CMPS 6630: Introduction to Computational Biology and Bioinformatics

Secondary Structure Prediction
Secondary Structure Annotation

- Given a macromolecular structure
- Identify the regions of secondary structure

Assumptions:

High resolution structure
There is a reasonable and consistent way to define Secondary Structure

Petsko, Ringe, Prot Struct and Function, 2004
DSSP (Defined Secondary Structure of Proteins)

- A gold standard for secondary structure identification (NOT prediction)
- Used by the PDB database for secondary structure annotation
- Based on Hydrogen-Bonding Patterns

Quality of H-bond is function of:
- Distance \(d \) between donor and acceptor
- Alignment angle \(\theta \)

\[
E = f \frac{q_x q_y}{r_{xy}}
\]

\[
E = q_1 q_2 \left(\frac{1}{r_{ON}} + \frac{1}{r_{CH}} - \frac{1}{r_{OH}} - \frac{1}{r_{CN}} \right) f
\]
DSSP

Defines a **Polar Interaction** as a H-bond with computed energy < -0.5 kcal/mol

An *ideal* H-bond has

- $d = 2.9 \, \text{Å}$
- $\theta = 0$
- $E = -3.0 \, \text{kcal/mol}$

![Diagram showing energy decrease with distance d and angle θ.](image)
DSSP

n-Turn

An n-turn is present at residue i if there is an H-bond from CO(i) to NH($i+n$). Two or more form a helix.

- **alpha-turn**(i) = Hbond(i, $i+4$) (most common)
- **3-turn**(i) = Hbond(i, $i+3$) (3$_{10}$ -helix)
- **pi-turn**(i) = Hbond(i, $i+5$) (very rare)

Bridge

A bridge is formed from two non-overlapping stretches of 3 residues if one of the following H-bond patterns is seen:

- **Parallel Bridge** (i, j) = [Hbond($i-1$, j) and Hbond(j, $i+1$)] OR [Hbond($j-1$, i) and Hbond(i, $j+1$)]

- **AntiParallel Bridge** (i, j) = [Hbond(i, j) and Hbond(j, i)] OR [Hbond($i-1$, $j+1$) and Hbond($j-1$, $i+1$)]
Directionality

\[\text{Hbond}(i,j) = \text{H-bond from CO}(i) \text{ to NH}(j) \]

Proteins written from N-terminus to C-terminus
AntiParallel Bridge \((i, j) = [\text{Hbond}(i,j) \text{ and } \text{Hbond}(j,i)] \text{ OR } [\text{Hbond}(i-1,j+1) \text{ and } \text{Hbond}(j-1,i+1)]\)
DSSP

AntiParallel Bridge \((i, j) = \left[\text{Hbond}(i,j) \text{ and } \text{Hbond}(j,i) \right] \text{ OR } \left[\text{Hbond}(i-1,j+1) \text{ and } \text{Hbond}(j-1,i+1) \right] \)

Hbonds \(i-1 \rightarrow j+1, \ j-1 \rightarrow i+1\)
DSSP

Parallel Bridge \((i, j) = [\text{Hbond}(i-1,j) \text{ and } \text{Hbond}(j,i+1)] \text{ OR } [\text{Hbond}(j-1,i) \text{ and } \text{Hbond}(i,j+1)]\)

Hbonds \(j-1 \rightarrow i, \ i \rightarrow j+1\)
Secondary Structure Prediction

Input: **Primary Sequence only**

Output: Annotation of alpha-helices, beta-strands, loops

Petsko, Ringe, Prot Struct and Function, 2004
Chou-Fasman (First-Generation)

Compute propensities for each amino acid, a_i in structural conformation $s_j \in \{\alpha, \beta, \rho\}$

$$\frac{\Pr[A = a_i \mid S = s_j]}{\Pr[A = a_i]}$$

Categorize each AA as *helix-former, helix-breaker, helix-indifferent* and *sheet-former, sheet-breaker, sheet-indifferent*.

Keep chaining residues to SS element while average propensity is above some threshold.
Accuracy?

3-State Accuracy: Percent of residues for which a method’s predicted secondary structure (Helix (α), Strand (β), Neither (ρ)) is correct.

