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Now What?



Suppose we want to 
annotate a genome 
according to genetic 
traits. 

Given a genome, where 
are the genes?  

Given a gene, where on 
the genome did it come 
from?



Finding Genes

 
U C A G  

U

UUU = Phe  
UUC = Phe  
UUA = Leu 
UUG = Leu

UCU = Ser  
UCC = Ser  
UCA = Ser  
UCG = Ser

UAU = Tyr  
UAC = Tyr  

UAA = Stop 
UAG = Stop

UGU = Cys  
UGC = Cys  
UGA = Stop 
UGG = Trp

U
C
A
G

C

CUU = Leu 
CUC = Leu 
CUA = Leu 
CUG = Leu

CCU = Pro 
CCC = Pro 
CCA = Pro 
CCG = Pro

CAU = His  
CAC = His  
CAA = Gln 
CAG = Gln

CGU = Arg 
CGC = Arg 
CGA = Arg 
CGG = Arg

U
C
A
G

A

AUU = Ile  
AUC = Ile  
AUA = Ile  

AUG = Met

ACU = Thr  
ACC = Thr  
ACA = Thr  
ACG = Thr

AAU = Asn 
AAC = Asn 
AAA = Lys  
AAG = Lys

AGU = Ser  
AGC = Ser  
AGA = Arg 
AGG = Arg

U
C
A
G

G

GUU = Val 
CUC = Val 
GUA = Val 
GUG = Val

GCU = Ala  
GCC = Ala  
GCA = Ala  
GCG = Ala

GAU = Asp 
GAC = Asp 
GAA = Glu 
GAG = Glu

GGU = Gly  
GGC = Gly  
GGA = Gly  
GGG = Gly

U
C
A
G

Given a strand of mRNA, can we just look 
for Met and “STOP” codons?



Finding Genes
Given a strand of mRNA, can we just look 
for Met and “STOP” codons?

 
U C A G  

U

UUU = Phe  
UUC = Phe  
UUA = Leu 
UUG = Leu

UCU = Ser  
UCC = Ser  
UCA = Ser  
UCG = Ser

UAU = Tyr  
UAC = Tyr  

UAA = Stop 
UAG = Stop

UGU = Cys  
UGC = Cys  
UGA = Stop 
UGG = Trp

U
C
A
G

C

CUU = Leu 
CUC = Leu 
CUA = Leu 
CUG = Leu

CCU = Pro 
CCC = Pro 
CCA = Pro 
CCG = Pro

CAU = His  
CAC = His  
CAA = Gln 
CAG = Gln

CGU = Arg 
CGC = Arg 
CGA = Arg 
CGG = Arg

U
C
A
G

A

AUU = Ile  
AUC = Ile  
AUA = Ile  

AUG = Met

ACU = Thr  
ACC = Thr  
ACA = Thr  
ACG = Thr

AAU = Asn 
AAC = Asn 
AAA = Lys  
AAG = Lys

AGU = Ser  
AGC = Ser  
AGA = Arg 
AGG = Arg

U
C
A
G

G

GUU = Val 
CUC = Val 
GUA = Val 
GUG = Val

GCU = Ala  
GCC = Ala  
GCA = Ala  
GCG = Ala

GAU = Asp 
GAC = Asp 
GAA = Glu 
GAG = Glu

GGU = Gly  
GGC = Gly  
GGA = Gly  
GGG = Gly

U
C
A
G



Open Reading Frames

When is a base-triple truly a STOP codon?

ACGGTGTTGGTAGTGTAGAAGTATGA

We could identify coding regions by 
searching for Met and STOPs. Suppose 
we are examining:

STOP MetArg Cys Try Cys Arg Ser



Open Reading Frames

When is a base-triple truly a STOP codon?

ACGGTGTTGGTAGTGTAGAAGTATGA
STOP MetArg Cys Try Cys Arg Ser

Thr STOPGly Val Gly Val Glu Val

We could identify coding regions by 
searching for Met and STOPs. Suppose 
we are examining:



Open Reading Frames

Frame shifts can change the protein 
sequence being coded.

ACGGTGTTGGTAGTGTAGAAGTATGA
STOP MetArg Cys Try Cys Arg Ser

Thr STOPGly Val Gly Val Glu Val

Val ThrThr Val Leu Val STOP Lys

We could identify coding regions by 
searching for Met and STOPs. Suppose 
we are examining:



“ORF” Detection

• Codons must have a functional pattern in 
a coding region; in a random sequence 
how often would we see a STOP? 

• Given a window of DNA in a genome, can 
we assess the likelihood that it is a coding 
region (given a particular frameshift)? 

• In known genes, Arg is 12x more likely to 
be coded by CGC than AGG.



