assumption:
The distribution of conformations sampled by a short sequence
(fragment) is approximated by the distribution of

conformations of the same sequence and closely related
sequences in the structure database.

Sequences




ADb initio

Fragment Based Methods
Method
e Split the sequence into fragments

» Search the DB for structures having similar sequence
» Use optimization technique to find best combination of fragments

Generate a small alphabet of structural fragments that can be
used to construct any protein:

S (S >
S —)
= >



ADb initio

Rosetta

Performs structure prediction in a probabilistic framework
Fragment library mined from PDB

Two scoring functions
Coarse-grained, probabilistic-based scoring function in initial stages
Fine-grained, more physically realistic, atomic-level in later stages

Tries to find structure that optimizes:
Pr|S | M| Pr|M]
Pr[S]

M: model structure, S: sequence

PrlM | S| =

Marginal P(S) assumed 1.
P(M) and P(S|M) from above scoring functions



ADb initio

Rosetta
Fragment Selection

 All 9-residue windows in the query are scored against all
windows in their non-redundant database of high-
resolution structures (<50% sequence identity).

e Sequence profiles for both the query and DB subsequence
are generated by PSI-BLAST and compared.

* Predicted secondary-structure of the query is compared
with the DSSP computed SS of the known structure.

e A ranked list of top fragments in each sequence window is
maintained.

e Up to 200 structural fragments are maintained for each 9-
residue window in the query sequence



ADb initio

Rosetta
Fragment Assembly -- Monte Carlo Search

e Protein starts as extended sequence

e A 9-residue fragment window is chosen at random and
IS swapped (structurally) with a fragment from the DB

e Maintains an ensemble of conformations with high
posterior probabilities

T\

N, —



ADb initio

Rosetta
Fragment Assembly -- Monte Carlo Search
Repeat k times - each time starting from extended configuration

Stage of Search Terms Included in Scoring Function

Initial (until all AA replaced) | steric term only

First 2,000 Steps steric, helix packing, sheet arrangement,
electrostatics, solvation, 30% strand
hydrogen bonding

Next 20,000 Steps sterics, helix packing, sheet arrangement,
electrostatics, solvation, strand
hydrogen-bonding, 50% side-chain
solvation

Last 6,000 Steps all terms

Observation: After initial collapse, any fragment swap IS Tikely 1o create
a clash with neighbouring residues or break favorable contacts. We
need for something a bit more gentle.




ADb Initio
Rosetta
Fragment Assembly -- Monte Carlo Search

Generate multiple structures within the radius-of-convergence

of the native free-energy minima.

Fine-Grained Refinement

e Optimization of side-chain rotamers

e Gradient descent minimization after backbone modification

 Random torsion angle refinement

e Rapid torsion angle optimization to offset global backbone perturbations

Cluster results:

» Best cluster has greatest number of conformations within 4A RMSD
of the center

e Representative structures taken from each of the best k clusters and
returned to user



Rosetta Video

http://boinc.bakerlab.org/rosetta/rah_movies/1ubi_copyright.wmv



http://boinc.bakerlab.org/rosetta/rah_movies/1ubi_copyright.wmv

ADb initio

Rosetta
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ADb initio

Rosetta - Not necessarily typical results

Experimental Model

Model 4



CASP6

ADb initio

GDT scores for New Fold Targets

W Average @ Best

ayana, Lee, PROTEINS, S7, 2005

nt, Tai, Sathyanar

Vince

Target



ADb initio

CASP6

Target 1D* Size (AA) Class” Average® GDT TS Best® GDT TS
T0216_2 213 NFh 9.9 14.0
T0216 1 213 12.0 21.3
T0241 1 117 NTh 16.2 25.1
T0241_2 119 NTh 17.3 28.8

TO242

T0233 153 NFh 20.3 99.3
T0248 2 R7 NFe 30.6 50.0
T0201 90 NFe 32.1 61.2
T0209 2 73 NTFe 3.5 79.2
T0209 1 130 FR/A 174 315
T0273 186 FR/A 18.1 375
T019%8 991 FR/A 2.2 51.1
T0272 2 122 FR/A 21.9 34.6
T0199 3 R2 FR/A 23.7 36.3
T0212 119 FR/A 23.8 A5.8
T0239 98 FR/A 25.0 41.3
T0272 1 R5 FR/A 95.5 585

Vincent, Tai, Sathyanarayana, Lee, PROTEINS, S7, 2005




ADb Initio CASP6

Very good prediction
T0201

Vincent, Tai, Sathyanarayana, Lee, PROTEINS, S7, 2005



ADb Initio CASP6

Poor prediction

T0216_1

/target TSOZl 1

i, Sathya yanha PROTEINS, S7, 2005



ADb Initio CASP6

Poor prediction

Jir

Vincent, Tai, Sathyanarayana, Lee, PROTEINS, S7, 2005



ADb Initio CASP6

TS003 5 target ~ TS0237_2



ADb initio




ADb INItI0  Resetta CASP6

Visually best® Among top five®
ID Narfe NFh NFe FR/A NFh NFe FR/A
100  Baker ® 1 0 5 4 2 4
021 Kolinski & Bujryici 1 2 1 2 1
450 CGinalski 0 2 0 1 4 4
003 Jones-UCL 2 0 0 1 2 3
166 SAM-T04-HAnd - - - 2 4 0
604 Baker-Robgtta 04 1 0 0 2 0 2
101 Baker-Rohelia () 2 () 2 P ()
160 Keagar - - o 0 4 1
052 Rokky - - - 2 0 0
060 Bilab 1 0 0 2 0 0
176 Skolnick-Zhang - . - 0 0 2
501 Mcon 0 1 0 0 0 1
113 P’modeller5 1 0 0 - - o
172 PratemmShop 1 () () - . -
035 GeneSilico 0 0 1 - - -
089 KIAS 0 0 1 - - o
157 3D-Jigsaw 0 0 1 — — —

Vincent, Tai, Sathyanarayana, Lee, PROTEINS, S7, 2005



Rosetta @ home

http://www.rosettaathome.org/

Rosetta@home
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ADb initio

e Clearly a more challenging problem
e Predictive accuracy is not as good as other methods
e 5-20 ARMSD, Not sufficient for SBDD, but:

» May recognize more distant structural homologues

» May recognize structural or functional motifs

e May be useful to assist in experimental structure determination
* May benefit from more deterministic search

Why?
e Quality of Search, Quality of Scoring Function

* |s the folding process important? Are we simulating folding?
e MC search in ROSETTA may have hard time climbing hills

Low energy states that can only be achieved by multiple uphill moves
are not likely to be achieved.

Do we consider the correct regions of conformation space?

Can we recognize the correct conformation when we see it?




