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Motivation

Protein Structure Comparison

• Understand sequence and  
   structure variability 
• Understand Domain architecture  
   of proteins 
• Understand evolution of protein  
   function 
• Infer structural relationships 
• Infer evolutionary relationships  
• Determine coverage of fold space 
• Use in predictive modeling



• Feature Extraction 
    What features are to be extracted and compared? 
• Fine level (residue or atom) vs. Coarse Level (SSE) 
    Fine level can be used to make functional hypotheses 
    Coarse level used for global fold comparison / classification 
• Maintenance of Topology? 
    Does pattern need to have similar sequential ordering? 
• Method of Comparison? 
    How similar do structural elements need to be to match? 
    Should be: 
      - Invariant to trivial changes (ie. rotation / translation) 
      - Robust, description should not change drastically due to minor 
        changes in structure

Structure Comparison
Points to Consider
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Protein Similarity
Given a correspondence and an optimal positioning of 
two structures, how close are corresponding residues/
elements?
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Superposition

T: Transformation C: Correspondence

 

   

Structure Comparison

S�(A, B) = min
T,C

D(A, T (B), C)
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• Most common method to score similarity of two structures 
• Most useful to compare relatively similar structures 
• Often computed from       only 
• Requires residue correspondence between two proteins 
• Distance measured in Angstroms 
     Smaller RMSD implies more similar structures

RMSD Root Mean Squared Distance

Coordinate RMSD

:	Transformation 
: weights (often 1) 
: set of equivalenced atoms
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RMSD Root Mean Squared Distance

Distance	RMSD
Rotation and Translation Invariant

Note that distance-RMSD increases with the size of the point 
sets being compared. We can normalize by the square root 
of the length:



If distance measure (D) is RMSD and correspondence 
(C) is given, then T can be computed easily using SVD.

RMSD

A B Aligned Centroids Optimal Superposition

Protein Bioinformatics, 2004

S�(A, B) = min
T,C

D(A, T (B), C)



RMSD Limitations
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Superposition

• Equivalence of positions (correspondence) must be 
  known 
• Relative displacement of one subdomain within one 
  structure can result in poor overall fit 
• Insertions and Deletions? Gaps?

What can we learn from sequence alignment?



 

Structural Alignment
Lets try the same thing to compute alignment and similarity.
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How to compute the similarity Di,k ?
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Similarity Matrix



Will Dynamic Programming Work for 
Structural Alignment?

Structural Alignment

   Optimal Substructure: an optimal solution to the problem  
       contains within it optimal solutions to subproblems 
   Overlapping Subproblems: the space of subproblems must be  
       ‘small’, solving the same subproblems over and over?

Best Alignment and 
Superposition 
of Entire Chain

Best Alignment 
and Superposition  
of first 5 Residues

Protein Bioinformatics, 2004



Will Dynamic Programming Work for 
Structural Alignment?

Structural Alignment

   Optimal Substructure: an optimal solution to the problem  
       contains within it optimal solutions to subproblems 
   Overlapping Subproblems: the space of subproblems must be  
       ‘small’, solving the same subproblems over and over?

Any choice to align two substructures (local alignment) will  
  affect the scoring of the global alignment between the   
  complete structures.

The independence requirement is violated and DP can no  
  longer guarantee an optimal solution.



 

Structural Alignment
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DEach entry should indicate likelihood of match 
  by incorporating global information 

Incorporate some global information locally.

Similarity Matrix



Structure and Sequence Alignment Program

SSAP

Double Dynamic Programming - flashy name for utilizing two  
levels of dynamic programming (two levels of scoring matrices)

1 2 3 4
1
2
3
4
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High-Level Scoring Matrix 
DH: locally incorporates 
some global information

Position i,j score is likelihood that i,j 
will appear in the final alignment*. 
This is determined by computing the 
best alignment forced to contain each 
i,j and using the transformation that 
best superimposes i and j.

This is done with the 
low-level scoring matrix.

* this is somewhat different than before



SSAP
1 2 3 4

1
2
3
4
5

For each element DH(i, j), define a 
separate low-level scoring matrix, ijDL.  
Element ijDL(k,l) gets a score 
specifying how well ak fits to bl given 
that ai is ‘perfectly’ aligned with bj.

