Hidden Markov Models

Hidden Markov Models

Outline

- CG-islands
- The "Fair Bet Casino"
- Hidden Markov Model
- Decoding Algorithm
- Forward-Backward Algorithm
- Profile HMMs
- HMM Parameter Estimation
- Viterbi training
- Baum-Welch algorithm

CG-Islands

- Given 4 nucleotides: probability of occurrence is $\sim 1 / 4$. Thus, probability of occurrence of a dinucleotide is $\sim 1 / 16$.
- However, the frequencies of dinucleotides in DNA sequences vary widely.
- In particular, CG is typically underepresented (frequency of $C G$ is typically $<1 / 16$)

Why CG-Islands?

- $C G$ is the least frequent dinucleotide because C in CG is easily methylated and has the tendency to mutate into T afterwards
- However, the methylation is suppressed around genes in a genome. So, CG appears at relatively high frequency within these CG islands
- So, finding the CG islands in a genome is an important problem

CG Islands and the "Fair Bet Casino"

- The CG islands problem can be modeled after a problem named "The Fair Bet Casino"
- The game is to flip coins, which results in only two possible outcomes: Head or Tail.
- The Fair coin will give Heads and Tails with same probability $1 / 2$.
- The Biased coin will give Heads with prob. $3 / 4$.

The "Fair Bet Casino" (cont'd)

Thus, we define the probabilities:

- $P(H \mid F)=P(T \mid F)=1 / 2$
- $P(H \mid B)=3 / 4, P(T \mid B)=1 / 4$
- The crooked dealer changes between Fair and Biased coins with probability 10\%

The Fair Bet Casino Problem

- Input: A sequence $x=x_{1} x_{2} x_{3} \ldots x_{n}$ of coin tosses made by two possible coins (\boldsymbol{F} or \boldsymbol{B}).
- Output: A sequence $\pi=\pi_{1} \pi_{2} \pi_{3} \ldots \pi_{n}$, with each π_{i} being either F or B indicating that x_{i} is the result of tossing the Fair or Biased coin respectively.

Problem...

Fair Bet Casino Problem
Any observed outcome of coin tosses could have been generated by any sequence of states!

Problem...

Fair Bet Casino Problem

Any observed outcome of coin tosses could have been generated by any sequence of states!

Need to incorporate a way to grade different sequences differently.

Problem...

Fair Bet Casino Problem

Any observed outcome of coin tosses could have been generated by any sequence of states!

Need to incorporate a way to grade different sequences differently.

Decoding Problem

Hidden Markov Model (HMM)

- Can be viewed as an abstract machine with k hidden states that emits symbols from an alphabet Σ.
- Each state has its own probability distribution, and the machine switches between states according to this probability distribution.
- While in a certain state, the machine makes 2 decisions:
- What state should I move to next?
- What symbol - from the alphabet Σ - should I emit?

Why "Hidden"?

- Observers can see the emitted symbols of an HMM but have no ability to know which state the HMM is currently in.
- Thus, the goal is to infer the most likely hidden states of an HMM based on the given sequence of emitted symbols.

HMM Parameters

Σ : set of emission characters.

$$
\begin{aligned}
& \text { Ex.: } \Sigma=\{H, T\} \text { for coin tossing } \\
& \qquad \Sigma=\{1,2,3,4,5,6\} \text { for dice tossing }
\end{aligned}
$$

Q: set of hidden states, each emitting symbols from Σ.
$Q=\{F, B\}$ for coin tossing

HMM Parameters (cont'd)

$\mathrm{A}=\left(\mathrm{a}_{k}\right): \mathbf{a}|\mathrm{Q}| \mathrm{x}|\mathrm{Q}|$ matrix of probability of changing from state k to state l.

$$
\begin{array}{ll}
a_{F F}=0.9 & a_{F B}=0.1 \\
a_{B F}=0.1 & a_{B B}=0.9
\end{array}
$$

$E=\left(e_{k}(b)\right): \mathbf{a}|\mathrm{Q}| \times|\Sigma|$ matrix of probability of emitting symbol b while being in state k.

$$
\begin{array}{ll}
e_{F}(0)=1 / 2 & e_{F}(1)=1 / 2 \\
e_{B}(0)=1 / 4 & e_{B}(1)=3 / 4
\end{array}
$$

HMM for Fair Bet Casino

- The Fair Bet Casino in HMM terms:
$\Sigma=\{0,1\}$ (0 for Tails and 1 Heads)
$Q=\{F, B\}-F$ for Fair \& B for Biased coin.
- Transition Probabilities A *** Emission Probabilities E

	Fair	Biased
Fair	$a_{F F}=0.9$	$a_{F B}=0.1$
Biased	$a_{B F}=0.1$	$a_{B B}=0.9$

	Tails(0)	Heads(1)
Fair	$e_{F}(0)=$ $1 / 2$	$e_{F}(1)=$ $1 / 2$
Biased	$e_{B}(0)=$ $1 / 4$	$e_{B}(1)=$ $3 / 4$

HMM for Fair Bet Casino (cont'd)

HMM model for the Fair Bet Casino Problem

Hidden Paths

- A path $\pi=\pi_{1} \ldots \pi_{n}$ in the HMM is defined as a sequence of states.
- Consider path $\pi=$ FFFBBBBBFFF and sequence $x=$ 01011101001

Probability that x_{i} was emitted from state Π_{i}
Π
$\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \Pi_{i}\right)$
$\mathrm{P}\left(\Pi_{\mathrm{i}-1} \rightarrow \Pi_{i}\right)$

