CMPS 6630: Introduction to Computational Biology and Bioinformatics

Protein Structure

Recap: Central "Dogma"

DNA Structure

Franklin/Watson/Crick showed that DNA has a structure that is stable, and facilitates replication.

Enzymes that bind DNA and RNA must have a "compatible" structure (e.g. ribosomes).

What is the (molecular) nature of this regulation?

Proteins have 3D shape that is determined by a sequence of amino acids.

Structure is function (e.g. ribosome, hemoglobin, transcription factors).

Cell Composition

Cell Composition

Figure 2-26 Essential Cell Biology, 2/e. (© 2004 Garland Science)

Protein Functions

{ Activity Specificity Regulation

Amino Acid

Amino Acids

Protein Structure

Primary Sequence: Linear String of Amino Acids

... ALA PHE LEU ILE LEU ARG ...

Secondary structure: regular α -helices and β -strands

Global Fold

Protein Scale and Size

- Size is measured in Daltons (Da). An average residue is ~135 Da.
- Interatomic distances are measured in Angstroms (Å), 1x10⁻¹⁰ m.
- Concentration is measured in mol/L (1 mol = 6.022×10^{23}).
- Proteins fold to "native state" in microseconds to seconds.

Hydrophobic Residues

- Nonpolar and uncharged
- Tend to avoid water
- Tend to interact with other nonpolar sidechains to minimize contact with water
- Tend to be buried in the protein core

Water

Hydrophilic Residues

- Polar or charged
- Tend to interact with water or other hydrophilic sidechains

Amphipathic Residues

- Have both polar and nonpolar characteristics
- Tend to form interfaces between hydrophobic and hydrophilic residues

Petsko, Ringe, Prot Struct and Function, 2004

Peptide Backbone

- Peptide Backbone is polar (dipolar)
- Double bonds are not very flexible, but single bonds....

Peptide Backbone

Peptide bond has partial double bond character and is rigid (ie. it doesn't rotate)

Other backbone bonds are flexible psi torsion angle phi torsion angle

Stabilizing Forces

Interaction	Туріс	al Distance	Free Energy
*Covalent Bond	0 0	1.5 A	356 kJ/mol
*Van der Waals I		3.5 A	4-15 kJ/mol
*Hydrogen Bond	н н N-н 0=С	3.0 A	2-6 kJ/mol Up to 20 kJ/mol if one atom is charged
Salt Bridge	- C (0H-N-H + 0 H	2.8 A	13-17 kJ/mol
Disulfide Bond	-Cys-S-S-Cys-	2.2 A	167 kJ/mol
*Long Range Ele	ctrostatic	variable	variable

· Long Range Electrostatic variable

Protein folding is a physical/chemical process.

Thesis: Proteins adopt low energy conformations in their native state.

Conformational energy is determined by solvent (water), van der Waals forces, charge, electrostatic forces, etc.

<u>Levinthal's Paradox</u> (1969): The conformation space is exponential in the number of amino acids, but the folding pathway must be relatively short.

De novo Structure Prediction

Does this landscape have a more compact representation? Can we quickly find low-energy conformations?

Backbone Flexibility

- Protein with n residues has 2n rotatable backbone dihedrals
- 2*n* degrees-of-freedom (DOF)
- Number of protein conformations is exponential in its length (consider kinematic chain)

Large Search Spaces!

www.active-robots.com

How Many Proteins Are There?

