CMPS 6630: Introduction to Computational Biology and Bioinformatics

Secondary Structure Prediction

Secondary Structure Annotation

- Given a macromolecular structure
- Identify the regions of secondary structure
 Assumptions:

High resolution structure There is a reasonable and consistent way to define Secondary Structure

DSSP (Defined Secondary Structure of Proteins)

- <u>A gold standard</u> for secondary structure identification (NOT prediction)
- Used by the PDB database for secondary structure annotation
- Based on Hydrogen-Bonding Patterns

Defines a **Polar Interaction** as a H-bond with computed energy < -0.5 kcal/mol

An ideal H-bond has d = 2.9 Å $\theta = 0$ E = -3.0 kcal/mol

n-Turn

An *n*-turn is present at residue *i* if there is an H-bond from CO(*i*) to NH(*i*+*n*). Two or more form a helix. *alpha*-turn(*i*) = Hbond(*i*,*i*+4) (most common) *3*-turn(*i*) = Hbond(*i*,*i*+3) (3₁₀ -helix) *pi*-turn(*i*) = Hbond(*i*,*i*+5) (very rare)

Bridge

A bridge is formed from two non-overlapping stretches of 3 residues if one of the following H-bond patterns is seen:

Parallel Bridge (i, j) = [Hbond(i-1,j) and Hbond(j,i+1)] OR [Hbond(j-1,i) and Hbond(i,j+1)]

AntiParallel Bridge (i, j) = [Hbond(i,j) and Hbond(j,i)] OR [Hbond(i-1,j+1) and Hbond(j-1,i+1)]

Directionality

Hbond(i,j) = H-bond from CO(i) to NH(j)

Proteins written from N-terminus to C-terminus

i

AntiParallel Bridge (i, j) = [Hbond(i,j) and Hbond(j,i)] OR [Hbond(i-1,j+1) and Hbond(j-1,i+1)]

AntiParallel Bridge (i, j) = [Hbond(i,j) and Hbond(j,i)] OR [Hbond(i-1,j+1) and Hbond(j-1,i+1)]

Hbonds $i-1 \rightarrow j+1$, $j-1 \rightarrow i+1$

Parallel Bridge (i, j) = [Hbond(i-1,j) and Hbond(j,i+1)] OR [Hbond(j-1,i) and Hbond(i,j+1)]

Hbonds $j-1 \rightarrow i$, $i \rightarrow j+1$

Secondary Structure Prediction

Input: Primary Sequence only

Output: Annotation of alpha-helices, beta-strands, loops

Amino acid			
	α-helix	β -strand	Reverse turn
Glu	1.59	0.52	1.01
Ala	1.41	0.72	0.82
Leu	1.34	1.22	0.57
Met	1.30	1.14	0.52
Sin	1.27	0.98	0.84
Lys	1.23	0.69	1.07
Arg	1.21	0.84	0.90
HIS	1.05	0.80	0.81
Val	0.90	1.87	0.41
lle	1.09	1.67	0.47
Tyr	0.74	1.45	0.76
Cys	0.66	1.40	0.54
Trp	1.02	1.35	0.65
Phe	1.16	1.33	0.59
Thr	0.76	1.17	0.90
Gly	0.43	0.58	1.77
Asn	0.76	0.48	1.34
Pro	0.34	0.31	1.32
Ser	0.57	0.96	1.22
Asp	0.99	0.39	1.24

Petsko, Ringe, Prot Struct and Function, 2004

Chou-Fasman (First-Generation)

Compute propensities for each amino acid, a_i in structural conformation $s_j \in \{\alpha, \beta, \rho\}$

$$\frac{\Pr[A = a_i \mid S = s_j]}{\Pr[A = a_i]}$$

Categorize each AA as *helix-former*, *helix-breaker*, *helix-indifferent* and *sheet-former*, *sheet-breaker*, *sheet-indifferent*.

Keep chaining residues to SS element while average propensity is above some threshold.

Accuracy?

3-State Accuracy: Percent of residues for which a method's predicted secondary structure (Helix (α), Strand (β), Neither (ρ)) is correct.

Chou-Fasman: 50-60% 3-State Accuracy

Priors: 30% Helices 20% Strands 50% Neither

If you always predicted 'Neither' you would have 50% 3-State Accuracy

Need to incorporate additional information!