\mathrm{~F} \& \mathrm{~F} \& \mathrm{~F} \& \mathrm{~B} \& \mathrm{~B} \& \mathrm{~B} \& \mathrm{~B} \& \mathrm{~B} \& \mathrm{~F} \& \mathrm{~F} \& \mathrm{~F}

1 / 2 \& 1 / 2 \& 1 / 2 \& 3 / 4 \& 3 / 4 \& 3 / 4 \& 1 / 4 \& 3 / 4 \& 1 / 2 \& 1 / 2 \& 1 / 2

1 / 2 \& 9 / 10 \& 9 / 10 \& 1 / 10 \& 9 / 10 \& 9 / 10 \& 9 / 10 \& 9 / 10 \& 1 / 10 \& 9 / 10 \& 9 / 10\end{array}\right)\)

Transition probability from state $\Pi_{\mathrm{i}-1}$ to state Π_{i}

$\mathrm{P}(\mathrm{x} \mid \pi)$ Calculation

- $P(x \mid \pi)$: Probability that sequence x was generated by the path π :

$$
\mathrm{P}(x \mid \pi)=\mathrm{P}\left(\pi_{0} \rightarrow \pi_{1}\right) \cdot{ }_{i=1}^{n} \Pi \mathrm{P}\left(x_{i} \mid \pi_{i}\right) \cdot \mathrm{P}\left(\pi_{i} \rightarrow \pi_{i+1}\right)
$$

$$
=a_{\pi_{0,} \pi_{1}} \cdot \Pi e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i}, \pi_{i+1}}
$$

$\mathrm{P}(\mathrm{x} \mid \pi)$ Calculation

- $P(x \mid \pi)$: Probability that sequence x was generated by the path π :

$$
\mathrm{P}(x \mid \pi)=\mathrm{P}\left(\pi_{0} \rightarrow \pi_{1}\right)^{n} \cdot \Pi_{i=1}^{n} \mathrm{P}\left(x_{i} \mid \pi_{i}\right) \cdot \mathrm{P}\left(\pi_{i} \rightarrow \pi_{i+1}\right)
$$

$$
=a_{\pi_{0, \pi_{1}}} \cdot \Pi e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i}, \pi_{i+1}}
$$

$$
=\quad \Pi e_{\pi_{i+1}}\left(x_{i+1}\right) \cdot a_{\pi_{i}, \pi_{i+1}}
$$

if we count from $i=0$ instead of $i=1$

Decoding Problem

- Goal: Find an optimal hidden path of states given observations.
- Input: Sequence of observations $x=x_{1} \ldots x_{n}$ generated by an $\operatorname{HMM} M(\Sigma, Q, A, E)$
- Output: A path that maximizes $P(x \mid \pi)$ over all possible paths π.

Building Manhattan for Decoding Problem

- Andrew Viterbi used the Manhattan grid model to solve the Decoding Problem.
- Every choice of $\pi=\pi_{1} \ldots \pi_{n}$ corresponds to a path in the graph.
- The only valid direction in the graph is eastward.
- This graph has $|Q|^{2}(n-1)$ edges.

Edit Graph for Decoding Problem

Decoding Problem vs. Alignment Problem

Valid directions in the alignment problem.

Valid directions in the decoding problem.

Decoding Problem as Finding a

- The Decoding Problem is reduced to finding a longest path in the directed acyclic graph (DAG) above.
- Notes: the length of the path is defined as the product of its edges' weights, not the sum.

Decoding Problem (cont'd)

- Every path in the graph has the probability $P(x \mid$ $\pi)$.
- The Viterbi algorithm finds the path that maximizes $P(x \mid \pi)$ among all possible paths.
- The Viterbi algorithm runs in $O\left(n|Q|^{2}\right)$ time.

Decoding Problem: weights of edges

The weight w is given by:
???

Decoding Problem: weights of edges

$$
\begin{aligned}
& \mathrm{P}(x \mid \pi)=\Pi_{n} e_{\pi_{i+1}}\left(x_{i+1}\right) \cdot a_{\pi_{i} \pi_{i+1}} \\
& \overbrace{(a, i)}^{i=0} \underbrace{i=}_{(, i+l)}
\end{aligned}
$$

The weight w is given by:

??

Decoding Problem: weights of edges

$$
i \text {-th term }=e_{\pi_{i+1}}\left(x_{i+1}\right) \cdot a_{\pi_{i} \pi_{i+1}}
$$

The weight \boldsymbol{w} is given by:

?

Decoding Problem: weights of edges

i-th term $=e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i}, \pi_{i+1}}=e_{l}\left(x_{i+1}\right) \cdot a_{k l}$ for $\pi_{i}=k, \pi_{i+1}=l$

The weight $w=e_{,}\left(x_{i+1}\right) \cdot a_{k l}$

Decoding Problem and Dynamic Programming

$$
\mathrm{S}_{l, i+1}=\max _{k \in Q}\left\{s_{k, i} \cdot \text { weight of edge between }(k, i) \text { and }(1, i+1)\right\}=
$$

$$
\begin{gathered}
\max _{k \in Q}\left\{s_{k, i} \cdot \quad a_{k l} \cdot e_{l}\left(x_{i+1}\right)\right. \\
e_{l}\left(x_{i+1}\right) \cdot \max _{k \in Q}\left\{s_{k, i} \cdot a_{k \mid}\right\}
\end{gathered}
$$

