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CG-Islands
• Given 4 nucleotides: probability of 

occurrence is ~ 1/4.  Thus, probability of 
occurrence of a dinucleotide is ~ 1/16.

• However, the frequencies of dinucleotides in 
DNA sequences vary widely.

• In particular, CG is typically underepresented 
(frequency of CG is typically < 1/16)
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Why CG-Islands?
• CG is the least frequent dinucleotide because 

C in CG is easily methylated and has the 
tendency to mutate into T afterwards

• However, the methylation is suppressed 
around genes in a genome.  So, CG appears 
at relatively high frequency within these CG 
islands

• So, finding the CG islands in a genome is an 
important problem
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CG Islands and the “Fair Bet Casino”

• The CG islands problem can be modeled after 
a problem named “The Fair Bet Casino”

• The game is to flip coins, which results in only 
two possible outcomes: Head or Tail.

• The Fair coin will give Heads and Tails with 
same probability ½.

• The Biased coin will give Heads with prob. ¾.
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The “Fair Bet Casino” (cont’d)

• Thus, we define the probabilities:
• P(H|F) = P(T|F) = ½
• P(H|B) = ¾, P(T|B) = ¼
• The crooked dealer changes between Fair 

and Biased coins with probability  10%
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The Fair Bet Casino Problem
• Input: A sequence x = x1x2x3…xn of coin 

tosses made by two possible coins (F or B).
 
• Output: A sequence π = π1 π2 π3… πn, with 

each πi being either F or B indicating that xi 
is the result of tossing the Fair or Biased 
coin respectively.
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Problem…

Fair Bet Casino 
Problem
Any observed 
outcome of coin 
tosses could 
have been 
generated by any 
sequence of 
states!
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Problem…

Fair Bet Casino 
Problem
Any observed 
outcome of coin 
tosses could 
have been 
generated by any 
sequence of 
states!

Need to incorporate a 
way to grade different 
sequences differently.

Decoding Problem
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Hidden Markov Model (HMM)
• Can be viewed as an abstract machine with k hidden 

states that emits symbols from an alphabet Σ.
• Each state has its own probability distribution, and the 

machine switches between states according to this 
probability distribution.

• While in a certain state, the machine makes 2 
decisions:
• What state should I move to next?
• What symbol - from the alphabet Σ - should I emit?
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Why “Hidden”?
• Observers can see the emitted symbols of an 

HMM but have no ability to know which state 
the HMM is currently in.

• Thus, the goal is to infer the most likely 
hidden states of an HMM based on the given 
sequence of emitted symbols.
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HMM Parameters
Σ: set of emission characters.
  Ex.: Σ = {H, T} for coin tossing
             Σ = {1, 2, 3, 4, 5, 6} for dice tossing

Q: set of hidden states, each emitting symbols 
from Σ.

            Q={F,B} for coin tossing
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HMM Parameters (cont’d)

A = (akl): a |Q| x |Q| matrix of probability of 
changing from state k to state l.

               aFF = 0.9     aFB = 0.1
             aBF = 0.1     aBB = 0.9
E = (ek(b)): a |Q| x |Σ| matrix of probability of 

emitting symbol b while being in state k.
               eF(0) = ½     eF(1) = ½ 
             eB(0) = ¼     eB(1) = ¾ 
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HMM for Fair Bet Casino
• The Fair Bet Casino in HMM terms:
 Σ = {0, 1} (0 for Tails and 1 Heads)
 Q = {F,B} – F for Fair & B for Biased coin.
• Transition Probabilities A *** Emission Probabilities E

Fair Biased

Fair aFF = 0.9 aFB = 0.1

Biased aBF = 0.1 aBB = 0.9

Tails(0) Heads(1
)

Fair eF(0) = 
½ 

eF(1) = 
½

Biased eB(0) = 
¼

eB(1) = 
¾
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HMM for Fair Bet Casino (cont’d)

HMM model for the Fair Bet Casino Problem
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Hidden Paths
• A path π = π1… πn in the HMM is defined as a 

sequence of states.
• Consider path π = FFFBBBBBFFF and sequence x = 

01011101001

x                        0     1     0    1     1      1    0      1    0     0     1

π      =        F   F   F   B   B   B   B   B   F   F   F
P(xi|πi)               ½   ½    ½    ¾   ¾    ¾    ¼   ¾    ½   ½   ½ 

P(πi-1 à πi)      ½   9/10    9/10      
1/10      

9/10      
9/10      

9/10     
9/10    

1/10     
9/10     

9/10 

Transition probability from state πi-1 to state πi

Probability that xi was emitted from state πi
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P(x|π) Calculation
• P(x|π): Probability that sequence x was 

generated by the path π:
                                  n 
 P(x|π) = P(π0→ π1) · Π P(xi| πi) · P(πi → πi+1)
                                    i=1

                                         

                    = a π0, π1 ·  Π e πi (xi) · a πi, πi+1 
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P(x|π) Calculation
• P(x|π): Probability that sequence x was 

generated by the path π:
                                 n 
 P(x|π) = P(π0→ π1) · Π P(xi| πi) · P(πi → πi+1)
                                    i=1

                                         

                    = a π0, π1 · Π e πi (xi) ·  a πi, πi+1 

                    =             Π e πi+1 (xi+1) ·  a πi, πi+1 

                                          if we count from i=0 instead of i=1 
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Decoding Problem
• Goal: Find an optimal hidden path of states 

given observations.

• Input: Sequence of observations x = x1…xn 
generated by an HMM M(Σ, Q, A, E)

• Output: A path that maximizes P(x|π) over all 
possible paths π.
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Building Manhattan for Decoding Problem

• Andrew Viterbi used the Manhattan grid 
model to solve the Decoding Problem.

• Every choice of π = π1… πn corresponds to a 
path in the graph.

• The only valid direction in the graph is 
eastward.

• This graph has |Q|2(n-1) edges.



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Edit Graph for Decoding Problem 
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Decoding Problem vs. Alignment Problem

Valid directions in the 
alignment problem.

Valid directions in the 
decoding problem.
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Decoding Problem as Finding a 

• The Decoding Problem is reduced to finding 
a longest path in the directed acyclic graph 
(DAG) above.

• Notes: the length of the path is defined as 
the product of its edges’ weights, not the 
sum.
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Decoding Problem (cont’d)

• Every path in the graph has the probability P(x|
π).

• The Viterbi algorithm finds the path that 
maximizes P(x|π) among all possible paths.

• The Viterbi algorithm runs in O(n|Q|2) time.
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Decoding Problem: weights of edges

w

        The weight w is given by:

                    ???

(k, i) (l, i+1)
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Decoding Problem: weights of edges

w

         The weight w is given by:

                      ??

(k, i) (l, i+1)

               n 
 P(x|π) = Π e πi+1 (xi+1) . a πi, πi+1 
                         i=0
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Decoding Problem: weights of edges

w

         The weight w is given by:

                       ?

(k, i) (l, i+1)

                          
       i-th term = e πi+1 (xi+1) . a πi, πi+1 
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Decoding Problem: weights of edges

w

         The weight  w=el(xi+1). akl

 

(k, i) (l, i+1)

                          
       i-th term = e πi (xi) . a πi, πi+1 = el(xi+1). akl   for  πi =k, πi+1=l
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Decoding Problem and Dynamic Programming

 
sl,i+1 = maxk Є Q {sk,i · weight of edge between (k,i) and (l,i+1)}=

             maxk Є Q {sk,i ·                  akl · el (xi+1)                            }=

                        el (xi+1) · maxk Є Q {sk,i · akl}