GOR Method

What if we look at "blocks" of sequence to determine secondary structure? (Garnier-Osguthorpe-Robson, late 70s)

$$s_j = f(r_{j-k}, \dots, r_{j+k})$$

GAVLIFYWMVLLAGIFFST

GOR Method

<u>Main Idea</u>: Look at the mutual information between nearby amino acids to assess whether they influence secondary structure at a particular position.

$$I(x;y) = \sum_{x} \sum_{y} \Pr[x,y] \log \frac{\Pr[x,y]}{\Pr[x] \Pr[y]}$$
$$= \sum_{x} \sum_{y} \Pr[x,y] \log \frac{\Pr[x \mid y] \Pr[y]}{\Pr[x] \Pr[y]}$$
$$= \sum_{x} \sum_{y} \Pr[x,y] \log \frac{\Pr[x \mid y]}{\Pr[x]}$$

GOR Method

Consider mutual information between structural class and sequence:

$$I(s_{j}; r_{j-8}, \dots, r_{j+8}) = \sum_{s_{j}} \sum_{\langle r_{j-8}, \dots, r_{j+8} \rangle} \Pr[s_{j}, r_{j-8}, \dots, r_{j+8}] \log \frac{\Pr[s_{j} \mid r_{j-8}, \dots, r_{j+8}]}{\Pr[s_{j}]}$$

Select the structural class which maximizes:

$$I(s_j = x; r_{j-8}, \dots, r_{j+8}) - I(s_j \neq x; r_{j-8}, \dots, r_{j+8})$$

Problem: Each conditional probability needs to be computed.

 $\Pr[s_j \mid r_{j-8}, ..., r_{j+8}]$ table size: 3×20^{17}

Assume 'independence':

$$I(s_j; r_{j-8}, \dots, r_{j+8}) = \sum_{k=-8} I(s_j = x; r_{j+k})$$

8

GOR Method Extension

Larger training set (513 vs 267 sequences) Because 'Neither' regions were over predicted, they added a margin by which Neither must be preferred over Helix or Coil Use of doublet and triplet statistics

Optimized window length - 13 better than 17...

Previously:

$$I(s_j; r_{j-8}, \dots, r_{j+8}) = \sum_{k=-8}^{8} I(s_j = x; r_{j+k})$$

Incorporating conditional information on residue r_j :

$$I(s_j; r_{j-8}, \dots, r_{j+8}) = I(s_j = x; r_j) + \sum_{k=-8, k \neq 0}^8 I(s_j = x; r_{j+k} \mid r_j)$$

Other "Learning" Methods

Neural Networks

17 Residue Window

Each Residue represented with 21-bits

One for each AA, one for beginning/end of sequence

Each sample has 17x21 bit feature vector with 17 non-zero entries

Support Vector Machines (SVM)

Linear Discriminant Analysis (LDA)

- Returns H, E, or C with confidence or probability.
- Requires *k* sequential residues with confidence above some threshold.

Third-Generation

Observation: Protein structure is more conserved than protein sequence.

Two proteins with >30% sequence identity are likely to have similar structures.

Multiple Sequence Alignment

We saw that multiple primary sequences of DNA, RNA, or protein identify similarity that may be a consequence of functional, <u>structural</u>, or evolutionary relationships.

RLAO RANSYMPREDRATWKSNYFLKIIOLLDDYPKCFIVGADNVGSKOMOOI	RMS LRGK - AVVI
Q7ZUG3_BRAREMPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQTI	RLS LRGK-AVVI
RLA0 ICTPUMPREDRATWKSNYFLKIIQLLNDYPKCFIVGADNVGSKQMQTI	RLS LRGK-AIVI
RLA0 DROMEMVRENKAAWKAQYFIKVVELFDEFPKCFIVGADNVGSKQMQNI	RTSLRGL-AVVI
RLA0 DICDIMSGAG-SKRKKLFIEKATKLFTTYDKMIVAEADFVGSSQLQKI	RKS IRGI-GAVI
Q54LP0 DICDIMSGAG-SKRKNVFIEKATKLFTTYDKMIVAEADFVGSSQLQKI	RKS IRG I-GAVI
RLA0 PLAF8MAKLSKQQK <mark>K</mark> QMY <mark>I</mark> EKLSSLIQQ <mark>Y</mark> SKILIVHVDNVGSNQMASV	RKSLRGK-ATII
RLA0 SULACMIGLAVTTTKKIAKWKVDEVAELTEKLKTHKTIIIANIEGFPADKLHEI	RKKLRGK-ADI
RLA0 SULTOMRIMAVITQERKIAKWKIEEVKELEQKLREYHTIIIANIEGFPADKLHDI	RKKMRGM-AEI
RLA0 SULSOMKRLALALKQRKVASWKLEEVKELTELIKNSNTILIGNLEGFPADKLHEI	RKKLRGK-ATI
RLAO AERPE MSVVSLVGQMYKREK <mark>PIPEWK</mark> TLMLRELE <mark>ELF</mark> SKHRVVLFADLTGTPTFVVQRV	RKKLWKK-YPM
RLA0 PYRAE -MMLAIGKRRYVRTRQYPARKVKIVSEATELLQKYPYVFLFDLHGLSSRILHEY	RYRLRRY-GVI
RLA0 METACMAEERHHTEH IPQWKKDE IEN IKELIQSHKVFGMVGIEGILATKMOKI	RRDLKDV-AVL

Idea:

Predict secondary structure type by using information from homologs, then combine predictions.