Using known mRNA, we can compute the likelihood 
that a stretch of DNA is coding (given the frame shift).



Using known mRNA, we can compute the likelihood 
that a stretch of DNA is coding (given the frame shift).



• Suppose we have known codon 
frequencies                               .  

• For our unknown sequence, calculate 
codon usages                 for each possible 
frame shift. 

• Compute                            , for an 
appropriately chosen cost function    
(Euclidean, KL-distance, etc).

Codon Statistics
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Gene Splicing

DNA

mRNA

Sharp and Roberts 
(1977) hybridized the 
mRNA for a viral protein 
to its corresponding 
“gene” and showed that 
transcription can be 
“spliced”.

So given a genomic sequence, we need to identify 
fragmented exonic components (with or without mRNA).



exon1  exon2  exon3 

transcription 

translation 

splicing 

exon = coding 

intron = non-coding 

Introns and Exons

About 5% of a genomic sequence is exonic, while the rest 
is intronic (some say it is “junk”). Prokaryotes don’t have 
exons!



Splicing Signals

We can attempt to perform a “spliced alignment” by 
using a known homologous gene.

Statistical methods for gene detection attempt to 
detect the “transition” between splice sites by 
comparing the distributions of codons on either side 
of an AG or GT pair. 



Given a DNA sequence    , a target sequence    , 
and a candidate set of exons    , which chain of non-
overlapping exons       maximizes the alignment 
score                   .  

Spliced Alignment



Suppose we had a candidate chain     ending in a 
block    .                                                                 .

Spliced Alignment

We can find the optimal spliced alignment using 
dynamic programming. (How quickly?)

We want: �⇤ = argmax
B

S(length(B), length(T ), B)



Gelfand et al.



Suppose that we associate blocks of length    in     
with two possible states, “intron” and “exon”.

Hidden Markov Models

E I

Starting with a prior and conditional likelihoods for 
each block, can we find the most likely set of exons 
for     ?

...

E E E E E I I I I I E E E E I I I I



We are given            and                      as input.  

Hidden Markov Models

...

Our goal is to find 

This can be done using the Viterbi algorithm, which 
is essentially a dynamic programming method.



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Combinatorial Gene Regulation
• A differential gene expression (e.g., microarray, 

HTS) experiment showed that when gene X is 
knocked out, 20 other genes are not expressed 

• How can one gene have such drastic 
effects?
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Regulatory Proteins
• Gene X encodes regulatory protein, a.k.a. a 

transcription factor (TF) 

• The 20 unexpressed genes rely on gene X’s TF to 
induce transcription 

• A single TF may regulate multiple genes 
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Regulatory Regions
• Every gene contains a regulatory region (RR) typically 

stretching 100-1000 bp upstream of the transcriptional 
start site 

• Located within the RR are the Transcription Factor 
Binding Sites (TFBS), also known as motifs, specific for 
a given transcription factor 

• TFs influence gene expression by binding to a specific 
location in the respective gene’s regulatory region  - TFBS  
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Transcription Factor Binding Sites

• A TFBS can be located anywhere within the  
    Regulatory Region. 

• TFBS may vary slightly across different 
regulatory regions since non-essential bases 
could mutate
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Motifs and Transcriptional Start Sites 
 

geneATCCCG

geneTTCCGG

geneATCCCG

geneATGCCG

geneATGCCC
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Transcription Factors and Motifs
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Motif Logo
• Motifs can mutate on non 

important bases  
• The five motifs in five 

different genes have 
mutations in position 3 and 
5 

• Representations called 
motif logos illustrate the 
conserved and variable 
regions of a motif

TGGGGGA
TGAGAGA
TGGGGGA
TGAGAGA
TGAGGGA
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Motif Logos: An Example

(http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html)
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Identifying Motifs 
• Genes are turned on or off by regulatory proteins 

• These proteins bind to upstream regulatory regions 
of genes to either attract or block an RNA 
polymerase 

• Regulatory protein (TF) binds to a short DNA 
sequence called a motif (TFBS) 

• So finding the same motif in multiple genes’ 
regulatory regions suggests a regulatory 
relationship amongst those genes
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Identifying Motifs: Complications
• We do not know the motif sequence 

• We do not know where it is located relative to 
the genes start  

• Motifs can differ slightly from one gene to the 
next 

• How to discern it from “random” motifs?



DNA Motifs

Small conserved regions of DNA can 
regulate transcription, but how do we find 
them?

