CMPS 6630: Introduction to Computational Biology and Bioinformatics

Gene Prediction

Now What?

	0M	flip	5CMbp	100Mbp	150M.p	200Mbp	250Mbp		02	Mbp :	50Mbp	100Mbp
32 1	70							14	347 21			
2	92 73							15	1552 28			
3	91							16	1178 58			
4	41 46							17	42 1779			
90 5	99 95							18	11.29 31			
6	70 47					11		19	723 57			
14 7	183 54							20	331 8			
24 8	43 25							21	4 6			
14 9	32 41							22	15 58			
30 10	41 59							x	521 17			
27 11	01 13							Y	51 34			
21 12	49 66											
10 13	62 64											

Cataracts Malignent transformation suppression Ehlers-Danlos syndrome, type VI Glaucoma, primary infantile Hirscheprung disease, cardiac delects Schwartz-Jampel syndrome Hypophosphatasia, infentile, chilchood Breast cancer, ductal Cutaneous malignant melanoma/dysplastic nevus p53-related protein Seratanin receptors Schryder crystalline comeal dystrophy Kostmann neutropenia Oncogene MMC, lung cardinoma-derived Deafness, autosomal dominant Potphyria Epiphyseal dysplasia, multiple, type 2 Intervertebral disc disease Lymphoma, non-Hedgkin Breast cancer, invesive intraductal Colon adenocarcinoma Maple syrup urine disease, type II Atrioventricular canal defect Reproduced toxicity sensitivity to Zellweger syndrome Stickler syndrome, type III Marshall syndrome Stargardt eisease Retinitis pitmentosa Cone-rod dystrophy Macular dystrophy, age-related Fundus flavimaculatus Hypethyroidism, nongoitrous Exostoses, multiple **Pheochromocytoma** Psoniasis susceptibility Limb-cirdle muscular dystrophy, autosomal dominant. Pychodyses tosis Volvwinkel syndrome with ichthyesis Erythrokeratodenna, progressive symmetric Anemia, homolytic Elliptocytosis Pyropeiki locytosis Spherocytosis, recessive Schizophrenia Lupus nephritis, susceptibility to Migraine, familial hemiplegic Emery-Dreifuss muscular dystrophy Cardiomyopathy, dilated Lipodystrophy, familial partial Dejerine-Sottas disease, myelin P-related Hypomyelination, congenital Nena ine myopathy, autosomal dominant Lupus enthematosus, systemic, susceptibility Neutropenia, alloimmune neonatal Viral infections, recurrent, Antithrombin III deliciency Atherosclerosis, susceptibility to Glaucoma Tumor potentiating region Nephrotic syndrome Siccren syndrome Coagulation factor deficiency Alpheimer elsease Cardiomyopathy Factor H deficiency Membroproliferative giomerulonephritis Hemolytic-usemic syndrome Nephropathy, chronic hypocomplementernic Epidermolysis bullosa Popliteala pterygium syndrome Ectodermal dysplasia/skin fragility syndrome Usher syndrome, type 2A Kenny-Caffey syndrome Diphenylhydantoin toxicity

