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Why Should Tertiary Structure Prediction Be  
   Possible?

Tertiary Structure Prediction

Molecules obey the laws of physics! 
Conformation space is finite 
Proteins have regular structure 
Proteins fold into a small number of protein folds 
Current Hypothesis: 
   Proteins generally adopt the lowest energy conformation

Use Chemistry and Physics to model molecular forces! 

1) Simulate the Physics of Folding 
   Start with any conformation and simulate exactly what happens in the cell 

2) Generate a Scoring Function 
   Search all conformations and score each according to physics



Tertiary Structure Prediction

Classes of Algorithms:
• Homology Modeling (Comparative Modeling) 
• Fold Identification (Protein Threading) 
• Ab-initio Methods

Wants:
• Computationally Feasible 
• All atom structures with resolution comparable to 
    experimental methods - for SBDD, Function Analysis 
• Score indicating confidence in structure (reliability)

Why:
• Reduce Time and Cost of Protein Structure Determination 
• Solve Structures that are Experimentally Intractable
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Critical Assessment of Protein 
  Structure Prediction (CASP)
Contest of protein structure prediction 
Held every 2 years 
Protein Targets: Experimentally solved, but unreleased

CASP7 - Nov 2006
95 Targets, 124 Domains, ~180 Groups Participating



Critical Assessment of Protein 
  Structure Prediction (CASP)
Contest of protein structure prediction 
Held every 2 years 
Protein Targets: Experimentally solved, but unreleased

CASP7 - Nov 2006
95 Targets, 124 Domains, ~180 Groups Participating

Questions Addressed:
1) Are the models produced similar to the corresponding
     experimental structure?
2) Is the mapping of the target sequence onto the proposed
     structure (i.e. the alignment) correct?
3) Are comparative models more accurate than can be obtained
     by simply copying the best template?
4) Has there been progress from the earlier CASPs?
5) What methods are most effective?
6) Where can future effort be most productively focused?



Difficult to score 
Many possible criteria 
   Overall fold vs Regional fold 
   Secondary structure arrangement 
   Accuracy of side-chain placement (Coordinate vs Dihedral) 
   Hydrogen-bonding networks 
   Was the ‘best’ structural template identified? 
   Loop structure 
   Active sites

Critical Assessment of Protein 
  Structure Prediction (CASP)

Three Divisions of Algorithms:
• Homology Modeling (Comparative Modeling) 
• Fold Identification (Protein Threading) 
• Ab-initio Methods



Global Distance Test

Model Quality - GDT

Generate a seed superposition by superimposing 
   all 3, 5, and 7 consecutive     atoms (sliding window)

Starting with an initial set of atom pairs 
   Obtain the transform (minimizing RMSD) from current set of pairs 
   Identify all additional atom pairs with distance below threshold 
   Repeat until no additional atom pairs are added

Use four thresholds (1, 2, 4, 8A)

Score based on the maximum number of aligned atom  
  pairs for each threshold

GDT = 1/4 [N1 + N2 + N4 + N8]

Not required to be continuous

GDT can be expressed as a percent of total residues



• Words

Best model for each target

Increasing Difficulty

Kryshtafovych et al, PROTEINS, 2005



• Words

Average of best 6 models

Increasing Difficulty

Kryshtafovych et al, PROTEINS, 2005



Most simple (and accurate) of the tertiary structure 
   predictive methods.

Homology Modeling

1) The structure of a protein is uniquely determined by its  
       amino acid sequence 
2) During evolution, structure is more stable and changes  
       more slowly than the associated sequence

Based on two major observations:

Structural Bioinformatics, 2003



Homology Modeling

Structural Bioinformatics, 2003

Goal: 
   Atomic level model, on par with experimental methods



Template-Based Modeling

Template 
(known structure)

 

Target 
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Randy Reed, CASP7 Presentation



Purple: Template 
Red: Best Predictor 
Yellow: Avg of Best 10
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For CASP6, most best models were better than the template. 
Particularly true for easier structures.