CCTGATAGACGCTATCTGGCTATCCACGTACGTAGGTCCTCTGTGCGAATCTATGCGT
AGTACTGGTGTACATTTGATACGTACGTACACCGGCAACCTGAAACAAACGCTCAGAA
AAACGTACGTGCACCCTCTTTCTTCGTGGCTCTGGCCAACGAGGGCTGATGTATAAGA
GTAAGTCATAGCTGTAACTATTACCTGCCACCCCTATTACATCTTACGTACGTATACA
ACGCGTCATGGCGGGGTATGCGTTTTGGTCGTCGTACGCTCGATCGTTAACGTACGTC

Given a set of     sequences, can we find a 
shared substring of length    ?

n
k



Given a set of     sequences, can we find a 
shared substring of length    ?

n

DNA Motifs

Small conserved regions of DNA can 
regulate transcription, but how do we find 
them?

CCTGATAGACGCTATCTGGCTATCCACGTACGTAGGTCCTCTGTGCGAATCTATGCGT
AGTACTGGTGTACATTTGATACGTACGTACACCGGCAACCTGAAACAAACGCTCAGAA
AAACGTACGTGCACCCTCTTTCTTCGTGGCTCTGGCCAACGAGGGCTGATGTATAAGA
GTAAGTCATAGCTGTAACTATTACCTGCCACCCCTATTACATCTTACGTACGTATACA
ACGCGTCATGGCGGGGTATGCGTTTTGGTCGTCGTACGCTCGATCGTTAACGTACGTC

k

ACGTACGT
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DNA Motifs

Small conserved regions of DNA can 
regulate transcription, but how do we find 
them?

CCTGATAGACGCTATCTGGCTATCCAGGTACTTAGGTCCTCTGTGCGAATCTATGCGT
AGTACTGGTGTACATTTGATCCATACGTACACCGGCAACCTGAAACAAACGCTCAGAA
AAACGTTAGTGCACCCTCTTTCTTCGTGGCTCTGGCCAACGAGGGCTGATGTATAAGA
GTAAGTCATAGCTGTAACTATTACCTGCCACCCCTATTACATCTTACGTCCATATACA
ACGCGTCATGGCGGGGTATGCGTTTTGGTCGTCGTACGCTCGATCGTTACCGTACGGC

AGGTACTT
CCATACGT
ACGTTAGT
ACGTCCAT
CCGTACGG
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DNA Motifs

CCTGATAGACGCTATCTGGCTATCCAGGTACTTAGGTCCTCTGTGCGAATCTATGCGT
AGTACTGGTGTACATTTGATCCATACGTACACCGGCAACCTGAAACAAACGCTCAGAA
AAACGTTAGTGCACCCTCTTTCTTCGTGGCTCTGGCCAACGAGGGCTGATGTATAAGA
GTAAGTCATAGCTGTAACTATTACCTGCCACCCCTATTACATCTTACGTCCATATACA
ACGCGTCATGGCGGGGTATGCGTTTTGGTCGTCGTACGCTCGATCGTTACCGTACGGC

AGGTACTT
CCATACGT
ACGTTAGT
ACGTCCAT
CCGTACGG

Given a set of     sequences of length    , 
what is the consensus substring of length    ?

m
k

n



score(s1, s2, . . . , sn) =
k�1X

i=0

best({gj [sj + i] | j = 1, 2, . . . , n})

(m� k)n

DNA Motifs

If we knew where each motif started, then 
we just need to compute:

What if we tried all possible starting points?
possible pairings of substrings!

Given a set of     sequences of length    , 
what is the consensus substring of length    ?

m
k

n
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A Motif Finding Analogy

• The Motif Finding Problem is similar to the 
problem posed by Edgar Allan Poe (1809 – 
1849) in his Gold Bug story
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The Gold Bug Problem

• Given a secret message: 
53++!305))6*;4826)4+.)4+);806*;48!8`60))85;]8*:+*8!83(88)5*!;  
46(;88*96*?;8)*+(;485);5*!2:*+(;4956*2(5*-4)8`8*; 4069285);)6 
!8)4++;1(+9;48081;8:8+1;48!85;4)485!528806*81(+9;48;(88;4(+?3 
4;48)4+;161;:188;+?;  

• Decipher the message encrypted in the 
fragment
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Hints for The Gold Bug Problem 

• Additional hints: 
• The encrypted message is in English 
• Each symbol correspond to one letter in the 

English alphabet 
• No punctuation marks are encoded
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The Gold Bug Problem: Symbol Counts

• Naive approach to solving the problem: 
• Count the frequency of each symbol in the 

encrypted message 
• Find the frequency of each letter in the 

alphabet in the English language 
• Compare the frequencies of the previous 

steps, try to find a correlation and map the 
symbols to a letter in the alphabet
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Symbol Frequencies in the Gold Bug Message

• Gold Bug Message:

•English Language: 

e t a o i n s r h l d c u m f p g w y b v k x j q z

Most frequent                                                     Least  frequent