246 million base pairs Homoqytinuria Neuroblastoma [neuroblastoma suppressor) Shabdomyosarcoma, alveolar Neuroblastoma, aberrant in some Exostoses, multiple-like Onicid recentor Hyperprolingmia, type Bartter syndrome, type 3 Prostate cancer Brain cancer Charcot-Marie-Tooth neuropathy Muscular dystrophy, congenital Erythrokeratodermia variabilis Deafness, autosomal dominant and recessive Glucose transport defect, blood-brain berrier Hypercholesterolemia, familial Neuropathy, paraneoplastic sensory Muscle eve brain disease Meduloblastoma Basal cell carcinoma Corneal dystrophy, gelatinous drop-like Leber congenital amaunosis Retinal dystrophy 8-cell leukemia/lymphoma Lymphoma, MALI and folicular Mesothelioma Germ cell turnor Seaary syndrome Colon cancer Neuroblastoma. Glycogen storage disease Osteopetrosis, autosorial dominant, type II Waardenburg syndrome, type 28 Weicoureteral reflux Chorecathetosis/spasticity_episodic (paroxysmal) Hemochromatosis, type 2 Leukenia, acute Gaucher disease Meduliary cystic kidney disease, autosomal dominant Renal cell carcinoma, papillary insensitivity to pain, congenital, with anhidresis Medullary thyroid carcinoma typerlipidemia, familial combined Hyperparathyroidism Lymphoma, progression of Porphyria variegata lemonhagic diathesis Thromboembolism susceptibility Systemic lupus erythematosus, susceptibility Fish-odor syndrome Prostate cancer, hereditary, Chronic granulomatous disease Macular degeneration, age-related Epidermolysis bullosa Chitotrics/clase deficiency Pseudohypoaldosteronism, type Hypokalemic periodic peralysis Malignant hyperthermia susceptibility Glomerulopathy with fibronectin deposits Metastasis suppressor Measles, susceptibility to van der Woude syndrome [] p pit syndrome] Rippling muscle disease Hypoparathyroidism-retardation-dysmorphism syndrome Ventricular tachycardia, stress-induced polymorphic fumerase deficiency

Chediak-Higashi syndrome

Adrenoleukodystrophy, neonatal

Left-right axis malformation

Prostate cancer, hereditary

Endometrial bleeding-associated factor

Chondrodysplasia punctata, rhizomelic, type 2

Muckle-Wells syndrome

Zellweger syndrome

Suppose we want to annotate a genome according to genetic traits.

Given a genome, where are the genes?

Given a gene, where on the genome did it come from?

Finding Genes

Given a strand of mRNA, can we just look for Met and "STOP" codons?

U

С

Α

G

U

С

Α

G

U

С

Α

G

U

С

Α

G

Finding Genes

Given a strand of mRNA, can we just look for Met and "STOP" codons?

Open Reading Frames

We could identify coding regions by searching for Met and STOPs. Suppose we are examining:

Arg Cys Try STOP Cys Arg Ser Met

When is a base-triple truly a STOP codon?

Open Reading Frames

We could identify coding regions by searching for Met and STOPs. Suppose we are examining:

When is a base-triple truly a STOP codon?

Open Reading Frames

We could identify coding regions by searching for Met and STOPs. Suppose we are examining:

Frame shifts can change the protein sequence being coded.

"ORF" Detection

- Codons must have a functional pattern in a coding region; in a random sequence how often would we see a STOP?
- Given a window of DNA in a genome, can we assess the likelihood that it is a coding region (given a particular frameshift)?
- In known genes, Arg is 12x more likely to be coded by CGC than AGG.