Tress et al, PROTEINS, Suppl 7, 2005

“In previous CASP experiments it has been demonstrated  
  that predictors are rarely able to predict models that are  
  closer to the target structure than the structure of the  
  closest template.”     -Tress et al, PROTEINS, S7:27-45, 2005



Seven Steps

Homology (Comparative) Modeling

1. Template recognition and initial alignment 
2. Alignment correction 
3. Backbone generation 
4. Loop modeling 
5. Side-chain modeling 
6. Model optimization 
7. Model validation

Errors in one stage propagate through to all later stages

Much room for improvement

• Many Comparative Modeling techniques are the same 
• Traditional Methods will improve with more solved structures 
• Change in methodology likely required for major breakthrough



Fold Recognition - Threading
Best chance for structure prediction will use existing structures. 
Many seemingly unrelated proteins share a similar fold.

If a homologous structure can not be found by sequence  
  comparison methods, can we identify a structural model by  
  comparing the target sequence directly to known structures?

• Rather than asking what is the structure of a target protein,  
    we ask if any known structure can serve as a reasonable  
    model.  Then perform homology modeling. 
• Does not predict ‘new’ folds (ie. ones we haven’t seen). 
• Can be considered a ‘verification’ step for the harder  
    problem of ab initio structure prediction. 
• As a field we need to be able to do this.

Approach 



Fold Recognition - Threading

Protein Structure Prediction, Tramontano, 2006

Oxygen Transport & Electron Transport

Oncogene & Flagellum Motion

Viral Protein & Immune System Protein
 

 
 



Fold Recognition - Threading
Goals: 
• Identify a reasonably similar model structure 
• Provide an alignment to that structure

Start with protein 
 structure database 
   - Complete structure database OR 
   - Representative folds (CATH, SCOP)

Roughly compute 
   P(model | sequence)

...KYFDVALHLINPGLFHVDSTSVALIYKLRTPL...

Evaluation Function 
   - Profile-Based Methods 
   - Threading Methods
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Fold Recognition - Threading
Goals: 
• Identify a reasonably similar model structure 
• Provide an alignment to that structure

Start with protein 
 structure database 
   - Complete structure database OR 
   - Representative folds (CATH, SCOP)

...KYFDVALHLINPGLFHVDSTSVALIYKLRTPL...

Template-Based 
                Modeling

Roughly compute 
   P(model | sequence)

Evaluation Function 
   - Profile-Based Methods 
   - Threading Methods



Fold Recognition - Threading
Threading Methods
• A sequence of amino acids (often including side-chains) is 
    thread through a known structure and may fit or ‘click’ 
    with a target structure 
• Use of pairwise potential function 
• Considers long-range interactions 
• Stabilizing forces can come from interactions of residues 
    distant in sequence

Substitution Matrices 
Secondary Structure Propensities 
Hydrophobicity 
Accessibilities 
Steric fit 
Likelihood of interacting with neighbour residues

Pairwise Potential Function
 

 

 
 

 



Fold Recognition - Threading
Pairwise Potential Function – Interaction Likelihood

Based on frequency of observing the interaction of two amino acids

Simple Model: 
   Count instances of all pairs of AAs occurring within a single 
     threshold distance in DB (i.e., 5A) 
More Fine Grained Model: 
   Determine frequency of all AAs occurring as a function of distance d 
   Many parameters to estimate

 
 

Two residues with 
   like charge

Two small hydrophobic residues

m: num observations 
fab(s): corrected frequency 
gab(s): uncorrected frequency 
f (s): frequency of observing 
        any two AA at distance s 
    : constant

 Sparsely observed events are often smoothed



Fold Recognition - Threading
How hard is protein threading?

With pairwise energy function is at least as hard as 
  MAX-CUT (which is NP-Complete)

Given graph G = (V, E), find a 
cut (S, T) of V with maximum 
number of edges between S 
and T.
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Fold Recognition - Threading
How hard is protein threading?

With pairwise energy function is at least as hard as 
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cut (S, T) of V with maximum 
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and T.



Fold Recognition - Threading
How hard is protein threading?

With pairwise energy function is at least as hard as 
  MAX-CUT (which is NP-Complete)

Given graph G = (V, E), find a 
cut (S, T) of V with maximum 
number of edges between S 
and T.
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Consider threading the string 
  (01)|V| to the graph G.