Multiple Sequence Alignment

Have:

List of similar (but different) sequences

Assumption:

These aligned sequences fold into the same structure

RLA0 RANSY	MPREL	DR.	ATW	SNY	FLK	II	QLI	DD	Y <mark>P</mark> K	CFI	C V G	AD)	ŧ¥G	SK	QMQ	201	R	15	LRG	K-	AVV	I
Q7ZUG3_BRARE	MPREL	DR.	ATW	SNY	FLK	II	QLI	DD	Y <mark>₽</mark> K	CFI	C V G	AD)	٩VG	SK	QМQ	уT I	RJ	LS	LRG	K-	AVV	L
RLAO ICTPU	MPREI	DR.	ATW	SNY	FLK	II	QLI	ND	Y <mark>P</mark> K	CFJ	C V G	ADI	٩VG	SK	QM	т,	R	LS I	LRG	K-	AIV	I
RLA0 DROME	MVREN	IK.	AAW	AQY	FIK	٧V	ELF	DE	F <mark>P</mark> K	CFI	C V G	AD)	٩¥G	S K	QМÇ	2N J	R7	E S J	LRG	L-	AVV	I
RLA0 DICDI	MSG AG	3-5	SKR	KLF	IEK	AT.	KLF	тт	YDK	MIN	AE	ADI	۳VG	s s	QL	2K I	R	KS	IRG	I-	GAV	I
Q54LP0 DICDI	MSG AG	;- :	SKR	NVF	IEK	AT	KLF	тт	YDK	MIV	AE	ADI	۳VG	s s	QL	2KJ	R	KS	IRG	I-	GAV	L
RLA0 PLAF8	MAKLS	K	QQK	QMY	IEK	LS	SLI	QQ	YSK	ILI	V H	V DI	٩¥G	s n	QM7	AST	R	KS I	LRG	K-	ATI	I
RLA0 SULAC	MIGLAVTTTKK	II	AKW	VDE	VAE	LT	EKI	кт	нкт	111	AN	IEC	FP	AD	KL	HE T	R	KK I	LRG	K-	ADI	ĸ
RLAO SULTO	MRIMAVITQER		KWB	IEE	VKE	LE	QKI	RE	YНТ	111	AN	IEC	FP	AD	KL	HD	R	KK	MRG	M-	AE I	K
RLA0_SULSO	MKRLALALKQRI	v	SWK	LEE	V KE	LT	EL 1	KN	SNT	ILI	GN	LEC	FP	AD	KL	HE I	R	KK	LRG	K –	ATI	C R
RLAO AERPE	MSVVSLVGQMYKRE KI	Ι	EWR	TLM	IL RE	LE	ELF	SK	HRV	VLF	AD	LT	T P	T F	vv	2RV	R	KK	LWK	K-	YPM	1M
RLA0 PYRAE	-MMLAIGKRRYVRTR	¥	AR	VKI	VSE	AT	ELI	QK	Y <mark>P</mark> Y	VFI	FD	LH	LS	S R	IL	HE 1	R	rr i	LRR	Y-	GV 1	K
RLA0 METAC	MAEERHHTEI	Ŧ	QWH	KDE	IEN	IK	ELI	QS	HKV	FGM	1VG	IEC	IL	AT:	кы	ак т	R	RD	LKD	V -	AVI	K

Consider the probability distribution over all amino acids at residue *i*, a 20-dimensional vector Examine 13-residue window Each residue represented by the 20-dimensional probability vector

Use favorite classification technique (NN, LDA, SVM)

Accuracy Limits

What is the *gold standard*? (~12% variability) Puts upper bound at 88% accuracy

Sequence Structure Degeneracy Some 11-long AA sequences can fold into both an alpha-helix and a beta-strand

Chameleon Sequences

1MDA

7-Residue: LSLAVAG Many 5-residue chameleons Fewer 6-residue chameleons Few 7-residue chameleons

7-Residue: KGLEWVS

Prions

Prion: from "proteinaceous infectious" The prion protein is naturally found in the body. The infectious agent is the same protein but with a different fold. Disease fold induces normal copies of the protein to fold into disease form.

Accumulation of disease folds forms cytotoxic aggregates.

Prions

Prion: from "proteinaceous infectious" The prion protein is naturally found in the body. The infectious agent is the same protein but with a different fold. Disease fold induces normal copies of the protein to fold into disease form.

Accumulation of disease folds forms cytotoxic aggregates.

Figure 3. Model of the generic any-loid fibril structure. Molecular model of the common core protofilament structure of any-loid fibrils. A number of β -sheets (four illustrated here) make up the protofilament structure. These sheets run parallel to the axis of the protofilament, with their component β -strands perpendicular to the fibril axis. With normal twisting of the β -strands, the β -sheets twist around a common helical axis that coincides with the axis of the protofilament, giving a helical repeat of 115.5 Å containing 24 β -strands (this repeat is indicated by the boxed region).

Sunde et al, J Mol Biol, 273(3), 1997.

"Amyloidosis" leads to tissue damage.