CODON USAGE IN E. COLI GENES1

	Codon	Amino	% ³	Ratio ⁴	Codon	Amino	я	Ratio	Codon	Amino	%	Ratio	Codon	Amino	%	Ratio	
		ac id ²				ac id				ac id				ac id			
U	UUU	Phe (F)	1.9	0.51	UCU	Ser (8)	1.1	0.19	UAU	Туз (Ү)	1.6	0.53	UGU	Cys (C)	0.4	0.43	U
	UUC	Phe (F)	1.8	0.49	UCC	Ser (8)	1.0	0.17	UAC	Туз (Ү)	1.4	0.47	UGC	Cys(C)	0.6	0.57	C
	UUA	Leu (L)	1.0	0.11	UCA	Ser (8)	0.7	0.12	UAA	STOP	0.2	0.62	UGA	STOP	0.1	0.30	Α
	UUG	Leu (L)	1.1	0.11	UCG	Ser (8)	0.8	0.13	UAG	STOP	0.03	0.09	UGG	T1p (V)	1.4	1.00	G
C	CUU	Leu (L)	1.0	0.10	CCU	P10(P)	0.7	0.16	CAU	His (H)	1.2	0.52	CGU	A1g (R)	2.4	0.42	U
	CUC	Leu (L)	0.9	0.10	CCC	P10(P)	0.4	0.10	CAC	His (H)	1.1	0.48	CGC	Aig (R)	2.2	0.37	C
	CUA	Leu (L)	0.3	0.03	CCA	P10(P)	0.8	0.20	CAA	Gln (Q)	1.3	0.31	CGA	Aig (R)	0.3	0.05	Α
	CUG	Leu (L)	5.2	0.55	CCG	P10(P)	2.4	0.55	CAG	Gln (Q)	2.9	0.69	CGG	Aig (R)	0.5	0.08	G
Α	AUU	Ile (I)	2.7	0.47	ACU	Thu (T)	1.2	0.21	AAU	Asn (N)	1.6	0.39	AGU	Ser (8)	0.7	0.13	U
	AUC	Ile (I)	2.7	0.46	ACC	Thu (T)	2.4	0.43	AAC	Asn (N)	2.6	0.61	AGC	Ser (8)	1.5	0.27	C
	AUA	Ile (I)	0.4	0.07	ACA	Thu (T)	0.1	0.30	AAA	Lys (K)	3.8	0.76	AGA	Aig (R)	0.2	0.04	Α
	AUG	Met (M)	2.6	1.00	ACG	Thu (T)	1.3	0.23	AAG	Lys (K)	1.2	0.24	AGG	Aig (R)	0.2	0.03	G
G	GUU	Val(∀)	2.0	0.29	GCU	Ala (A)	1.8	0.19	GAU	Asp (D)	3.3	0.59	GGU	Gly (G)	2.8	0.38	U
	GUC	Val(♥)	1.4	0.20	GCC	Ala (A)	2.3	0.25	GAC	Asp (D)	2.3	0.41	GGC	Gly (G)	3.0	0.40	C
	GUA	Val (V)	1.2	0.17	GCA	Ala (A)	2.1	0.22	GAA	Glu(E)	4.4	0.70	GGA	Gly (G)	0.7	0.09	Α
	GUG	Val (V)	2.4	0.34	GCG	Ala (A)	3.2	0.34	GAG	Glu (E)	1.9	0.30	GGG	Gly (G)	0.9	0.13	G
	U					С				Α			G				

¹ The data shown in this table is from the Arabidopsis Research Companion on the World Wide Web (//weeds/mgh.harvard.edu). Codon frequencies for many other bacteria can be found at http://morgan.angis.su.oz.au/Angis/Tables.html.

² The letter in parenthesis represents the one-letter code for the amino acid.

³ % represents the average frequency this codon is used per 100 codons.

⁴ Ratio represents the abundance of that codon relative to all of the codons for that particular amino acid.

Using known mRNA, we can compute the likelihood that a stretch of DNA is coding (given the frame shift).

	U		C		A		G			
	UUU Phe	57	UCU Ser	16	UAU Tyr	58	UGU Cys	45		
TI	UUC Phe	43	UCC Ser	15	UAC Tyr	42	UGC Cys	55		
	UUA Leu	13	UCA Ser	13	UAA Stp	62	UGA Stp	30		
	UUG Leu	13	UCG Ser	15	UAG stp	8	UGG Trp	100		
	CUU Leu	11	CCU Pro	17	CAU His	57	CGU Arg	37		
C	CUC Leu	10	CCC Pro	17	CAC His	43	CGC Arg	38		
	CUA Leu	4	CCA Pro	20	CAA Gln	45	CGA Arg	7		
	CUG Leu	49	CCG Pro	51	CAG Gln	66	CGG Arg	10		
	AUU Ile	50	ACU Thr	18	AAU Asn	46	AGU Ser	15		
	AUC Ile	41	ACC Thr	42	AAC Asn	54	AGC Ser	26		
A	AUA Ile	9	ACA Thr	15	AAA Lys	75	AGA Arg	5		
	AUG Met	100	ACG Thr	26	AAG Lys	25	AGG Arg	3		
Π	GUU Val	27	GCU Ala	17	GAU Asp	63	GGU Gly	34		
C	GUC Val	21	GCC Ala	27	GAC Asp	37	GGC Gly	39		
U	GUA Val	16	GCA Ala	22	GAA Glu	68	GGA Gly	12		
	GUG Val	36	GCG Ala	34	GAG Glu	32	GGG Gly	15		

Using known mRNA, we can compute the likelihood that a stretch of DNA is coding (given the frame shift).