Symbol 8 ; 4 ) + * 5 6 ( ! 1 0 2 9 3 : ? ` - ] .
Frequency 34 25 19 16 15 14 12 11 9 8 7 6 5 5 4 4 3 2 1 1 1
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The Gold Bug Message Decoding: First Attempt

• By simply mapping the most frequent symbols 
to the most frequent letters of the alphabet: 

 sfiilfcsoorntaeuroaikoaiotecrntaeleyrcooestvenpinelefheeosnlt 

 arhteenmrnwteonihtaesotsnlupnihtamsrnuhsnbaoeyentacrmuesotorl 

 eoaiitdhimtaecedtepeidtaelestaoaeslsueecrnedhimtaetheetahiwfa 

 taeoaitdrdtpdeetiwt 

• The result does not make sense
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The Gold Bug Problem: l-tuple count

• A better approach: 
• Examine frequencies of l-tuples, combinations 
of 2 symbols, 3 symbols, etc. 

• “The” is the most frequent 3-tuple in English 
and “;48” is the most frequent 3-tuple in the 
encrypted text 

• Make inferences of unknown symbols by 
examining other frequent l-tuples 
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The Gold Bug Problem: the ;48 clue

• Mapping “the” to “;48” and substituting all 
occurrences of the symbols: 

 53++!305))6*the26)h+.)h+)te06*the!e`60))e5t]e*:+*e!e3(ee)5*!t 

 h6(tee*96*?te)*+(the5)t5*!2:*+(th956*2(5*h)e`e*th0692e5)t)6!e 

 )h++t1(+9the0e1te:e+1the!e5th)he5!52ee06*e1(+9thet(eeth(+?3ht 

 he)h+t161t:1eet+?t



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Gold Bug Message Decoding: Second Attempt

• Make inferences: 
 53++!305))6*the26)h+.)h+)te06*the!e`60))e5t]e*:+*e!e3(ee)5*!t 

 h6(tee*96*?te)*+(the5)t5*!2:*+(th956*2(5*h)e`e*th0692e5)t)6!e 

 )h++t1(+9the0e1te:e+1the!e5th)he5!52ee06*e1(+9thet(eeth(+?3ht 

 he)h+t161t:1eet+?t 

• “thet(ee” most likely means “the tree” 
• Infer “(“ = “r” 

• “th(+?3h” becomes “thr+?3h” 
• Can we guess “+” and “?”?
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The Gold Bug Problem: The Solution

• After figuring out all the mappings, the final 
message is: 

 AGOODGLASSINTHEBISHOPSHOSTELINTHEDEVILSSEATWENYONEDEGRE 

 ESANDTHIRTEENMINUTESNORTHEASTANDBYNORTHMAINBRANCHSEVENT 
HLIMBEASTSIDESHOOTFROMTHELEFTEYEOFTHEDEATHSHEADABEELINE 

 FROMTHETREETHROUGHTHESHOTFIFTYFEETOUT
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The Solution (cont’d)

• Punctuation is important: 

 A GOOD GLASS IN THE BISHOP’S HOSTEL IN THE DEVIL’S SEA,  

 TWENY ONE DEGREES AND THIRTEEN MINUTES NORTHEAST AND BY NORTH,  

 MAIN BRANCH SEVENTH LIMB, EAST SIDE, SHOOT FROM THE LEFT EYE OF  

 THE DEATH’S HEAD A BEE LINE FROM THE TREE THROUGH THE SHOT,  

 FIFTY FEET OUT. 
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Solving the Gold Bug Problem
• Prerequisites to solve the problem: 

• Need to know the relative frequencies of 
single letters, and combinations of two and 
three letters in English 

• Knowledge of all the words in the English 
dictionary is highly desired to make accurate 
inferences



4k · n(m� k)

DNA Motifs

If we knew where each motif started, then 
we just need to compute:

What if we tried all possible    -mers?k

comparisons

score(s1, s2, . . . , sn) =
k�1X

i=0

best({gj [sj + i] | j = 1, 2, . . . , n})

Given a set of     sequences of length    , 
what is the consensus substring of length    ?

m
k

n



Branch and Bound

Can we improve our sequential search 
strategy?

AAAA ...AAAC AAAG AAAT TTTG TTTT

What if we looked at shorter segments?

If a   -mer has a “bad” prefix, then we can 
eliminate all   -mers with that prefix.

k
k



Branch and Bound

A C T G

AA AC AT AG

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

We can draw the search 
as a tree where each 
level corresponds to a 
prefix of the   -mer we 
want.

k

We must establish 
bounds on the “score” of 
a motif given its prefix.

ACCT

. 

. 

.

Idea: If a particular   -mer cannot be 
improved upon by a different prefix, 
eliminate that subtree from the search.

k