Sequences

Avg Protein 300 Amino Acids (AAs) long $20^{300} \approx 10^{390}$

There are only 10^{80} particles estimated in the universe

Human Proteins

- Current Estimate ~20,000 Genes *conservative
- Each gene has alternate splicing (say 2 / protein)
- Each protein can be post-synthetically modified (say 2 / protein) cleavage (insulin), phosphorlyated (kinase), glycosylated (sugars), ... SO

 $20,000 \times 2 \times 2 = 80,000$

Levels of Protein Structure

GLY	SER	MET	SER
GLY	ILE	ALA	LEU
SER	ARG	LEU	ALA
GLU	GLY	GLY	LEU
PHE	LYS	LEU	ARG
MET	LEU	LEU	ASN
VAL	GLU	TYR	GLU
LYS	ARG	VAL	ARG
ALA	GLN	ALA	LYS

Aka Primary Sequence

Primary Structure Secondary Structure

Levels of Protein Structure

Tertiary Structure

Levels of Protein Structure

Tertiary Structure Quaternary Structure

Phi/Psi Histogram

Ramachandran Plot

Allowed phi/psi angles do not result in steric interference

Phi / Psi Histogram for Glycine

Glycine

Leucine

Secondary Structure

No true gold standard definition May be dynamic - change with changing protein state

The Alpha Helix

- Most common secondary structure type
- Hydrogen bonding between carbonyl oxygen atom of residue *n* and amide nitrogen of residue *n*+4.
- 3.6 Residues per turn
- Cylindrical structure with hydrogen-bonded wall and outside studded with side chains
 1

The Alpha Helix

Hydrogen Bonding Pattern

The Alpha Helix

Garrett & Grisham: Biochemistry, 2/e Figure 6.8

Petsko, Ringe, Prot Struct and Function, 2004

The Alpha Helix

Beta Strands

- Side-chains protrude in opposite directions
- Relatively linear backbone

Beta Sheets

- Hydrogen bonding between backbone of strands
- Strands of a sheet may be separated by arbitrary number of amino acids

Hydrogen Bonding

Beta Sheets

- Hydrogen bonding between backbone of strands
- Strands of a sheet may be separated by arbitrary number of amino acids

Garrett & Grisham: Biochemistry, 2/e

AntiParallel Beta Sheets

• Antiparallel sheets most commonly have beta-turns (aka. hairpin turn) connecting strands

Hydrogen bonds between residues 1 and 4

Parallel Beta Sheets

- Discontiguous by necessity Often connected by alpha-helix
- Less twisted than antiparallel sheets

A GLU to VAL mutation at 6th amino acid in the β -subchains causes hemoglobin to aggregate, resulting in sickle-cell anemia.

Some proteins need "help" during the folding process from "chaperonins".

GroEL-GroES complex (Horwitch *et al.*)

Actin and Myosin

Titin is the largest known protein, with 38,138 residues (4200 kDA).

www.sci.sdsu.edu/movies/actin_myosin.html

"Computing" Protein Structure

- Molecular Dynamics Simulations
- De novo Prediction
- Homology Modeling
- X-ray diffraction
- Nuclear Magnetic Resonance Spectroscopy

Molecular Dynamics

• We can also use folding techniques to study proteins of known structure.

 By simulating physics/chemistry, we can study normal modes, binding, interaction, etc. http://www.stanford.edu/group/pandegroup/folding/villin/

Formation of a 30-residue α -helix

Comparison & Analysis

Mutation prediction, Structural Homology Function

Catalysis, Binding, Dynamics

Drug Design Docking, de novo, Database Search

Leveraging Existing Structures

Input:

- 1) Primary sequence P for unknown structure.
- 2) Known homologous structure.

<u>Output</u>: 3D structure of A.

<u>Goal</u>: Minimize energy of A.

primary sequence

known structure

Threading is NP-hard!

X-ray Crystallography

The diffraction pattern is the Fourier transform of electron density. To compute electron density, we can "invert" the diffraction pattern.

But we cannot measure the phase of diffracted wave! We must simulate it...

Myoglobin structure was solved by X-ray crystallography (Perutz and Kendrew 1958)

NMR Spectroscopy

Amino Acid

Ubiquitin: H^N - ¹⁵N HSQC

NMR Structure Determination

Distance-based methods use *assigned* NOE restraints.

NMR Structure Determination

Structure determination from NOE restraints is NP-hard! [Saxe '79; Hendrickson '92, '95]

Distance Geometry Method [Crippen&Havel'88]

Exponential Time