Codon Statistics

- Suppose we have known codon frequencies $F^* = f_1^*, f_2^*, \dots, f_{61}^*$.
- For our unknown sequence, calculate codon usages F_0, F_1, F_2 for each possible frame shift.
- Compute $\arg \max \delta(F_i, F^*)$, for an appropriately chosen cost function δ (Euclidean, KL-distance, etc).

Gene Splicing

Sharp and Roberts (1977) <u>hybridized</u> the mRNA for a viral protein to its corresponding "gene" and showed that transcription can be "spliced".

So given a genomic sequence, we need to identify <u>fragmented</u> exonic components (with or without mRNA).

Introns and Exons

About 5% of a genomic sequence is exonic, while the rest is intronic (some say it is "junk"). Prokaryotes don't have exons!

Splicing Signals

We can attempt to perform a "spliced alignment" by using a known homologous gene.

Statistical methods for gene detection attempt to detect the "transition" between splice sites by comparing the distributions of codons on either side of an AG or GT pair.

Spliced Alignment

Given a DNA sequence G, a target sequence T, and a candidate set of exons \mathcal{B} , which chain of nonoverlapping exons Γ^* maximizes the alignment score $cost(\Gamma^*, T)$.

Spliced Alignment

Suppose we had a candidate chain Γ ending in a block B.

We want:
$$\Gamma^* = \arg \max_B S(length(B), length(T), B)$$

We can find the optimal spliced alignment using dynamic programming. (How quickly?)

Gelfand et al.

 $S(i, j, k) = \max_{\substack{\text{all chains } \Gamma \text{ containing block } B_k}} s(\Gamma^*(i), T(j)).$

S(i, j, k) can be easily computed by dynamic programming as described below.

Let $\Re(i) = \{k: last(k) < i\}$ be the set of blocks ending (strictly) before position *i* in *G*. The following recurrence computes S(i, j, k) for $1 \le i \le n, 1 \le j \le m$, and $1 \le k \le b$:

S(i,j,k) =

 $\max \begin{cases} S(i - 1, j - 1, k) + \Delta(g_i, t_j), & \text{if } i \neq first(k) \\ S(i - 1, j, k) + \Delta_{indel}, & \text{if } i \neq first(k) \\ \max_{l \in \mathscr{B}(first(k))} S(last(l), j - 1, l) + \Delta(g_i, t_j), & \text{if } i = first(k) \\ \max_{l \in \mathscr{B}(first(k))} S(last(l), j, l) + \Delta_{indel}, & \text{if } i = first(k) \\ S(i, j - 1, k) + \Delta_{indel}. \end{cases}$

[1]

After computing the three-dimensional table S(i,j,k), the score of the optimal spliced alignment can be found as

 $\max_{k} S(last(k), m, k).$

-

Hidden Markov Models

Suppose that we associate blocks of length k in G with two possible states, "intron" and "exon".

Starting with a prior and conditional likelihoods for each block, can we find the most likely set of exons for G?

Hidden Markov Models

We are given $\Pr[s_i]$ and $\Pr[s_i | s_{i-1}]$ as input.

Our goal is to find $\arg \max_{(s_1, s_2, \dots, s_{\frac{m}{k}})} \Pr[s_1, s_2, \dots, s_{\frac{m}{k}}]$

This can be done using the Viterbi algorithm, which is essentially a dynamic programming method.

Combinatorial Gene Regulation

- A differential gene expression (e.g., microarray, HTS) experiment showed that when gene X is knocked out, 20 other genes are not expressed
 - How can one gene have such drastic effects?