01 0 10 10 1 0 1 01 01 01



Fold Recognition - Threading
How hard is protein threading?

With pairwise energy function is at least as hard as 
  MAX-CUT (which is NP-Complete)

Given graph G = (V, E), find a 
cut (S, T) of V with maximum 
number of edges between S 
and T.
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01 0 10 10 1 0 1 01 01 01

Score

S(ei,j) = 1 if label(vi) = label(vj) 
          = 0 if label(vi) = label(vj)



Fold Recognition - Threading
How hard is protein threading?

With pairwise energy function is at least as hard as 
  MAX-CUT (which is NP-Complete)

Given graph G = (V, E), find a 
cut (S, T) of V with maximum 
number of edges between S 
and T.
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01 0 10 10 1 0 1 01 01 01

Score

S(ei,j) = 1 if label(vi) = label(vj) 
          = 0 if label(vi) = label(vj)

Score = 7



Fold Recognition - Threading
Threading Methods: Pairwise Potential Function

Breaks dynamic programming independence assumption! 
The score obtained for a match depends on other  
   positions in the alignment.

 

  

  



Fold Recognition - Threading
Threading Methods: Pairwise Potential Function

Possible Work-Arounds: 
   Alignment techniques that can handle non-local interactions 
      Likely not guaranteed polynomial-time 
   Double dynamic programming 
   Various Approximations

Breaks dynamic programming independence assumption! 
The score obtained for a match depends on other  
   positions in the alignment.



Fold Recognition - Threading
Threading Methods
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Fold Recognition - Threading
Threading Methods
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Assumption: 
  The residue that will align with  
    Bi is going to be similar to Bi.



Fold Recognition - Threading
Threading Methods
Frozen Approximation
Interaction partners for residue i are frozen to be the same  
  as in the template (i.e., not the target) and are iteratively  
  updated.
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Fold Recognition - Threading

                     

Consider threading just Core elements 
Maintain topology (ordering) 
Gaps are not allowed within a core 
   So threading only needs to specify a start 
    position for each core 
Threading Score: 
   Sum of self-, pairwise-, and gap terms

  

Core 1 Core 2 Core 3 Core 4

Threading Methods



Fold Recognition - Threading
Threading Methods Branch-and-Bound Search

Lathrop, Smith, JMB 1996

Lathrop & Smith, “Global Optimum Protein Threading with Gapped Alignment  
  and Empirical Pair Score Functions” Journal of Molecular Biology, 1996



Fold Recognition - Threading

                     

Core 1 Core 2 Core 3 Core 4

Threading Methods Branch-and-Bound Search

m core elements C = {C1, C2, ..., Cm} with lengths c1, ..., cm 

m loops, z0, ..., zm-1,   loop zi connects Ci and Ci+1 
Loops have minimum / maximum lengths  lmin, lmax 

Protein sequence a has n amino acids a1, ..., an 

A threading ta = (ta1, ta2, ..., tam) : tai is the starting AA index of Ci 
Each tai is bounded:



Fold Recognition - Threading
Threading Methods

                     

Core 1 Core 2 Core 3 Core 4

z0 ta1 z1 ta2 z2
ta3 z3 ta4

Branch-and-Bound Search

Self-Energy: 
of core Ci at 
position tai

Pairwise-Energy: 
between core Ci at tai 
and core Cj at taj

  

score(ta) =
�

i

E(i, tai ) +
�

i

�

j>i

E(i, j, tai , taj )



Fold Recognition - Threading
Threading Methods

                     

Each core has a limited range of possible alignment  
   positions.

