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What is “Computation™?

You are facing a high wall that stretches infinitely in both directions.
There is a door in the wall, but you don't know how far away or in
which direction. Can you escape? If so, how quickly?

[lan Parberry, Problems on Algorithms]



What is Computation”?

* Given a well-defined problem and input, how
quickly (in the worst-case) can one produce a
solution to the desired accuracy?

e |s there a tradeoff between resource
requirements and accuracy?

Tractable -
polynomial-time:

VS. n, n2,n3, ...

Intractable: GOOD

set of all Turing-computable problems



What is “Computation™?

Can find exit in linear time using a
“geometric” walk.

You are facing a high wall that stretches infinitely in both directions.
There is a door in the wall, but you don't know how far away or in
which direction. Can you escape? If so, how quickly?

[lan Parberry, Problems on Algorithms]



“Computational” Biology

- Data Collection/Analysis/Modeling

» Develop problem formulations that are
realistic, and are tractable.

» Leverage 50+ years of computational
techniques:
— Combinatorial Optimization
— Statistics
— Geometry
— Software Design



This Course

- DNA/Gene Sequences:
— Sequence Comparison
— Sequence Assembly
— Phylogenetics

 Protein Structure:
— Secondary/Tertiary Structure Prediction
— Structural Homology/Alignment/Comparison
— Drug Discovery/Design

- “Systems” Biology:
— Microarray Analysis
— Interaction Networks
— Metagenomics



Administrative Detalls

Time: TuTh 9:30-10:45
Office: 303E Stanley Thomas
Office Hours: By appointment

Webpage: www.cs.tulane.edu/~mettu

Course Materials: Jones/Pevzner and online
resources as needed (BioPython etc.).


http://www.cs.tulane.edu/~mettu

Class Format

 Homework (40%)

— 3-5 problem sets
— short answers and programming
—40% of grade

« Midterm (30%)

 Final Project (30%)
— chosen/assigned after midterm
— grade based on presentation/writeup



“Tree of Life”
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Biotech in 10,000BC
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Gregor Mendel
(1822-1884) selectively
bred pea plants and
studied inheritance of
physical characteristics.

@ Transferred pollen
from stamens of white
flower to carpel of
purple flower

€ Pollinated carpel
matured into pod

_.r L¥
/ J $ x \ ﬂfqmi";:tded seeds

© Examined
offspring: all
purple flowers

Copyright € Pearsen Education, Inc., publishing as Benjamin Cummings.



Mendel identified a statistical pattern of how
“factors” (genes) were inherited.
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After Mendel

Mendel’s ideas were rediscovered around
1900 (DeVries, von Tschermak, Correns).

Chromosomes carry genetic information in
“homologous” pairs (Sutton, 1902).

aaaaaaaa

MItOSIS Chromosomes
Meiosis



After Mendel
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Eukaryote Prokaryote

MNucleolis Mitochondria

Nucleus

Flagellum
Cell Wall

Cell Membrane

Ribosomes

Prokaryotes are unicellular with minimal compartments
(e.g. bacteria such as E. coli). “Chromosomes” are
spread throughout cell.

Eukaryotes have compartmentalized cells with
organelles; cells in eukaryotes differentiate.
Chromosomes are inside nucleus.



Proteins = Function

 Beadle and Tatum showed correlation

between enzymes and genes in the
1940s.

* Using clever analysis of irradiated mold
spores, they concluded that genes are
connected to enzymes.

 An enzyme is a type of protein; proteins
are polypeptides.



Proteins = Function

* So chromosomes control the production
of enzymes, but how?

* But what is the mechanism by which a
gene is “expressed’?

* Avery-MaclLeod-McCarty (1940)
showed that DNA ‘controls’ genetic
traits.
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Chromosomes are composed of DNA!
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DNA to Proteins

* Genes are encoded by chromosomes,
l.e., DNA.

* Genes “control” proteins, which enable
function.

« So what is the mechanism that
produces proteins from DNA?
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Sugar
Phosphate
Backbone

= | Pairing

A——T/U
T/U—— A
Nitrogenous G—— C
e G
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DNA

RNA

Ribonucleic acid
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U C A G I
UUU = Phe UCU = Ser UAU = Tyr UGU = Cys U
UUC = Phe UCC = Ser UAC = Tyr UGC =Cys C
UUA = Leu UCA = Ser UAA = Stop UGA = Stop A
UUG = Leu UCG = Ser UAG = Stop UGG =Trp G
CUU = Leu CCU =Pro CAU = His CGU =Arg U
CUC =Leu CCC =Pro CAC = His CGC =Arg C
CUA = Leu CCA=Pro CAA =GlIn CGA =Arg A
CUG = Leu CCG =Pro CAG =GlIn CGG = Arg G
AUU = lle ACU =Thr AAU = Asn AGU = Ser U
AUC =lle ACC =Thr AAC = Asn AGC = Ser C
AUA = lle ACA =Thr AAA = Lys AGA = Arg A

= Met ACG =Thr AAG = Lys AGG = Arg G
GUU = Val GCU = Ala GAU = Asp GGU = Gly U
CUC = Vval GCC = Ala GAC = Asp GGC = Gly C
GUA = Val GCA =Ala GAA = Glu GGA = Gly A
GUG = Val GCG = Ala GAG = Glu GGG = Gly G

So, after mRNA has been transcribed, how are
codons translated into, for example, an enzyme?
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X-ray structure of ribosome
[Noller et al. 1999]
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Acid
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Amino Acids

Sidechain

Backbone



sidechain

peptide plane

peptide plane




Backbone dihedral
angles essentially
define the geometry
of the protein
backbone.

Side-chains have a
variable number of
dihedrals angles,
depending on
composition.



Protein Structure

Primary Sequence: Linear String of Amino Acids
Side-chain

Backbone

.. ALA PHE LEU ILE LEU ARG ...
Secondary structure: regular a-helices and p-strands

—( D) D
Global Fold




Structure = Function
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Structure = Function

Deoxyhemoglobin



Structure = Function




Structure = Malfunction

A GLU to VAL mutation at 6th amino acid in the 5-subchains causes
hemoglobin to aggregate, resulting in sickle-cell anemia.
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Genetic Parasites

Flasma membrane y
Mucleus

ntegratmn
mtn host DNA RNA

DNH
HH Transcription | “Endogenous
Revedse ransghiption retroviruses” are
Infection transcription T|7An“ thought tO make Up

8% of the human
genome!

FIHH

Reverse
tranﬂ:rlptnse

FIHH
Eapsld
rotein
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transcriptas A -
Envelope
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Evolved Symbiosis

Mitochondria are aerobic Mitochondria Structural Features
“energy generators.” -

Inner
Membrane

Quter
Membrane

Cell-Mitochondrial
“endosymbiosis” is
hypothesized.

Cﬂmaef

Mitochondrial DNA is used
for accurate “genomic

geography”. S

Matrix