Chou-Fasman: 50-60% 3-State Accuracy

Priors:
- 30% Helices
- 20% Strands
- 50% Neither

If you always predicted ‘Neither’ you would have 50% 3-State Accuracy

Need to incorporate additional information!
GOR Method

What if we look at “blocks” of sequence to determine secondary structure? (Garnier-Osguthorpe-Robson, late 70s)

\[s_j = f(r_{j-k}, \ldots, r_{j+k}) \]

GAVLIFYWMVLLAGIFFST
GOR Method

Main Idea: Look at the **mutual information** between nearby amino acids to assess whether they influence secondary structure at a particular position.

\[
I(x; y) = \sum_x \sum_y \Pr[x, y] \log \frac{\Pr[x, y]}{\Pr[x] \Pr[y]}
\]

\[
= \sum_x \sum_y \Pr[x, y] \log \frac{\Pr[x | y] \Pr[y]}{\Pr[x]} \frac{\Pr[x]}{\Pr[x] \Pr[y]}
\]

\[
= \sum_x \sum_y \Pr[x, y] \log \frac{\Pr[x | y]}{\Pr[x]}
\]
GOR Method

Consider mutual information between structural class and sequence:

\[
I(s_j; r_{j-8}, \ldots, r_{j+8}) = \sum_{s_j} \sum_{\langle r_{j-8}, \ldots, r_{j+8} \rangle} \Pr[s_j, r_{j-8}, \ldots, r_{j+8}] \log \frac{\Pr[s_j \mid r_{j-8}, \ldots, r_{j+8}]}{\Pr[s_j]}
\]

Select the structural class which maximizes:

\[
I(s_j = x; r_{j-8}, \ldots, r_{j+8}) - I(s_j \neq x; r_{j-8}, \ldots, r_{j+8})
\]

Problem: Each conditional probability needs to be computed.

\[
\Pr[s_j \mid r_{j-8}, \ldots, r_{j+8}]
\]

table size: 3 \(\times\) 20^{17}

Assume ‘independence’:

\[
I(s_j; r_{j-8}, \ldots, r_{j+8}) = \sum_{k=-8}^{8} I(s_j = x; r_{j+k})
\]
GOR Method Extension

Larger training set (513 vs 267 sequences)
Because ‘Neither’ regions were over predicted, they added a margin by which Neither must be preferred over Helix or Coil
Use of doublet and triplet statistics
Optimized window length - 13 better than 17...

Previously:

\[I(s_j; r_{j-8}, \ldots, r_{j+8}) = \sum_{k=-8}^{8} I(s_j = x; r_{j+k}) \]

Incorporating conditional information on residue \(r_j \):

\[I(s_j; r_{j-8}, \ldots, r_{j+8}) = I(s_j = x; r_j) + \sum_{k=-8, k \neq 0}^{8} I(s_j = x; r_{j+k} | r_j) \]
Other “Learning” Methods

Neural Networks
17 Residue Window
Each Residue represented with 21-bits
 One for each AA, one for beginning/end of sequence
Each sample has 17x21 bit feature vector with 17 non-zero entries

Support Vector Machines (SVM)

Linear Discriminant Analysis (LDA)

• Returns H, E, or C with confidence or probability.
• Requires k sequential residues with confidence above some threshold.
Observation: Protein structure is more conserved than protein sequence.

Two proteins with >30% sequence identity are likely to have similar structures.
We saw that multiple primary sequences of DNA, RNA, or protein identify similarity that may be a consequence of functional, structural, or evolutionary relationships.

Idea:
Predict secondary structure type by using information from homologs, then combine predictions.
Multiple Sequence Alignment

Have:
List of similar (but different) sequences

Assumption:
These aligned sequences fold into the same structure

Consider the probability distribution over all amino acids at residue i, a 20-dimensional vector
Examine 13-residue window
Each residue represented by the 20-dimensional probability vector
Use favorite classification technique (NN, LDA, SVM)
Accuracy Limits

What is the **gold standard**? (~12% variability)
Puts upper bound at 88% accuracy

Sequence → Structure Degeneracy
Some 11-long AA sequences can fold into both an alpha-helix and a beta-strand
Chameleon Sequences

7-Residue: LSLAVAG

Many 5-residue chameleons
Fewer 6-residue chameleons
Few 7-residue chameleons
7-Residue: LITTAHA

Chameleon Sequences in the PDB, 1998
7-Residue: KGLEWVS
Prions

Prion: from “proteinaceous infectious”
The prion protein is naturally found in the body. The infectious agent is the same protein but with a different fold. Disease fold induces normal copies of the protein to fold into disease form.

Accumulation of disease folds forms cytotoxic aggregates.
Prions

Prion: from “proteinaceous infectious”
The prion protein is naturally found in the body. The infectious agent is the same protein but with a different fold. Disease fold induces normal copies of the protein to fold into disease form.

Accumulation of disease folds forms cytotoxic aggregates.

“Amyloidosis” leads to tissue damage.