    

Core 1 Core 2 Core 3 Core 4

Branch-and-Bound Search

Branch-and-Bound Search
Keep track of allowable threading space T. 
   For each core, Ci, store the lower bi and upper di placement limits 
Compute lower bounds on the score for each region. 
Explore regions with lowest minimum bound.

b2 d2



min
t⇥T
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t⇥T
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Fold Recognition - Threading
Threading Methods
A Lower Bound on Threading Score over Threadings T

Branch-and-Bound Search

Exponential number of threadings

Polynomial number of pairwise terms



Fold Recognition - Threading
Threading Methods Branch-and-Bound Search

Lathrop, Smith, JMB 1996
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Fold Recognition - Threading
Threading Methods Branch-and-Bound Search

Algorithm: 
Initialization:
• Compute a lower bound for the set of all threadings 
• Initialize a sorted list to contain one entry (the set of all threadings 
   with its lower bound)

• Remove from the list the set having the lowest lower bound 
• If the set contains only a single threading, stop, and announce success 
   This is a global optimum threading 
• Otherwise, split the the set into smaller subsets (split the core with 
   the largest di-bi ) 
• Compute a lower bound for each new subset 
• Merge the new subsets into the list, sorted by lower bound

Iteration:

They have identified the global optimum in search spaces as  
   large as 1031 threadings -- at rates of 1028 equivalent  
   threadings per second.



Fold Recognition - Threading
Threading Methods Branch-and-Bound Search

Lathrop, Smith, JMB 1996

   



Fold Recognition - Threading
Threading Methods Branch-and-Bound Search

Self-Threadings

Lathrop, Smith, JMB 1996



Fold Recognition - Threading
Differences Between Fold Recognition Algorithms
• Protein Model and Interaction Description 
    The full three-dimensional structure is often simplified 
• Energy Parameterization 
    Energy functions not as sophisticated as we’ll see in molecular simulation 
• Alignment Algorithms 
    Dynamic Programming with Frozen Approximation 
    Double Dynamic Programming 
    Monte Carlo Minimization 
    Branch-and-Bound

Limitations
• Fold Recognition algorithms will return the fold that minimizes the  
   energy function or maximizes the alignment score - but that doesn’t  
   mean the identified model is correct. 
• Identified model structure is often not as good as in homology  
   modeling



Ab initio
When no structural model can be identified a model must be  
  constructed from first principles

Molecules obey the laws of physics! 
Proteins generally adopt the lowest energy conformation  
Conformation space is finite 
Proteins fold into a small number of protein folds

Current Challenges:

 

 

- Potential functions have limited accuracy
- Conformational search space is huge

Many methods use reduced representations,  
  simplified potentials, coarse search  
  strategies, simplified solvent models, but...
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Folding@Home
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Ab initio
When no structural model can be identified a model must be  
  constructed from first principles

Molecules obey the laws of physics! 
Proteins generally adopt the lowest energy conformation  
Conformation space is finite 
Proteins fold into a small number of protein folds

Current Challenges:

 

 

- Potential functions have limited accuracy
- Conformational search space is huge

Many methods use reduced representations,  
  simplified potentials, coarse search  
  strategies, simplified solvent models, but...

When a new fold is discovered, it is often composed of  
  common structural motifs at the fragment level



Ab initio
Fragment Based Methods
• Local structure profiles from PDB database

The distribution of conformations sampled by a short sequence  
  (fragment) is approximated by the distribution of  
  conformations of the same sequence and closely related  
  sequences in the structure database.
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Ab initio

Method 
• Split the sequence into fragments 
• Search the DB for structures having similar sequence 
• Use optimization technique to find best combination of fragments

Fragment Based Methods

Generate a small alphabet of structural fragments that can be  
  used to construct any protein:

 

  
 

 

  

 

  

 

 

 

 



Ab initio
Rosetta

Performs structure prediction in a probabilistic framework 
Fragment library mined from PDB 
Two scoring functions 
    Coarse-grained, probabilistic-based scoring function in initial stages 
    Fine-grained, more physically realistic, atomic-level in later stages

Tries to find structure that optimizes:

M: model structure,  S: sequence
Marginal P(S) assumed 1. 
P(M) and P(S|M) from above scoring functions

Pr[M | S] =
Pr[S | M ] Pr[M ]

Pr[S]