Regulatory Proteins

- Gene X encodes regulatory protein, a.k.a. a transcription factor (TF)
- The 20 unexpressed genes rely on gene X's TF to induce transcription
- A single TF may regulate multiple genes

Regulatory Regions

- Every gene contains a regulatory region (RR) typically stretching 100-1000 bp upstream of the transcriptional start site
- Located within the RR are the Transcription Factor Binding Sites (TFBS), also known as motifs, specific for a given transcription factor
- TFs influence gene expression by binding to a specific location in the respective gene's regulatory region - TFBS

Transcription Factor Binding Sites

- A TFBS can be located anywhere within the Regulatory Region.
- TFBS may vary slightly across different regulatory regions since non-essential bases could mutate

Motifs and Transcriptional Start Sites

Transcription Factors and Motifs

Motif Logo

- Motifs can mutate on non important bases
- The five motifs in five different genes have mutations in position 3 and 5
- Representations called *motif logos* illustrate the conserved and variable regions of a motif

TGGGGGA TGGGGGA TGAGAGA TGAGGGA

Motif Logos: An Example

Identifying Motifs

- Genes are turned on or off by regulatory proteins
- These proteins bind to upstream regulatory regions of genes to either attract or block an RNA polymerase
- Regulatory protein (TF) binds to a short DNA sequence called a motif (TFBS)
- So finding the same motif in multiple genes' regulatory regions suggests a regulatory relationship amongst those genes

Identifying Motifs: Complications

- We do not know the motif sequence
- We do not know where it is located relative to the genes start
- Motifs can differ slightly from one gene to the next
- How to discern it from "random" motifs?

Small conserved regions of DNA can regulate transcription, but how do we find them?

Given a set of n sequences, can we find a shared substring of length k?

Small conserved regions of DNA can regulate transcription, but how do we find them?

ACGTACGT

Given a set of n sequences, can we find a shared substring of length k?

Small conserved regions of DNA can regulate transcription, but how do we find them?

Given a set of n sequences of length m, what is the <u>consensus</u> substring of length k?

Given a set of n sequences of length m, what is the <u>consensus</u> substring of length k?

If we knew where each motif started, then we just need to compute:

$$score(s_1, s_2, \dots, s_n) = \sum_{i=0}^{k-1} best(\{g_j[s_j+i] \mid j=1, 2, \dots, n\})$$

What if we tried all possible starting points?

 $(m-k)^n$ possible pairings of substrings!

An Introduction to Bioinformatics Algorithms

www.bioalgorithms.info

A Motif Finding Analogy

 The Motif Finding Problem is similar to the problem posed by Edgar Allan Poe (1809 – 1849) in his *Gold Bug* story

The Gold Bug Problem

• Given a secret message:

53++!305))6*;4826)4+.)4+);806*;48!8`60))85;]8*:+*8!83(88)5*!; 46(;88*96*?;8)*+(;485);5*!2:*+(;4956*2(5*-4)8`8*; 4069285);)6 !8)4++;1(+9;48081;8:8+1;48!85;4)485!528806*81(+9;48;(88;4(+?3 4;48)4+;161;:188;+?;

 Decipher the message encrypted in the fragment

Hints for The Gold Bug Problem

- Additional hints:
 - The encrypted message is in English
 - Each symbol correspond to one letter in the English alphabet
 - No punctuation marks are encoded

The Gold Bug Problem: Symbol Counts

- Naive approach to solving the problem:
 - Count the frequency of each symbol in the encrypted message
 - Find the frequency of each letter in the alphabet in the English language
 - Compare the frequencies of the previous steps, try to find a correlation and map the symbols to a letter in the alphabet

Symbol Frequencies in the Gold Bug Message

•	Gol	d	Bug	Mes	sage:
---	-----	---	-----	-----	-------

Symbol	8	•	4)	+	*	5	6	(!	1	0	2	9	3	:	?		-]	-
Frequency	34	25	19	16	15	14	12	11	9	8	7	6	5	5	4	4	3	2	1	1	1