Anchor F and C

Results from DP on low-level  
 matrix are added to the high-  
 level scoring matrix. 
   ~Voting

High-Level Scoring Matrix 
DH: locally incorporates 
some global information

ijDL



SSAP
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Rotated to align 
local coordinate 
frame of i and j

 

For all pairs of 
points, compute 
similarity score 
based on vector 
differences.
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Anchor F and C Anchor V and C

Low-level Scoring 
Matrices DL with 
overlaid best 
alignment from DP

High-Level 
Scoring Matrix



SSAP
For each potential correspondence of residues i, j: 

1. Pin down the correspondence i, j 
2. Use local coordinate frames to orient the two proteins 
3. Compute a low-level scoring matrix where the score  
    between residues x and y is based on similarity of their 
    positions relative to i and j. 
4. Use this low-level scoring matrix to find best alignment 
    given correspondence between i and j. 
5. Use the result of this best alignment to ‘vote’ for 
    correspondences in the high-level scoring matrix

Time Complexity: O(n 
4)

The correct transformation should bring multiple consistent 
pairs of residues into proximity and so it should get voted for 
many times.



• Returns a correspondence between two structures and  
    a similarity score 
• Can be used to compare structures for classification 
• No guarantee on optimality - what cases can’t we handle? 
• Works well but is slow O(n4) 
• As database size grows this becomes a problem 
• Used by the CATH protein structure classification database

SSAP

Many SSAP Extensions: 
  Incorporate sequence information 
  Multiple ways of computing low-level scoring matrix 
  Iterative version - keep track of a set of candidate anchor points, the  
     best alignment is computed and the anchor point list is updated until  
     convergence.



Need for faster structure comparison to replace SSAP 
Goal: Produce a front-end filter for the more reliable  
  SSAP - only those structures are are reasonably close  
  need to be compared with SSAP 

Graph based method 
Secondary Structure Matching

GRATH

Nodes are secondary structures 
Edges contain relationship information

Axial vectors computed for each 
SS element via least squares fitting 
of C�
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• Given a graph for each protein, compute similarities 
• Use of two matrices 
    - Secondary Structure Similarity Matrix 
        Identical secondary structural elements marked 
    - Correspondence Matrix 
        Consistent pairs of secondary structure marked

GRATH

Bioinformatics, 19(14):1748, 2003

G1
G2
G3
G4

R1                  R2                  R3                  R4                  R5



Consider all k2 pairs of matches. 
The consistency of each pair of matches is recorded in the 
   k x k Correspondence Matrix.

k matches in SS Similarity Matrix

R1         R2          R3          R4          R5

G1
G2
G3
G4

 G2

 G1

 R3

 R1
Matches are consistent if:

distance, angle, torsion, 
and chirality are within 
error tolerance

G1

R1

(�12, ⇤12, d12, ⇥12)

(�14, ⇤14, d14, ⇥14)



The k x k Correspondence Matrix indicates consistent pairs 
of secondary structure matches
Enforce topology • Maintain ordering 

• Maintain self-consistency (a SS can not match  
     itself, ie. the pair 1 and 3 is not allowed)
 

Bioinformatics, 19(14):1748, 2003

 

Can be 
considered a 
graph with k 
nodes and 
edges 
between 
nodes i and j 
if Mi,j = 1

ok not ok

scoring.....



GRATH Scoring

SS1, SS2: number of secondary structure 
R1, R2: number of amino acids  
CS: clique size 
CR1, CR2: residues in secondary structures of clique 
W1, W2, W3, W4: weights (W4 = W1+W2+W3)



Atomic Coordinates

Compute Axial Vectors

Examine all pairs of matches for consistency 
      generate Consistency Matrix

Compute pairwise vector similarity measures

Extract Secondary Structure

Generate Secondary Structure Similarity Matrix

Clique Detection

Scoring

 

GRATH Scoring



• GRATH almost always find the correct fold at the top  
   or close to the top of the ranked list 
    Correct fold is within top-10 results 98% of time

GRATH Results

Bioinformatics, 19(14):1748, 2003

Empirically 3-4 Orders of Magnitude faster than SSAP

ENRICHMENT



• The larger the found clique size, the better GRATHs  
    ability to find the correct fold

GRATH Results

Bioinformatics, 19(14):1748, 2003



• Lossy Enrichment - some results meeting specified  
    criteria are lost.  Some false negatives. 
• Lossless Enrichment - no results meeting specified  
    criteria are lost.  No false negatives.