Ab initio

Fragment Selection
• All 9-residue windows in the query are scored against all  
   windows in their non-redundant database of high- 
   resolution structures (<50% sequence identity). 
• Sequence profiles for both the query and DB subsequence  
   are generated by PSI-BLAST and compared. 
• Predicted secondary-structure of the query is compared  
   with the DSSP computed SS of the known structure. 
• A ranked list of top fragments in each sequence window is  
   maintained. 
• Up to 200 structural fragments are maintained for each 9- 
   residue window in the query sequence

Rosetta



Ab initio

Fragment Assembly -- Monte Carlo Search
• Protein starts as extended sequence 
• A 9-residue fragment window is chosen at random and  
    is swapped (structurally) with a fragment from the DB 
• Maintains an ensemble of conformations with high  
    posterior probabilities

 

 

 

Rosetta



Ab initio

Fragment Assembly -- Monte Carlo Search

Stage of Search Terms Included in Scoring Function
Initial (until all AA replaced) steric term only

First 2,000 Steps steric, helix packing, sheet arrangement, 
electrostatics, solvation, 30% strand 
hydrogen bonding

Next 20,000 Steps sterics, helix packing, sheet arrangement, 
electrostatics, solvation, strand 
hydrogen-bonding, 50% side-chain 
solvation

Last 6,000 Steps all terms
Observation: After initial collapse, any fragment swap is likely to create  
  a clash with neighbouring residues or break favorable contacts.  We  
  need for something a bit more gentle.

Repeat k times - each time starting from extended configuration

Rosetta



Ab initio

Fragment Assembly -- Monte Carlo Search

Fine-Grained Refinement
• Optimization of side-chain rotamers 
• Gradient descent minimization after backbone modification 
• Random torsion angle refinement 
• Rapid torsion angle optimization to offset global backbone perturbations

Cluster results:
• Best cluster has greatest number of conformations within 4A RMSD 
    of the center 
• Representative structures taken from each of the best k clusters and 
    returned to user

Rosetta

Generate multiple structures within the radius-of-convergence  
   of the native free-energy minima.



http://boinc.bakerlab.org/rosetta/rah_movies/1ubi_copyright.wmv

Rosetta Video

http://boinc.bakerlab.org/rosetta/rah_movies/1ubi_copyright.wmv


Ab initio
Rosetta
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Bradley, Misura, Baker, Science, 2005



Ab initio
Rosetta

Bradley, Misura, Baker, Science, 2005



Ab initio
Rosetta - Not necessarily typical results

Rohl, Strauss, Misura, Baker, Methods in Enzymology, 2004

Experimental Model



Ab initio CASP6

Vincent, Tai, Sathyanarayana, Lee, PROTEINS, S7, 2005

GDT scores for New Fold Targets

Target



Ab initio CASP6

Vincent, Tai, Sathyanarayana, Lee, PROTEINS, S7, 2005



Ab initio
Very good prediction

CASP6

Vincent, Tai, Sathyanarayana, Lee, PROTEINS, S7, 2005



Ab initio
Poor prediction

CASP6

Vincent, Tai, Sathyanarayana, Lee, PROTEINS, S7, 2005



Ab initio
Poor prediction

CASP6

Vincent, Tai, Sathyanarayana, Lee, PROTEINS, S7, 2005



Ab initio CASP6

Vincent, Tai, Sathyanarayana, Lee, PROTEINS, S7, 2005



Ab initio CASP6



Ab initio CASP6

Vincent, Tai, Sathyanarayana, Lee, PROTEINS, S7, 2005

Rosetta



Rosetta @ home
http://www.rosettaathome.org/



Ab initio
• Clearly a more challenging problem 
• Predictive accuracy is not as good as other methods 
• 5 - 20 A RMSD, Not sufficient for SBDD, but:

• Quality of Search, Quality of Scoring Function 
• Is the folding process important? Are we simulating folding? 
• MC search in ROSETTA may have hard time climbing hills 
    Low energy states that can only be achieved by multiple uphill moves  
     are not likely to be achieved.

• May recognize more distant structural homologues 
• May recognize structural or functional motifs 
• May be useful to assist in experimental structure determination 
• May benefit from more deterministic search

Why?

Do we consider the correct regions of conformation space? 
Can we recognize the correct conformation when we see it?