•English Language:

etaoinsrhldcumfpgwybvkxjqz

Most frequent

Least frequent

The Gold Bug Message Decoding: First Attempt

 By simply mapping the most frequent symbols to the most frequent letters of the alphabet:

sfiilfcsoorntaeuroaikoaiotecrntaeleyrcooestvenpinelefheeosnlt arhteenmrnwteonihtaesotsnlupnihtamsrnuhsnbaoeyentacrmuesotorl eoaiitdhimtaecedtepeidtaelestaoaeslsueecrnedhimtaetheetahiwfa taeoaitdrdtpdeetiwt

The result does not make sense

The Gold Bug Problem: I-tuple count

- A better approach:
 - Examine frequencies of *I*-tuples, combinations of 2 symbols, 3 symbols, etc.
 - "The" is the most frequent 3-tuple in English and ";48" is the most frequent 3-tuple in the encrypted text
 - Make inferences of unknown symbols by examining other frequent *I*-tuples

The Gold Bug Problem: the ;48 clue

Mapping "the" to ";48" and substituting all occurrences of the symbols:

53++!305))6*the26)h+.)h+)te06*the!e`60))e5t]e*:+*e!e3(ee)5*!t h6(tee*96*?te)*+(the5)t5*!2:*+(th956*2(5*h)e`e*th0692e5)t)6!e)h++t1(+9the0e1te:e+1the!e5th)he5!52ee06*e1(+9thet(eeth(+?3ht he)h+t161t:1eet+?t

The Gold Bug Message Decoding: Second Attempt

• Make inferences:

53++!305))6*the26)h+.)h+)te06*the!e`60))e5t]e*:+*e!e3(ee)5*!t h6(tee*96*?te)*+(the5)t5*!2:*+(th956*2(5*h)e`e*th0692e5)t)6!e)h++t1(+9the0e1te:e+1the!e5th)he5!52ee06*e1(+9<u>thet(eeth(+?3h</u>t he)h+t161t:1eet+?t

- "thet(ee" most likely means "the tree"
 - Infer "(" = "r"
- "th(+?3h" becomes "thr+?3h"
 - Can we guess "+" and "?"?

The Gold Bug Problem: The Solution

After figuring out all the mappings, the final message is:

AGOODGLASSINTHEBISHOPSHOSTELINTHEDEVILSSEATWENYONEDEGRE ESANDTHIRTEENMINUTESNORTHEASTANDBYNORTHMAINBRANCHSEVENT HLIMBEASTSIDESHOOTFROMTHELEFTEYEOFTHEDEATHSHEADABEELINE FROMTHETREETHROUGHTHESHOTFIFTYFEETOUT

The Solution (cont'd)

Punctuation is important:

A GOOD GLASS IN THE BISHOP'S HOSTEL IN THE DEVIL'S SEA, TWENY ONE DEGREES AND THIRTEEN MINUTES NORTHEAST AND BY NORTH, MAIN BRANCH SEVENTH LIMB, EAST SIDE, SHOOT FROM THE LEFT EYE OF THE DEATH'S HEAD A BEE LINE FROM THE TREE THROUGH THE SHOT, FIFTY FEET OUT.

Solving the Gold Bug Problem

- Prerequisites to solve the problem:
 - Need to know the relative frequencies of single letters, and combinations of two and three letters in English
 - Knowledge of all the words in the English dictionary is highly desired to make accurate inferences

Given a set of n sequences of length m, what is the <u>consensus</u> substring of length k?

If we knew where each motif started, then we just need to compute:

$$score(s_1, s_2, \dots, s_n) = \sum_{i=0}^{k-1} best(\{g_j[s_j+i] \mid j=1, 2, \dots, n\})$$

What if we tried all possible k-mers? $4^k\cdot n(m-k) \text{ comparisons}$

Branch and Bound

Can we improve our sequential search strategy?

What if we looked at shorter segments?

If a k-mer has a "bad" prefix, then we can eliminate all k-mers with that prefix.

Branch and Bound

We can draw the search as a tree where each level corresponds to a prefix of the k-mer we want.

We must establish bounds on the "score" of a motif given its prefix.

<u>Idea</u>: If a particular k-mer cannot be improved upon by a different prefix, eliminate that subtree from the search.