Enrichment

Enrichment Factor - the ratio of the frequency of positive  
 samples in the filtered dataset to the frequency of positive  
 samples in the original dataset.

A fast enriching algorithm is often followed by a slower,   
  but more precise, verification algorithm for identifying  
  true positives.  (ie. GRATH and SSAP)

Common Theme

The increase in frequency of true positives in a dataset



• Manual classification based on 
     Sequence, Structure, and Function 
• Unit of classification is the domain 
• Hierarchical Classification of Structures (7 levels) 
     Class - Fold - Superfamily - Family - 
       Protein Domain - Species - PDB Entry

SCOP:
http://scop.berkeley.edu/index.html

Structural Classification of Proteins



SCOP:Structural Classification of Proteins

Class: Based on secondary structure content 
   all alpha, all beta, alpha/beta, alpha+beta

Fold: Based on number, type, and arrangement of secondary  
   structural elements.  Same core structure and topology.

Superfamily: Based on hypothesized evolutionary  
   relationship. Proteins have similar structure and function  
   (but not necessarily sequence)

Family: Proteins with clear evolutionary relationship.  Similar  
   structure, function, and >30% sequence identity

http://scop.berkeley.edu/index.html



SCOP: Structural Classification of Proteins. 1.71 release
27599 PDB Entries (October 2006). 75930 Domains.
Class Num folds Num Superfamilies      Num Families

All alpha proteins         226 392 645
All beta proteins         149 300 594
Alpha and beta proteins (a/b)      134 221 661
Alpha and beta proteins (a+b)     286  424 753
Multi-domain proteins          48 48 64
Membrane and cell surface prot.  49 90 101
Small proteins          79 114 186
Total         971 1589 3004

SCOP has been very useful 
Over 700 direct citations!

• Study evolution of enzymatic function 
• Study of distantly related proteins with the same fold 
• Study sequence and structure variability 
• Derive AA similarity matrices 
• Composition of multi-domain proteins 
• Identification of new targets for structural genomics initiatives



CATH
Class, Architecture, Topology, Homologous Superfamily

http://www.cathdb.info/latest/index.html

+ Sequence Family and PDB Entry

• Hierarchical Grouping of Structure 
• Significantly Automated 
     (but not completely) 
• Initiated in 1993



Class

CATH
Class, Architecture, Topology, Homologous Superfamily

http://www.cathdb.info/latest/index.html

+ Sequence Family and PDB Entry

Mainly Alpha Mainly Beta Mixed 
Alpha-
Beta

Few 
Secondary 
Structures



Architecture

CATH

Arrangement of secondary structures 
Ignores order of secondary structures 
    Ignores topology 
Manually assigned into ~40 different architectures

Alpha-Beta 
Barrel

Roll Alpha-Beta 
Horseshoe

5-Stranded 
Propeller



Topology (Fold Family)

CATH

For proteins with same Architecture, do they have same  
   topology (ie. ordering of elements) 
Performed automatically using SSAP and rules 
SSAP score >70 and >60% of larger protein matches 
   smaller

Similar architecture,  
different topology



CATH
Homologous Superfamily

Structures grouped by evolutionary relationships 
Includes sequence information 
To be in same Homologous Superfamily: 
  Must have 60% of larger struct equivalent to smaller AND 
    Sequence identity >35%  OR 
    SSAP score >80 and sequence identity >20%  OR 
    SSAP score >80 and domains with related function

Statistics: C A T H

Mainly Alpha  5 305 652 
Mainly Beta  20 192 415 
Mixed Alpha/Beta 14 496 922 
Few Sec Struct 1 92 102

CATH v3.1 
Jan, 2007



Manually Assign to Existing 
or New Classification

Structure Comparison 
(SSAP, GRATH)

Structure Comparison 
(SSAP, GRATH)

CATH

 
 New Structure

Sequence Comparison

Relatives 
Identified?

 Add to CATH

Identify and 
Extract Domains

No

Yes

Sequence Comparison

 
Relatives 
Identified?

 Add to CATH

No
Yes


